Exoplanet Microlensing: Simple Lenses to Physics of Planets Andy Gould (Ohio State)

Generation -1: Einstein (1912)

[Renn, Sauer, Stachel 1997, Science 275, 184]

Fig. 1. Notes about gravitational lensing dated to 1912 on two pages of Einstein's scratch notebook (12). [Reproduced with permission of the Einstein Archives, Jewish National and University Library, Hebrew University of Jerusalem]

Point-Lens Magnification

Point-Lens Limiting Formulae

$$\begin{aligned} A(u) &= \frac{1}{u} \frac{1 + u^2/2}{\sqrt{1 + u^2/4}} \to \frac{1}{u} \left(1 + \frac{3}{8} u^2 \right) & (u \ll 1) \\ A(u) &= \left(1 - \frac{4}{(u^2 + 2)^2} \right)^{-1/2} \to 1 + \frac{2}{(u^2 + 2)^2} & (u \gg 1) \\ A(1) &= \frac{3}{\sqrt{5}} \simeq 1.34 \\ u(A) &= \sqrt{2[(1 - A^{-2})^{-1/2} - 1]} \end{aligned}$$

Simple Point Lens		
3 Features	& 3 Parameters	
Time of Peak	t_0	
Height of Peak	u_0	
Width of Peak	t_E	

Point-Lens Light Curves

Relation of Mass and Distance to Lensing Observables

Point Lens + Finite Source Effect & 4 Parameters 4 Features t 0 Time of Peak **u** 0 Height of Peak Width of Peak t E Width of Cap $t_* = \rho * t_E$

Finite Source "Attenuation"

Point Lens + Parallax		
5 Features &	& 5 Parameters	
Time of Peak	t_0	
Height of Peak	u_0	
Width of Peak	t_E	
Symmetric Distortion	π_E,perp	
Anti-Symmetric Distortion	π_E,parallel	

Relation of Mass and Distance to Lensing Observables

Parallax Examples Many Year, Few Year, <1 Year

Point Lens + Parallax + FS & 6 Parameters 6 Features t_0 Time of Peak **u** 0 Height of Peak Width of Peak t E Width of Cap $t_* = \rho * t_E$ Symmetric Distortion π_E , perp Anti-Symmetric π_E , parallel Distortion

Real Examples: NONE

OGLE-2007-BLG-224 Canaries South Africa Chile

Terrestrial Parallax: Simultaneous Observations on Earth

Simple Planetary (G&L) Lenses & 6 Parameters 6 Features Time of Peak t 0 Height of Peak u_0 Width of Peak t E Time of Perturbation Trajectory angle: α Height of Perturbation Planet-star separation: s Width of Perturbation Planet/star mass ratio: q

Planetary Lenses usually have FS & 7 Parameters 7 Features Time of Peak t 0 Height of Peak u_0 Width of Peak t E Time of Perturbation Trajectory angle: α Height of Perturbation Planet-star separation: s Width of Perturbation Planet/star mass ratio: q Width of Caustic Cr. $t_* = \rho * t_E$

OGLE-2005-BLG-390 First Simple (G&L) Planetary Lens

Beaulieu et al. 2006, Nature, 439, 437

Source Centered on Point Lens

$$A = \frac{\pi (u_{\pm}^2 - u_{-}^2)}{\pi \rho^2}, \qquad u_{\pm} = \frac{\rho \pm \sqrt{\rho^2 + 4}}{2}$$
$$A = \sqrt{1 + \frac{4}{\rho^2}} \to 1 + \frac{2}{\rho^2}, \qquad \rho \equiv \frac{\theta_*}{\theta_{\rm E}}$$

Conjecture for Big Source on Planet Caustic

$$A_p = 2\left(\frac{\theta_{\mathrm{E},p}}{\theta_*}\right)^2$$

Plus Simple Timing Argument

$$\frac{t_p}{t_{\rm E}} = \frac{\theta_*}{\theta_{\rm E}}$$

Yields Mass-Ratio Estimate

$$q = \frac{M_p}{M} = \frac{\theta_{\mathrm{E},p}^2}{\theta_{\mathrm{E}}^2} = \frac{\theta_{\mathrm{E},p}^2}{\theta_{*}^2} \frac{\theta_{*}^2}{\theta_{\mathrm{E}}^2} = \frac{A_p}{2} \frac{t_p^2}{t_{\mathrm{E}}^2}$$

