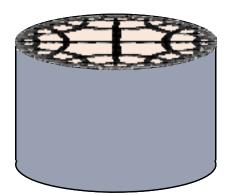
Quantum Entanglement, the Architecture of Space-time and Tensor Networks

Bartłomiej Czech Stanford University

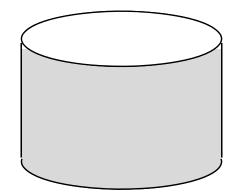
Tsinghua University, 9 December 2015

Quantitative framework: AdS/CFT correspondence

Maldacena, 1997



equivalence

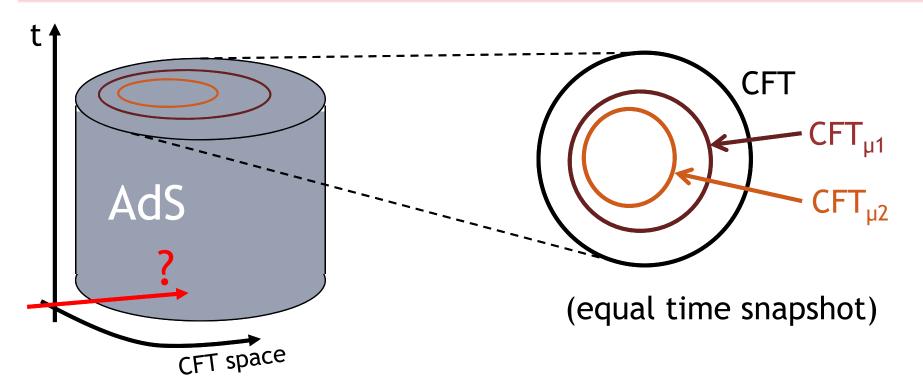


Gravity in anti-de Sitter space (solid cylinder)

- Conformal Field Theory (CFT) on δAdS (hollow cylinder)
- States are asymptotically AdS geometries
 Homogonoous space-time with pogative
- Homogeneous space-time with negative curvature
- Degrees of freedom organized into N x N matrices

L_{AdS} (curvature radius) ~ N[#] (matrix size)

Extra dimension in AdS is RG scale in CFT



- radial slices define CFTs at different cutoffs
- asymptotic boundary CFT without a cutoff

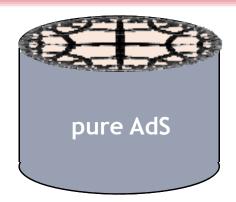
"CFT lives on the asymptotic boundary of AdS"

Let us see examples...

CFT states are AdS geometries

CFT vacuum: |0>

nothing to break the symmetry

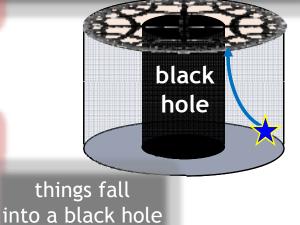


• CFT thermal state $\mathcal{Z}^{-1}e^{-\beta H}$

place an object at thermal scale BH is also characterized by the Hawking temperature of black hole radiation

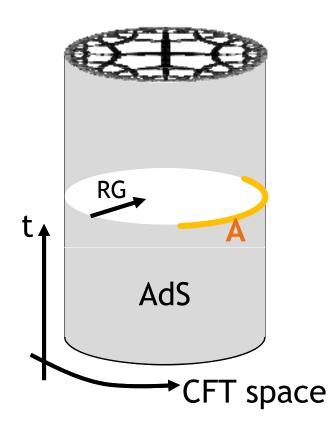
 CFT state from a given canonical ensemble

eigenstate thermalization hypothesis



Entanglement entropy in AdS/CFT

 $S_{\text{ent}}(A) =$



- Suppose $\mathcal{H}_{CFT} = \mathcal{H}_A \times \mathcal{H}_{en \mathbf{Y}_A}$
- Given $|\Psi\rangle$ in \mathcal{H}_{CFT} , form $\rho_A = Tr_{env} |\Psi\rangle \langle \Psi|$
- For every observable $O_A \times 1_{env}$ localized in A: $\langle \Psi | O_A | \Psi \rangle = tr O_A \rho_A$
- This is a mixed state on A, which mimics all the properties of $|\Psi\rangle$ as far as A-observables are concerned.
- If we do not look at the environment, the pure state $|\Psi\rangle$ appears mixed.
- Entanglement entropy quantifies this:

