Novel quantum criticality of topological phase transitions

Bohm Jung Yang Department of Physics and Astronomy Seoul National University

(Tsinghwa Univ, Dec. 21, 2016)

<u>Collaborators</u>

- Naoto Nagaosa (U. Tokyo and RIKEN)
- Andrey Chubukov (U. Minnesota)
- Joerg Schmalian (Karlsruhe Institute of Tech.)
- Eun-Gook Moon (KAIST)
- Hiroki Isobe (MIT)
- Junyeong Ahn (SNU)

References

- <u>B.-J. Yang</u>, E. -G. Moon, H. Isobe, and N. Nagaosa, "Quantum criticality of topological phase transitions in 3D interacting electronic systems", Nature Physics (2014)
- H. Isobe, <u>B.-J. Yang</u>, A. Chubukov, J. Schmalian, and N. Nagaosa, "Emergent non-Fermi liquid at the quantum critical point of a topological phase transition in two dimensions", Phys. Rev. Lett. (2016).
- <u>J. Ahn and B.-J. Yang</u>, "Unconventional topological phase transition in two dimensional systems with space-time inversion symmetry", submitted.

Quantum states in condensed matters

" Principle of broken symmetry "

	Magnet	Superconductor
Broken symmetry	Spin rotation	Gauge
Order parameter	Magnetization	Pairing amplitude

• Order parameter (M) : measure of broken symmetry

M≠0 Ordered phase (Symmetry broken) M=0 Disordered phase (Symmetric)

(Quantum) phase transition Ginzburg-Landau theory Effective action for 3D magnet $S_{\text{eff}}(\vec{\varphi}) = \int d^d x \Big[(\partial_\mu \vec{\varphi})^2 + r |\vec{\varphi}|^2 + u (|\vec{\varphi}|^2)^2 \Big], \quad \vec{\varphi} \in O(3),$ = 0T_c Critical point : Universality

Topological phases

- A bulk phase is characterized by a topological invariant
- Distinguish gapped phases sharing same symmetries

Seongshik Oh (Science 2013)

<u>Classification of bulk topological phases</u>

A. P. Schnyder, S. Ryu, A. Furusaki, A.W.W. Ludwig, A. Kitaev

	sym	metry					0	l			
	\mathcal{T}^2	\mathcal{C}^2	\mathcal{S}^2	0	1	2	3	4	5	6	7
А	0	0	0	Z	0	Z	0	Z	0	Z	0
AIII	0	0	1	0	Z	0	Z	0	Z	0	Z
AI	1	0	0	Z	0	0	0	2Z	0	Z ₂	Z ₂
BDI	1	1	1	Z ₂	Z	0	0	0	2Z	0	Z_2
D	0	1	0	Z ₂	Z ₂	Z	0	0	0	2Z	0
DIII	-1	1	1	0	Z ₂	Z ₂	Z	0	0	0	2Z
All	—1	0	0	2Z	0	Z ₂	Z ₂	Z	0	0	0
CII	-1	-1	1	0	2Z	0	Z ₂	Z ₂	Z	0	0
C	0	-1	0	0	0	2Z	0	Z ₂	Z ₂	Z	0
CI	1	-1	1	0	0	0	2Z	0	Z ₂	Z ₂	Z

 \mathcal{T} : Time-reversal \mathcal{C} : Particle-hole \mathcal{S} : Chiral

- Various topological insulators can exist in nature!
- Bulk properties of topological insulators are well-established

Nonzero topological invariant Bulk-boundary

correspondence

Metallic states on the boundary

<u>How much do we understand</u> <u>topological phase transitions ?</u>

	Broken symmetry phase	Topological phase		
Bulk phase	Order parameter	Topological invariant		
Phase transition	Ginzburg-Landau theory	Band-crossing theory		
Low energy excitations	Critical bosons	Emergent Dirac particles		
E M< N _c	m_{c} k $= 0$ $m = m_{c}$ k k	$E \xrightarrow{m > m_c} k$ $N_c = 1$		

m = an external control parameter such as pressure, doping, etc.

Quantum critical point of topological PT "Criticality of interacting Weyl/Dirac fermions" $H_{QCP} = v_1 k_1 \sigma_1 + v_2 k_2 \sigma_2 + v_3 k_3 \sigma_3$

<u>Outline</u>

 Novel quantum criticality of topological PT in 3D systems breaking P or T

2. Novel quantum criticality of topological PT in 2D systems with PT symmetry or space-time inversion

3. Conclusion

Symmetry and topological PT

- Symmetry determines the phase diagram
- Two types of phase transitions

3D time-reversal symmetric systems

Symmetry and low energy excitations

3D noncentrosymmetric systems

Weyl point carries a monopole charge!