Mass-Ratio Estimate a la Gould & Loeb

 $q=(A_p/2)(t_p/t_E)^2$ $A_p = 0.2$ $t_p = 0.3 \text{ day}$ $t_E=10 \text{ day}$ q=9e-5 $q_actual = 8e-5$

First Microlensing Planet Pronounced Finite Source Effects

First Microlensing Planet Perfect Fold Caustic Crossing

Second Microlensing Planet Weak Finite Source Effects

Udalski et al. 2005, ApJ, 628, L109

Planet Lenses Often Have Parallax9 Features& 9 Parameters3 Point-Lenst_0, u_0, t_ETime of PerturbationTrajectory angle: αHeight of PerturbationPlanet-star separation: s

Height of PerturbationPlanet-star separation: sWidth of PerturbationPlanet/star mass ratio: a

Planet/star mass ratio: q

 $t_* = \rho * t_E$

π_E,perp

 π_E ,parallel

Symmetric Distortion

Width of Caustic Cr.

Anti-symmetric Dist.

MOA-2009-BLG-266 Parallax + Finite Source

ρ Well-Measured from "Dip"

θ_* Well-measured from lightcurve

$$==>\theta_{\rm E}=\theta_*/\rho$$

$\pi_{\rm E}$ semi-measured from lightcurve

MOA-2009-BLG-266 Minor Image Planetary Caustic

Preliminary Model (Cheongho Han)

MOA-2009-BLG-266 13.20.02 MOA-2009-BLG-266 MOA Canopus 0.01 13.513.4SAAO CTIO, 0 Faulkes N CTIO, -0.0114 13.6 Auckland Faulkes S -0.04 -0.02 0 20.0 0.0 Bronberg Wise 14.5 Lemmon CAO 13.8 15 14 15.5 14.2 0.04 5084 5086 5088 5090 0.02 -0.02 -0.04 5000 5050 5100 5150 $t_{0,\text{planet}} = 5086.5$ $\tau_{\text{planet}} = \frac{t_0 - t_{0,\text{planet}}}{t_{\text{E}}} = \frac{6.6}{60} = 0.11$ $u_{\text{planet},1} = A_{\text{planet}}^{-1} = 10^{0.4(I_{\text{plan}} - I_{\text{base}})} = 0.154 \qquad [I_{\text{planet}} = 13.58]$ $u_{\text{planet},2} = \sqrt{u_0^2 + \tau_{\text{planet}}^2} = 0.172$

$$u_{\text{planet}} = \frac{u_{\text{planet},1} + u_{\text{planet},2}}{2} = 0.163$$

$$s = \frac{-u_{\text{planet}} + \sqrt{u_{\text{planet}}^2 + 4}}{2} = 0.922$$

$$\alpha = \sin^{-1} \frac{u_0}{u_{\text{planet}}} = 54^{\circ}$$

Generic Caustic Exit

Gould & Andronov 1999, ApJ, 516, 236
Minor Image Analytic Formulae

Han 2006, ApJ, 638, 1080

MOA-2009-BLG-266

Planet Parameters II: harder

$$t_{\rm cross,1} = \frac{t_{\rm planet-peak,1} - t_{\rm planet-trough,1}}{1.7} = 0.41 \,\mathrm{day}$$

$$t_{\rm cc,1} = t_{\rm planet-peak,1} + 0.7 * t_{\rm cross,1} = 5085.98$$

 $t_{\text{planet-peak},1} = 5085.7, \quad t_{\text{planet-trough},1} = 5086.4$

$$t_{\rm cross,2} = \frac{t_{\rm planet-peak,2} - t_{\rm planet-trough,2}}{-1.7} = 0.38 \,\mathrm{day}$$

$$t_{\rm cc,2} = t_{\rm planet-peak,2} - 0.7 * t_{\rm cross,2} = 5086.93$$

$$t_{\text{planet-peak},2} = 5087.2, \quad t_{\text{planet-trough},1} = 5086.55$$

$$t_{\rm cross} = \frac{t_{\rm cross,1} + t_{\rm cross,2}}{2} = 0.397 \,\mathrm{day}$$

$$\Delta u = \frac{t_{\rm cc,2} - t_{\rm cc,1}}{t_{\rm E}} \sin \alpha = 0.0128$$

$$\Delta u = 4\sqrt{\frac{qu_{\text{planet}}}{s}} \Rightarrow q = \frac{s}{u_{\text{planet}}} \left(\frac{\Delta u}{4}\right)^2 = 5.8 \times 10^{-5}$$
$$t_* = t_{\text{cross}} \sin \alpha = 0.32 \,\text{day}, \qquad \rho = \frac{t_*}{t_{\text{E}}} = 5.3 \times 10^{-3}$$