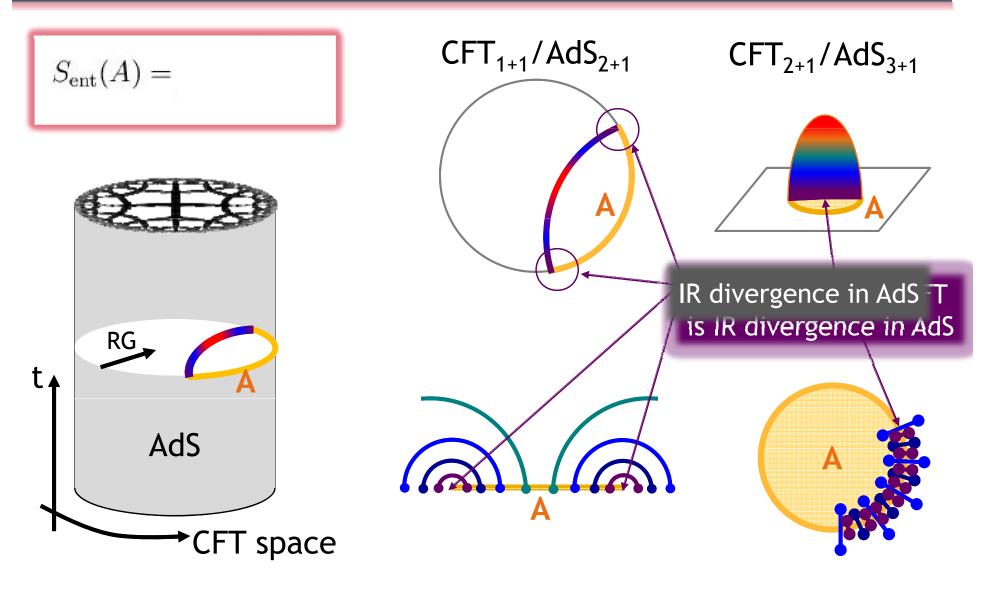
 $S_{ent}(A) = -Tr \rho_A \log \rho_A$

Entanglement entropy measures how much effect the environment has on A.