 $\mathbf{B} = \nabla \times \mathbf{A}(\mathbf{k}) \qquad \mathbf{A}(\mathbf{k}) = i \langle u_{\mathbf{k}} | \nabla_{\mathbf{k}} | u_{\mathbf{k}} \rangle$

$$\frac{1}{2\pi} \nabla_{\mathbf{k}} \cdot \mathbf{B}(\mathbf{k}) = \pm \delta(\mathbf{k}) \quad \left(-\mathbf{B}(\mathbf{k}) \propto \frac{1}{k^2} \hat{k} \right)$$

Transition from a Weyl SM to an insulator

The chiral charge of a Weyl point guarantees its stability

A pair-annihilation is required

Anisotropic Weyl fermions at QCP

$$H_{QCP} = v k_1 \sigma_1 + v k_2 \sigma_2 + A k_3^2 \sigma_3$$

(S. Murakami)

Screening at QCP

Polarization

$$\Pi(\mathbf{q}) = -B_{\perp} q_{\perp}^{3/2} - B_3 q_3^2$$

• Screened Coulomb interaction

$$V_C(\mathbf{q}) \sim \frac{1}{q_\perp^{3/2} + \eta q_3^2}$$

"Anisotropic partial screening!"

In real space :
$$V_{\rm C}(r_{\perp}, z = 0) \sim \frac{1}{r_{\perp}^{5/4}}, \quad V_{\rm C}(r_{\perp} = 0, z) \sim \frac{1}{|z|^{5/3}},$$

<u>Effective Coulomb interaction between fermions became weaker !</u> (Screened Coulomb interaction is irrelevant)

Irrelevance of screened Coulomb potenital

Bare Coulomb potential

~ $Log(\Lambda/E)$

Screened Coulomb potential

~ finite

New quantum criticality in 3D

Unique metallic properties at the QCP!

- Novel screening effect
- New emergent fermions

	Screened Coulomb potential V _c (q)	Effective interaction between fermions
Conventional 3D Metal	$\frac{1}{q^2 + q_{TF}^2}$	Marginal
3D isotropic Weyl/Dirac SM	$\frac{1}{q^2}$	Marginally irrelevant
Anisotropic QCP	$\frac{1}{q_{\perp}^{3/2} + q_3^{\ 2}}$	Irrelevant

(B.-J. Yang, E. G. Moon, H. Isobe, N. Nagaosa, Nature Physics, 2014)

(B.-J. Yang, N. Nagaosa et al., PRL, 2013)

<u>Candidate 2: 3D Dirac semimetals</u>

 Cd_3As_2 , Na_3Bi , $ZrTe_5$ (Q.Li's and I. Pletikosie's talks)

Liu, Shen, Fang, Dai, Chen (Science,2014); Xu, Bansil, Cava, Hasan (arXiv:1312.7624); Neupane, Hasan (arXiv:1309.7892); Borisenko, Cava (arXiv:1309.7978);

• Time-reversal, inversion, uniaxial rotation symmetries

B.J.Yang and N. Nagaosa, Nature Comm.2014

- A single anisotropic Weyl fermion appears at QCP
- Quadratic dispersion along kz direction at QCP

<u>Outline</u>

 Novel quantum criticality of topological PT in 3D systems breaking P or T

2. Novel quantum criticality of topological PT in 2D systems

3. Conclusion

Topological phase transition in 2D

<u>Merging transitions in 2D ?</u>

- Each gap-closing point should be stable (quantized topological charge)
- The location of gap-closing point should be tunable

<u>Stable Dirac points in graphene</u>

Quantized Berry phase: $\exp i \oint_C \mathbf{A} \cdot d\mathbf{k} = -1$

i) Time-reversal and inversion symmetriesii) Vanishing spin orbit coupling

<u>How to move the Dirac points</u>

• Modulate n.n. hopping amplitudes

(Hasegawa , Konno, Nakano, Kohmoto (2006))

 $H = [(t'-2t) + k_1^2]\sigma_1 + k_2\sigma_2$

2D anisotropic Weyl in black phosphorus

(J Kim, S. S. Baik, H.J.Choi, K.S.Kim, etal. Science (2015))

E field

Symmetry protection of Dirac points?

• Inversion is broken due to vertical electric field

 C_{2z} : (x,y,z) \rightarrow (-x,-y,z)

 $F(k_x,k_y)=F(-k_x,-k_y)$

• However, C_{2z} is effectively an inversion in 2D

Space-time inversion $I_{ST} = C_{2z}T : (x,y,t) \rightarrow (-x,-y,-t)$ (C. Fang and L. Fu, PRB) $F(k_x,k_y)=0$ "Quantized Berry phase"

 $(I_{ST})^2 = 1$ with/without spin-orbit coupling (No Kramers degeneracy) cf) (PT)² = -1 (+1) with (without) spin-orbit coupling in graphene

 Berry phase is also quantized in the presence of spin-orbit coupling Unique property of black phosphorus system!