MOA-2009-BLG-266

TABLE 1

MB09266:	Eye vs.	Computer
----------	---------	----------

Parameter	Eye	Computer
t_0	5093.1	5093.07
u_0	0.13	0.13
$t_{\rm E}$	$60\mathrm{d}$	$60.2\mathrm{d}$
q	$5.8 imes 10^{-5}$	$5.4 imes 10^{-5}$
s	0.922	0.914
α	54°	51°
ρ	$5.3 imes 10^{-3}$	$5.3 imes 10^{-3}$

Minor Image Test
$\frac{A_{\rm trough}}{A_{\rm planet}} = 10^{0.4(I_{\rm planet} - I_{\rm trough})}$
$= 10^{0.4(13.58 - 14.02)} = 0.667$
$\frac{A_{\text{planet}} + 1}{2A_{\text{planet}}} = 0.657$

Planet Lenses: + Projected Motion11 Features& 11 Parameters

- 3 Point-Lens
- 3 Binary-Lens
- Width of Caustic Cr.
- Symmetric Distortion
- Anti-symmetric Dist.
- **Rotational Motion**
- **Radial Motion**

- t_0, u_0, t_E
- α_0, s_0, q
- $t_* = \rho * t_E$
- π_E,perp
- π_E , parallel
- $\gamma_{perp} = d\alpha/dt$
- $\gamma_{parallel} = (ds/dt)/s_0$

Macho 97-41: Obvious Orbital Motion (But No Parallax)

OGLE-2011-BLG-0420 Parallax + Orbital Motion

OGLE-2011-BLG-0420

OGLE-2011-BLG-0420

paramatar	close		
parameter	$u_{0} > 0$	$u_0 < 0$	
χ^2 /dof	5427.4	5410.8	
t_0 (HJD')	5766.110	5766.109	
u_0	0.031	-0.030	
$t_{\rm E}$ (days)	34.89	35.27	
S	0.287	0.290	
q	0.388	0.368	
α	2.387	-2.383	
ρ*	0.049	0.049	
$\pi_{\mathrm{E},N}$	-1.03	-1.15	
$\pi_{{\mathbb E},E}$	0.23	0.19	
ds/dt (yr ⁻¹)	-2.44	-2.48	
$d\alpha/dt$ (yr ⁻¹)	-8.09	7.08	
KE/PE	0.36	0.32	

augestite:	close (u < 0)
quantity	close $(u_0 < 0)$
M_1	$0.024\pm~0.001~M_{\odot}$
M_2	$\begin{array}{c} 0.0088 \pm 0.0005 \ M_{\odot} \\ (9.3 \ \pm 0.5 \ M_{\rm J}) \end{array}$
$D_{\rm L}$ (kpc)	2.1 ±0.1
projected separation (AU)	0.19 ±0.01