Entanglement entropy quantifies correlations

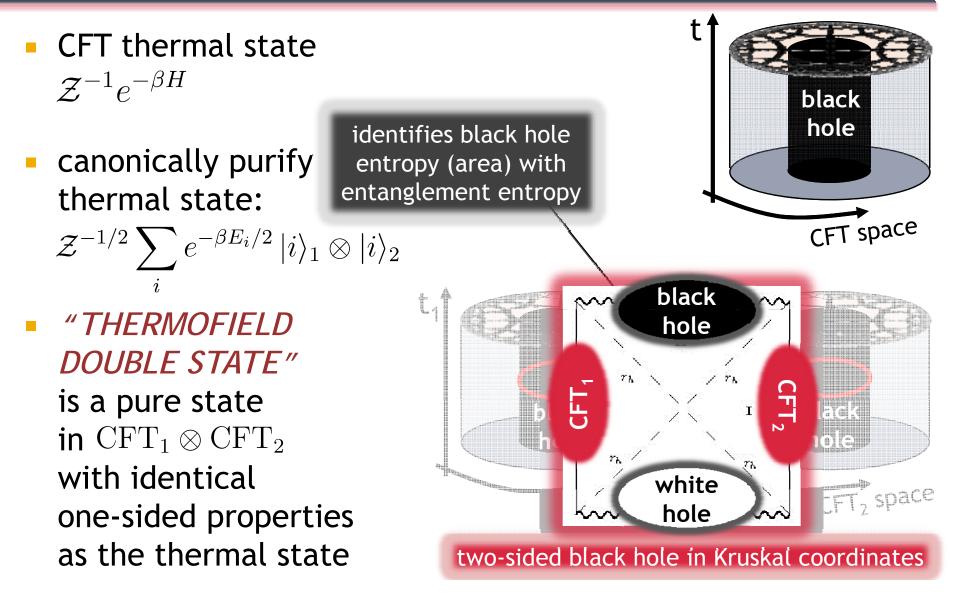
Ryu-Takayanagi proposal

Ryu-Takayanagi, 2006



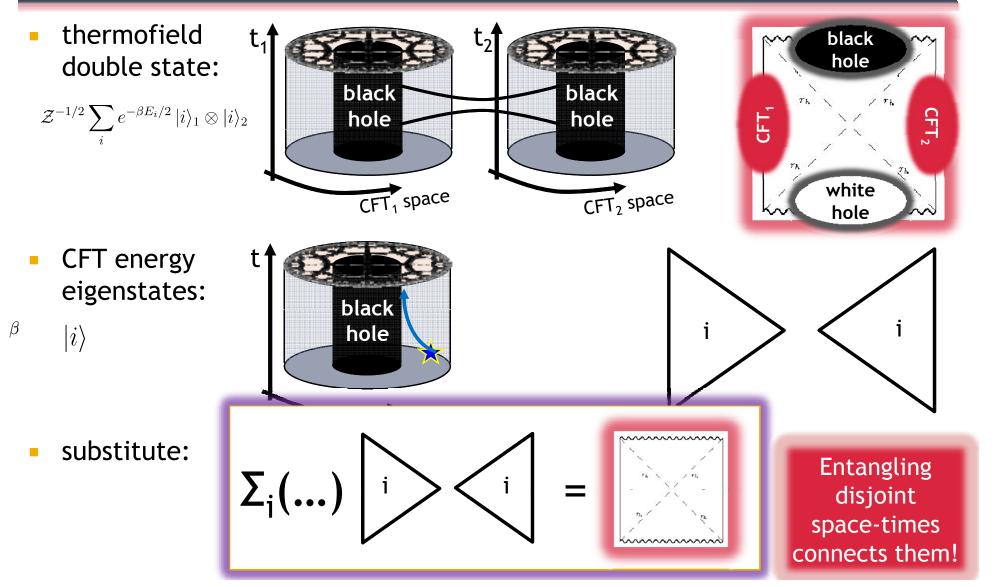
Application: two-sided black hole

Maldacena, 2001



Connectedness is entanglement

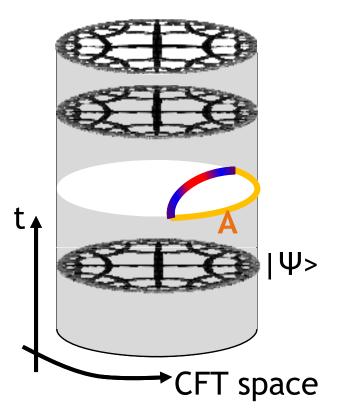
van Raamsdonk, 2009; Czech et al., 2012



If entanglement is connectedness, then...

- we are learning about the architecture of space and maybe space-time
- space is a map of the entanglement in the quantum state living at asymptotic boundary
- what are maps of entanglement and how to use them?

Tensor Networks

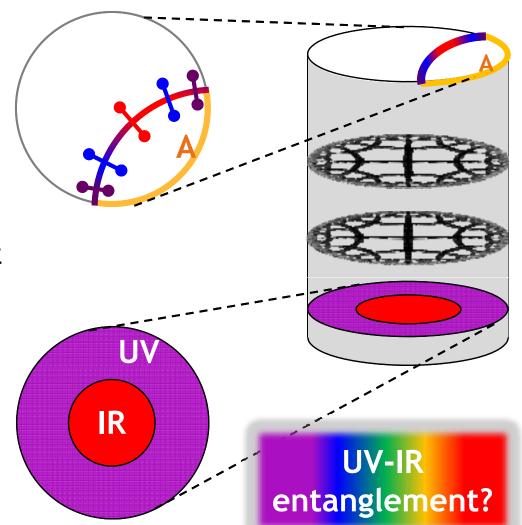


How to read the AdS map of entanglement?

What we already know:

- Minimal surfaces are entanglement entropies
- Connectedness across

 a minimal surface comes
 from the entanglement
 between A and complement



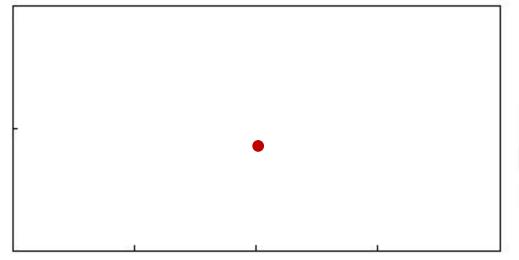
Next, we want to know:

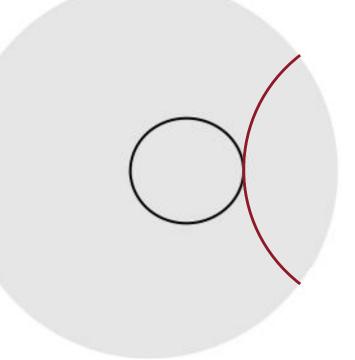
 What is responsible for connectedness between center and periphery?