Band crossing in the presence of SOC

Interacting 2D anisotropic Weyl fermion

$$\mathcal{S} = \int_{r,\tau} \psi^{\dagger} \{\partial_{\tau} - A\sigma_x \partial_x^2 - i\upsilon\sigma_y \partial_y\} \psi + \frac{e^2}{2\varepsilon} \int_{r,r',\tau} \frac{\psi^{\dagger}(\mathbf{r})\psi(\mathbf{r})\psi^{\dagger}(\mathbf{r}')\psi(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Anisotropic screening

• Static polarization: $\Pi(\mathbf{q}) = -b_x |q_x| - b_y \sqrt{|q_y|}$

$$V_C(\mathbf{q}) = \frac{1}{\sqrt{q_x^2 + q_y^2} + b_x |q_x| + b_y \sqrt{|q_y|}} \sim \frac{1}{|q_x| + \sqrt{|q_y|}}$$

(See also Gil-Young Cho and Eun-Gook Moon, arXiv:1508.03777)

• Anisotropic Coulomb potential

$$V_C(x, y = 0) \sim \frac{1}{x^2}, \qquad V_C(x = 0, y) \sim \frac{1}{|y|},$$

cf) 3D QCP:
$$V_{\rm C}(r_{\perp}, z = 0) \sim \frac{1}{r_{\perp}^{5/4}}, \quad V_{\rm C}(r_{\perp} = 0, z) \sim \frac{1}{|z|^{5/3}},$$

$$\begin{split} & \underbrace{\text{One loop RG with large-N expansion}}_{S = \int d\tau d^2 x \psi_a^{\dagger} [(\partial_{\tau} + ig\phi) + H_0] \psi_a + \frac{1}{2} \int d\tau d^3 x (\partial_i \phi)^2,}_{\mathcal{D}^{-1}(\Omega, \mathbf{q}) = |\mathbf{q}| - N \alpha \Pi(\Omega, \mathbf{q}),} \end{split}$$

- Coupling constant: $N\alpha = N e^2/v$
- Both weak coupling (N α <<1) and strong coupling (N α >>1) can be studied
- Dynamics of polarization is fully considered:

Quasi-particle residue:

$$Z = \frac{1}{1 + \frac{\partial \Sigma(\omega)}{\partial(i\omega)}}$$

One loop RG with large-N expansion

 $H_{QCP} = A k_1^2 \sigma_1 + v k_2 \sigma_2$

 RG equations for quasiparticle residue (Z), velocity(v), and inverse mass(A)

$$\dot{Z}(l) = -\gamma_z(l)Z(l), \ \dot{v}(l) = \gamma_v v(l), \ \dot{A}(l) = \gamma_A A(l)$$

<u>Strong coupling limit Na>>1</u>

$$\frac{v(E)}{v} = \left(\frac{\Lambda}{E}\right)^{\gamma_v}, \frac{A(E)}{A} = \left(\frac{\Lambda}{E}\right)^{\gamma_A}, Z(E) = \left(\frac{\Lambda}{E}\right)^{-\gamma_z + \frac{\sqrt{15}}{\pi^{3/2}}\frac{\gamma_v}{N}l}$$
$$\cdot$$
$$\gamma_v = \frac{0.3625}{N}, \quad \gamma_A = \frac{0.1261}{N}, \quad \gamma_z = \frac{\sqrt{15}}{\pi^{3/2}}\frac{\log N}{N}$$

 v, A all acquire finite anomalous dimension
 Reduced dynamical exponent, enhanced anisotropy $\omega(k_x) \sim Ak_x^2 \sim k_x^{2-2\gamma_A}$ $\omega(k_y) \sim vk_y \sim k_y^{1-\gamma_v}$ Fermion propagator acquires a non-Fermi liquid form $G(E) \propto \frac{1}{E^{1-\gamma_z}}$

• Similar to the strong coupling behavior in graphene (D.T. Son, 2007)

<u>Weak coupling limit Na<<1</u>

• Fermion propagator acquires a marginal-Fermi liquid form

Evolution of quasi-particles properties

<u>Outline</u>

 Novel quantum criticality of topological PT in 3D systems breaking P or T

2. Novel quantum criticality of topological PT in 2D systems with PT symmetry

Novel quantum criticality of TPT

• Critical point of semimetal-insulator transition

	Screened Coulomb potential V _c (q)	Quasi-particle
2D anisotropic QCP	$\frac{1}{ q_x + q_y ^{1/2}}$	Marginal Fermi liquid
3D Anisotropic QCP	$\frac{1}{q_{\perp}^{3/2} + q_3^{\ 2}}$	Free fermions