(KE/PE)_perp: Ratio of Transverse Kinetic to Potential Energy

$$\begin{aligned} \mathrm{KE} &= \frac{M_1 M_2}{M_1 + M_2} \frac{v_{\mathrm{rel}}^2}{2}; \quad \mathrm{PE} = \frac{GM_1 M_2}{r} \\ (\mathrm{KE})_\perp &\equiv \frac{M_1 M_2}{M_1 + M_2} \frac{v_\perp^2}{2}; \quad (\mathrm{PE})_\perp \equiv \frac{GM_1 M_2}{r_\perp} \\ &\left(\frac{\mathrm{KE}}{\mathrm{PE}}\right)_\perp = \left(\frac{\mathrm{KE}}{\mathrm{PE}}\right) \left(\frac{v_{\mathrm{rel}}}{v_\perp}\right)^2 \frac{r_\perp}{r} \leq \left(\frac{\mathrm{KE}}{\mathrm{PE}}\right) \\ &\left(\frac{\mathrm{KE}}{\mathrm{PE}}\right)_\perp = \frac{r_\perp v_{\mathrm{rel}}^2}{2GM} = \frac{r_\perp^3 \gamma^2}{2GM} \\ r_\perp &= D_\mathrm{L} \theta_\mathrm{E} s = \frac{\mathrm{AU} \theta_\mathrm{E} s}{\pi_\mathrm{E} \theta_\mathrm{E} + \pi_s} = \frac{\mathrm{AU} s}{\pi_\mathrm{E} + \pi_s / \theta_\mathrm{E}} \\ &\frac{\mathrm{AU}^3}{GM_\odot} = \left(\frac{\mathrm{Yr}}{2\pi}\right)^2; \quad \frac{M}{M_\odot} = \frac{\theta_\mathrm{E}}{\kappa M_\odot \pi_\mathrm{E}} = \frac{\theta_\mathrm{E} / 8.14 \,\mathrm{mas}}{\pi_\mathrm{E}} \\ &\left(\frac{\mathrm{KE}}{\mathrm{PE}}\right)_\perp = \frac{8.14}{8\pi^2} \frac{\pi_\mathrm{E} s^3 (\gamma \,\mathrm{Yr})^2}{(\theta_\mathrm{E} / \mathrm{mas})(\pi_\mathrm{E} + \pi_s / \theta_\mathrm{E})^3} \end{aligned}$$

Complete Orbital Motion 13 "Features" & 13 Parameters **3** Point-Lens t_0, u_0, t_E 3 Binary-Lens α 0, s_0, q Width of Caustic Cr. $t_* = \rho * t_E$ 2 Parallax π_E , perp, π_E , parallel **2** Transverse Motion $\gamma_{perp}, \gamma_{parallel}$ **Out-of-plane** Position s_parallel **Out-of-plane** Motion ds_parallel/dt

Shin et al. 2012, ApJ, 755, 91

	Standard	Model Parallax	Orbital+Parallax
χ^2/dof	4415/2627	2391/2625	1735/2621
t_0 (HJD')	5817.302 ± 0.018	5815.867 ± 0.030	5813.306 ± 0.059
HO	0.1125 ± 0.0001	-0.0971 ± 0.0003	-0.0992 ± 0.0005
t _E (days)	60.74 ± 0.08	79.59 ± 0.36	92.26 ± 0.37
<u>S</u> _	0.601 ± 0.001	0.574 ± 0.001	0.577 ± 0.001
q	0.402 ± 0.002	0.287 ± 0.002	0.292 ± 0.002
α (rad)	1.030 ± 0.002	-0.951 ± 0.002	-0.850 ± 0.004
$\rho_{\star} (10^{-3})$	3.17 ± 0.01	2.38 ± 0.02	2.29 ± 0.02
$\pi_{\mathrm{E},N}$		0.125 ± 0.004	0.375 ± 0.015
$\pi_{\mathrm{E},E}$		-0.111 ± 0.005	-0.133 ± 0.003
ds_{\perp}/dt (yr ⁻¹)			1.314 ± 0.023
$d\alpha/dt$ (yr ⁻¹)			1.168 ± 0.076
S			0.467 ± 0.020
ds_{\parallel}/dt (yr ⁻¹)			-0.192 ± 0.036

Parameter	OGLE-2011-BLG-0417
$M_{\rm tot}~(M_{\odot})$	0.74 ± 0.03
$M_1 (M_{\odot})$	0.57 ± 0.02
$M_2 (M_{\odot})$	0.17 ± 0.01
$\theta_{\rm E}$ (mas)	2.44 ± 0.02
μ (mas yr ⁻¹)	9.66 ± 0.07
D_{L} (kpc)	0.89 ± 0.03
a (AU)	1.15 ± 0.04
P (yr)	1.44 ± 0.06
e	0.68 ± 0.02
i (deg)	116.95 ± 1.04

ante MOA 2011 BLG 000 (laft papel) and OGLE 2011 E

OGLE-2011-BLG-0417

Macho-98-SMC-1 Close/Wide Binary Degeneracy

Jin An: Close/Wide Degeneracy (At Lowest Order) [d & q]

Jin An: Wide/Close Degeneracy (At Second Order) [Shape Parameter: s = c_2/c_1]