How to describe a center?

Czech et al., 2013-5

SPACE of MINIMAL SURFACES

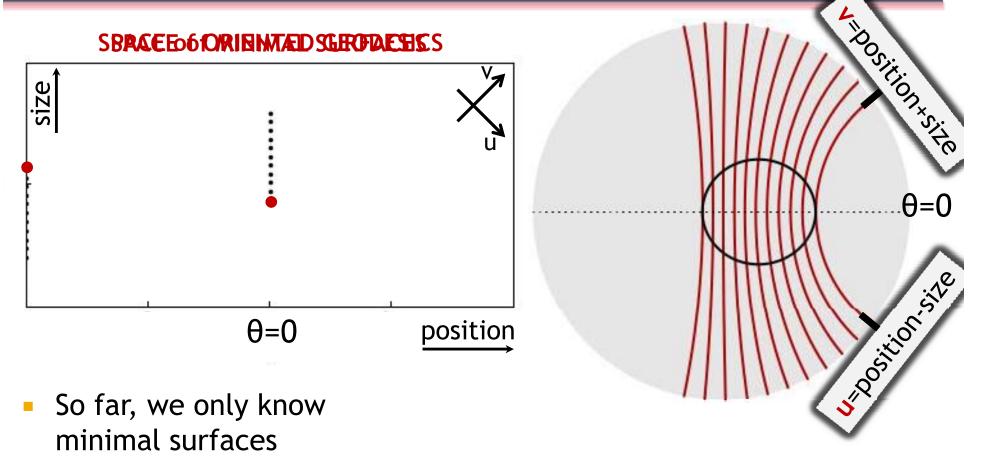




- So far, we only know minimal surfaces
- Let us use them!

How to describe a center of AdS₃?

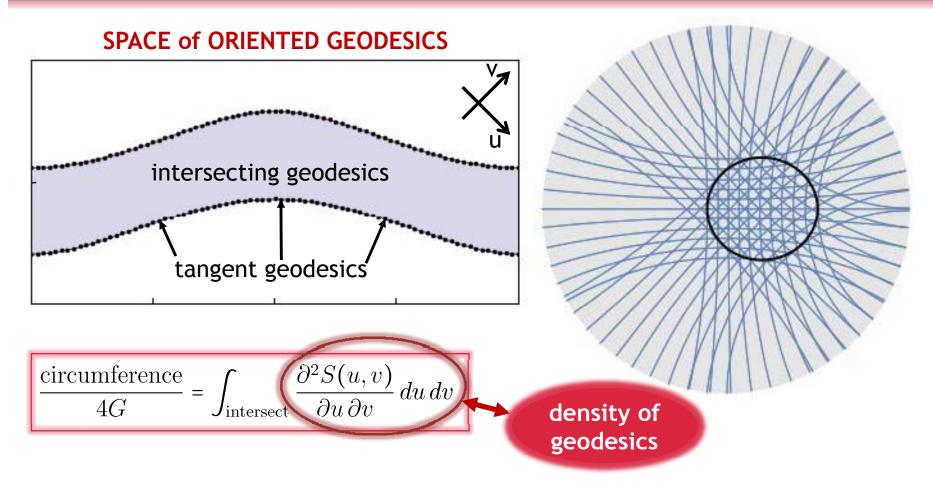
Czech et <u>A</u>., 2013-5



Let us use them!

How to describe a center of AdS₃?

Czech et al., 2013-5



- The density of geodesics only depends on entanglement entropy.
- I (re-)discovered, then generalized this formula.
- It was known in special cases (flat space Crofton, 1869).

What is the density of geodesics?