Different caustics -> Same lightcurve An 2005, MNRAS, 356, 1409

Ecliptic Degeneracy Begins in 'constant acceleration' model u_0 --> -u_0 Smith, Mao, & Paczynski

(2003)

Ecliptic Degeneracy Embedded in 'jerk parallax' formalism u 0 --> -u 0 **SMP** (2003) lu_0|<<1 ==> jerk-par Gould (2004) $\pi'_{\mathrm{E},\parallel} = \pi_{\mathrm{E},\parallel}, \qquad \pi'_{\mathrm{E},\perp} = -(\pi_{\mathrm{E},\perp} + \pi_{j,\perp}),$ $\pi_{j,\perp} = -\frac{4}{3} \frac{\mathrm{yr}}{2\pi t_{\mathrm{E}}} \frac{\sin\beta_{\mathrm{ec}}}{\left(\cos^{2}\psi\sin^{2}\beta_{\mathrm{ec}} + \sin^{2}\psi\right)^{3/2}}$

Ecliptic DegeneracyJiang et al.: Exact Degenercy ($\beta_{ec}=0$) $u_0 \rightarrow -v_0$ SMP (2003) $u_0 < -v_0$ Gould (2004) $(u_0, \pi_{E,perp}) \rightarrow -(u_0, \pi_{E,perp})$ Jiang et al. (2004)

 $\pi_{j,\perp} = -\frac{4}{3} \frac{\mathrm{yr}}{2\pi t_{\mathrm{E}}} \frac{\sin\beta_{\mathrm{ec}}}{\left(\cos^{2}\psi\sin^{2}\beta_{\mathrm{ec}} + \sin^{2}\psi\right)^{3/2}}$

Ecliptic Degeneracy Skowron et al. 2011, ApJ, 738,87 generalize to binaries u 0 --> -u 0 **SMP** (2003) $|u_0| <<1 => jerk-par$ Gould (2004) $(u_0, \pi_{E, perp}) \rightarrow -(u_0, \pi_{E, perp})$ Single $(u_0, \pi_{E, perp}, \alpha) \rightarrow$ **Static Binary** $-(u_0,\pi_{E,perp},\alpha)$ **Rotating Binary** $(u_0, \pi_{E, perp}, \alpha_0, d\alpha/dt) \rightarrow$ - $(u_0, \pi_{E.\text{perp}}, \alpha_0, d\alpha/dt)$

Xallarap vs. Parallax

Xallarap vs. Parallax

Point-lens magnfication **Start: Binary-Lens Equation** $\mathbf{u} - \mathbf{y} = -\frac{\mathbf{y} - \mathbf{y}_L}{|\mathbf{v} - \mathbf{v}_L|^2}$ $\mathbf{y}_L = 0 \rightarrow \mathbf{u} - \mathbf{y} = -\frac{\mathbf{y}}{u^2} \Longrightarrow u - y = -\frac{1}{u}$ $\implies (y-u)y = 1 \implies (\theta_I - \theta_S)\theta_I = \theta_E^2$ $\mathbf{u} = \mathbf{y} - \sum_{i} \epsilon_{i} \frac{\mathbf{y} - \mathbf{y}_{m,i}}{|\mathbf{y} - \mathbf{y}_{m,i}|^{2}} \qquad \epsilon_{i} \equiv \frac{m_{i}}{M_{\text{tot}}}$

$$\zeta = z - \sum_{i} \frac{\epsilon_i}{\bar{z} - \bar{z}_{m,i}}$$

 $\zeta \equiv u_1 + iu_2 \qquad z \equiv y_1 + iy_2$

Why is this a Fifth-Order Equation?