Czech et al., 2015

- "How many" geodesics have endpoints in A = (u-du, u) and C = (v, v+dv)? $\frac{\partial^2 S(u,v)}{\partial u \partial v} du dv$
- = S(u-du, u) + S(u,v+dv) S(u,v) S(u-du, d+dv)

= S(AB) + S(BC) - S(B) - S(ABC)

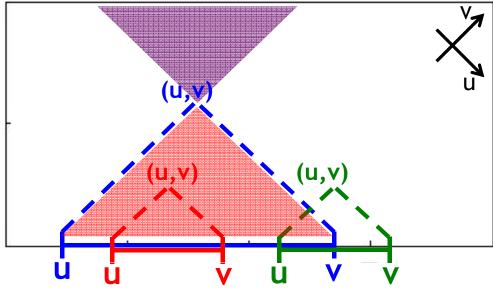
- this is non-negative by the strong subadditivity of entanglement entropy
- it is called the **conditional mutual information** I(A,C|B)
- quantifies the correlations between A and C not mediated by B

density of geodesics = density of correlations

Space of Geodesics has a "causal structure"

Czech et al., 2015

SPACE of ORIENTED GEODESICS

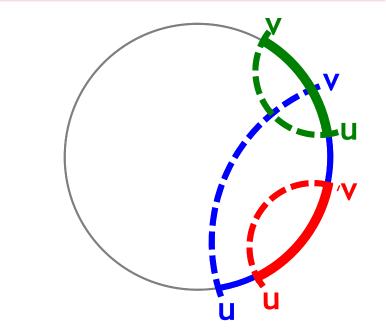


- Timelike separated (u,v):
 interval (u,v) contains (u,v)
- Spacelike separated (u,v):
 neither interval contains the other
- Lightlike separated: common endpoint left (u = u) or right (v = v)

- Past: all intervals contained in (u,v)
- Future: all intervals containing (u,v)

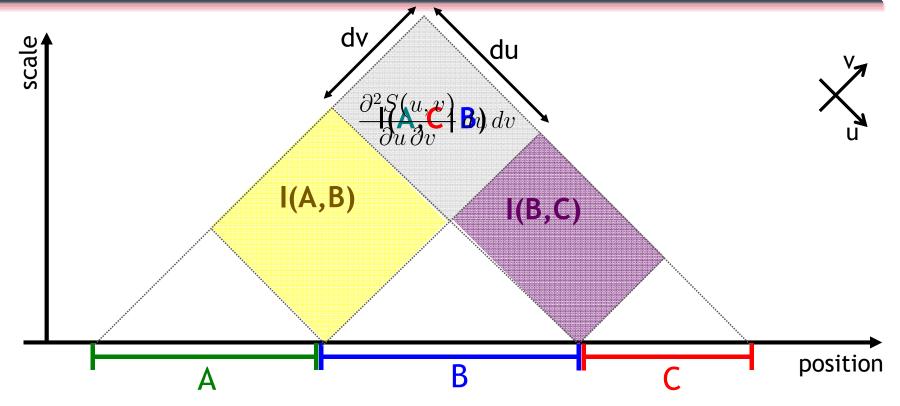
Space of Geodesics is also the Space of Intervals

Endpoint coordinates u,v are lightlike



Structure of Kinematic Space

Czech et al., 2015

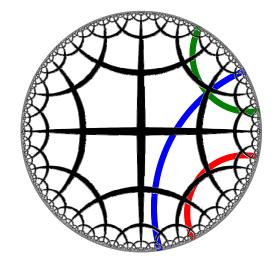


- Volumes of causal diamonds are conditional mutual informations
- Diamonds that extend all the way to the bottom are mutual informations

These volumes are "bouquets" of geodesics!

Summary so far

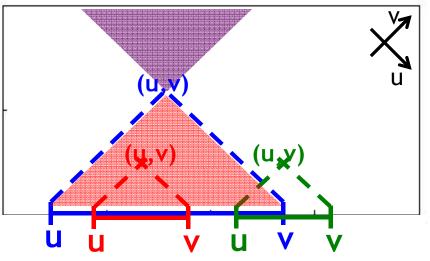
- Space is a fabric woven from geodesics.
- Geodesics are carriers of correlations.
- Density of geodesics
 - = density of correlations
 - = conditional mutual information I(A,C|B)
- Geodesics have a causal structure.
- All this is captured by the Kinematic Space.