$$\begin{split} \zeta &= z - \sum_{i} \frac{\epsilon_{i}}{\bar{z} - \bar{z}_{m,i}} \\ \zeta &\equiv u_{1} + iu_{2}; \qquad z \equiv y_{1} + iy_{2} \\ z &= \zeta + \frac{\epsilon_{1}}{\bar{z} - \bar{z}_{1}} + \frac{\epsilon_{2}}{\bar{z} - \bar{z}_{2}} \\ \bar{z} &= \bar{\zeta} + \frac{\epsilon_{1}}{z - z_{1}} + \frac{\epsilon_{2}}{z - z_{2}} \\ (z - \zeta)(\bar{z} - \bar{z}_{1})(\bar{z} - \bar{z}_{2}) &= \epsilon_{1}(\bar{z} - \bar{z}_{2}) + \epsilon_{2}(\bar{z} - \bar{z}_{1}) \\ (z - \zeta)\left(\bar{\zeta} + \frac{\epsilon_{1}}{z - z_{1}} + \frac{\epsilon_{2}}{z - z_{2}} - \bar{z}_{1}\right)\left(\bar{\zeta} + \frac{\epsilon_{1}}{z - z_{1}} + \frac{\epsilon_{2}}{z - z_{2}} - \bar{z}_{2}\right) \\ &= \left(\bar{\zeta} + \frac{\epsilon_{1}}{z - z_{1}} + \frac{\epsilon_{2}}{z - z_{2}} - \bar{z}_{2}\right)\epsilon_{1} + \left(\bar{\zeta} + \frac{\epsilon_{1}}{z - z_{1}} + \frac{\epsilon_{2}}{z - z_{2}} - \bar{z}_{1}\right)\epsilon_{2} \end{split}$$

_

Magnification (A): For each image, i 1) Check that it solves lens equation 2) Calculate A_i from determinant

$$\partial \zeta_i = \sum_k \frac{\epsilon_k}{(\bar{z} - \bar{z}_k)^2}$$
$$A_i = \frac{1}{1 - |\partial \zeta_i|^2}$$
$$A = \sum_i |A_i|$$

Quadrupole/Hexadecapole Pejcha & Heyrovsky (2009) Gould (2008)

Pure gradient: Monopole (pt lens)Mild curvature: QuadrupoleStronger curvature: HexadecapoleExtreme curvature: New Method

Monopole/Quadrupole/Hexadecapole

Contour Integration: Gould & Gaucherel (1997)

$$A = \sum_{i=1}^{n} \sum_{j'} p_{j}(u_{i-1,j} \times u_{i,j}) \bigg/ \sum_{i=1}^{n} s_{i-1} \times s_{i},$$

Contour Integration

- Fastest INDIVIDUAL FS calculation Disadvantage 1: Limb Darkening -> many cont. Disadvantage 2: Cusp lens-solver hang-ups Neither fatal (see below)
- Major improvements from Bozza (2010) MNRAS 408 2188 (code not public)
Inverse Ray Shooting (General)

$$\mathbf{u} = \mathbf{y} - \sum_{i} \epsilon_{i} \frac{\mathbf{y} - \mathbf{y}_{m,i}}{|\mathbf{y} - \mathbf{y}_{m,i}|^{2}} \qquad \epsilon_{i} \equiv \frac{m_{i}}{M_{\text{tot}}}$$

do i=1,npick: y_i image plane point calculate: u i source plane point store $(u_i < --> y_i)$ enddo

Pick source boundary Examine each pt u_i in: weight by LD out: discard Sum up weights

Inverse Ray Shooting

Advantages

- Automatically includes LD
- Always works
- Disadvantage

Very expensive to shoot lens plane

IRS 1: Map-Making

Dong et al. 2006 ApJ 642 842 Shoot entire annulus relevant to event Store rays & hex-tiles on source plane Use hex-tiles for interior, rays for edge All (s,q) light curves use ONE map Disadvantage: requires fixed "s"

		*****************	***************	
 		****************	************	

 *********		****************		
	**************		***************	

 		***************	************	

	*************	****************	**************	

************		****************	*************	
••••••••••••••••		*****		

IRS 2A: Loop Linking

Dong et al. 2006 ApJ 642 842 Make contour (as in Gould+Gaucherel) Except slightly bigger Shoot rays within images (IRS general) Advantage: avoids contour problems Disadvantage: costs more than contour

Contour Integration: Gould & Gaucherel (1997)

$$A = \sum_{i=1}^{n} \sum_{j'} p_{j}(u_{i-1,j} \times u_{i,j}) / \sum_{i=1}^{n} s_{i-1} \times s_{i},$$

IRS 2B: Adaptive Images

Bennett 2010, ApJ, 716, 1408 Begin with image centers (point lens) Expand coverage to source boundary Radial coord, boundary-sensitive integ. Advantage: precision with fewer rays Disadvantage: costs more than contour