QUESTION:

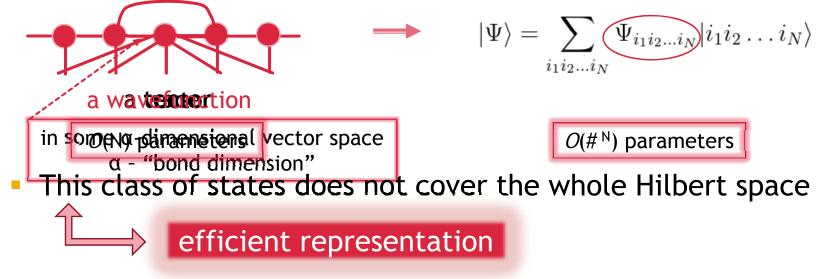
Have we seen a structure like this before?

SPACE of ORIENTED GEODESICS / INTERVALS



What are Tensor Networks?

- A tool in condensed matter theory
- useful for efficiently representing many-body wavefunctions:

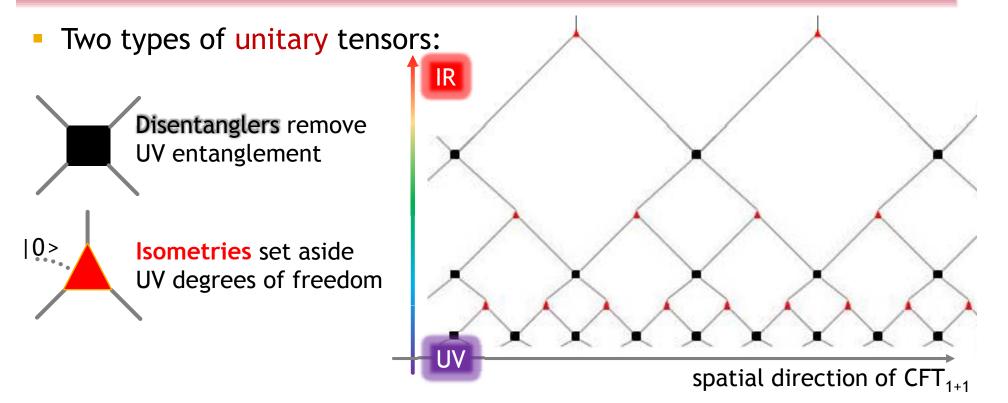


- The art is to define a class of tensor network states with desired physical properties
- For understanding the holographic architecture of AdS₃, use Multi-scale Entanglement Renormalization Ansatz: (Vidal, 2005)

What is MERA?

a working

model of CFT₁₊₁

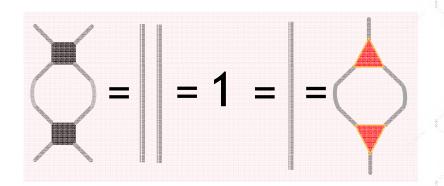


- Implements real space coarse-graining (renormalization group)
- A successful variational ansatz for finding ground states of 1+1-dimensional critical systems (e.g. Ising model)

Causal structure and locality in MERA

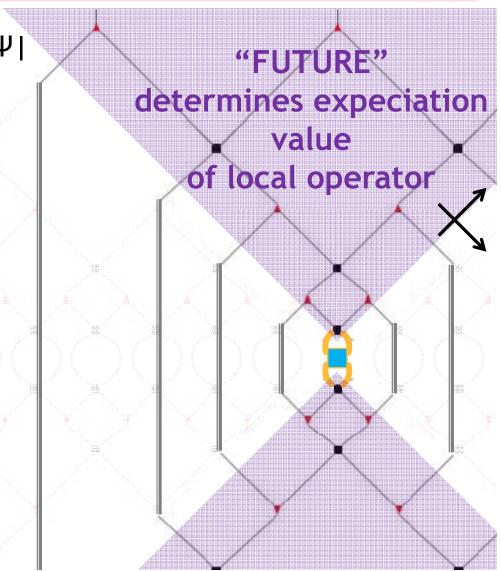
Vidal, 2005

- Compute <Ψ|0|Ψ> = Tr 0|Ψ><Ψ|
- Unitarity of tensors implies:



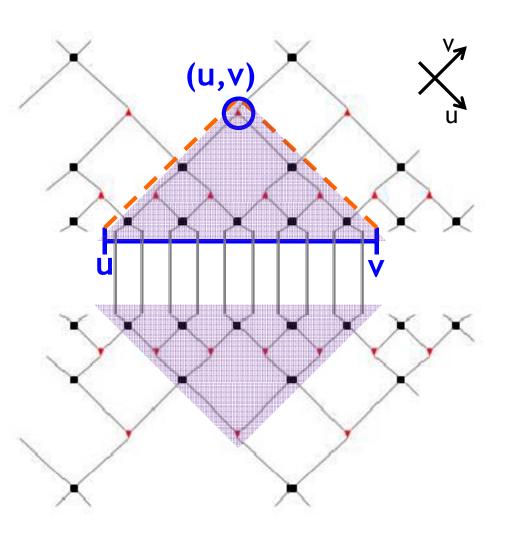
Causal Structure

(in <u>auxiliary</u> time \leftrightarrow scale)



Null coordinates in MERA

- tensor at (u,v) is the last one which cancels out when interval (u,v) is traced out
- each field theory interval uniquely identifies a tensor
- the relation between the two is via causal cuts



Causal cuts and entanglement entropy

ΑC

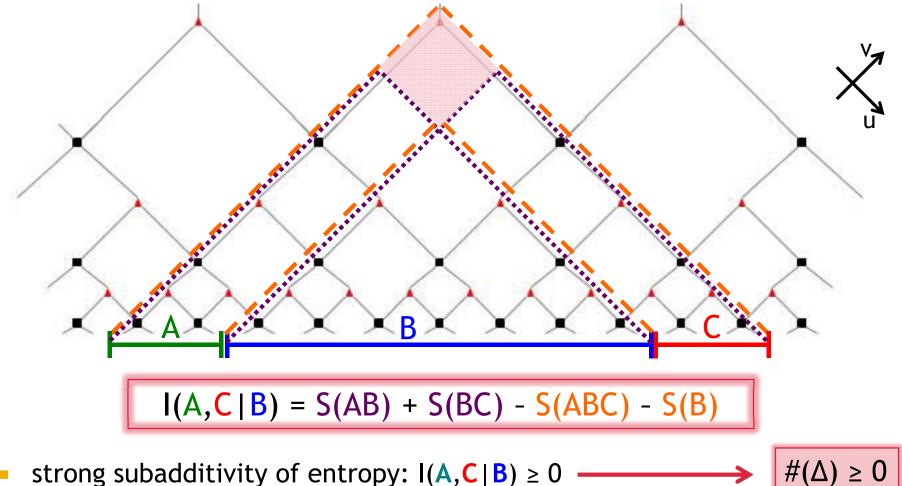
- The causal structure determines which tensors affect which expectation values
- The state on top of a causal cut is a compressed state on A
- This gives an upper bound for the <u>entanglement entropy</u>: S(A) ≤ #(cuts)
- It turns out that:

S(A) ~ #(cuts)

This reproduces S(A) ~ log|A|

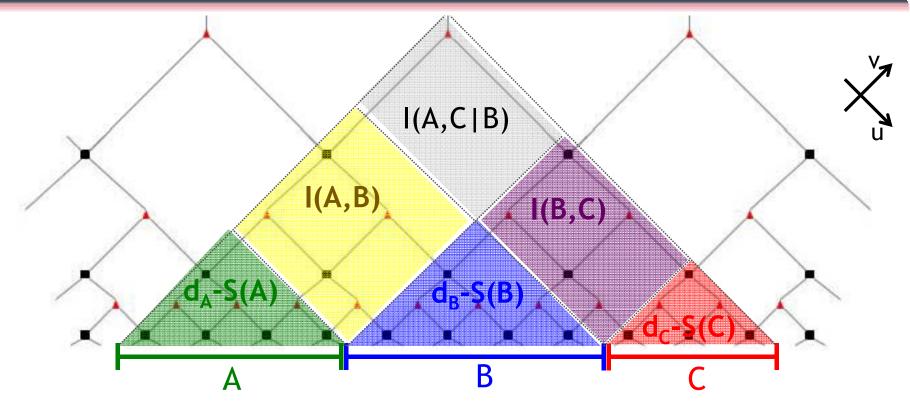
these tensors do not affect expectation values of operators acting on A^C
they form an isometry that acts within H_A

Conditional mutual information in MERA



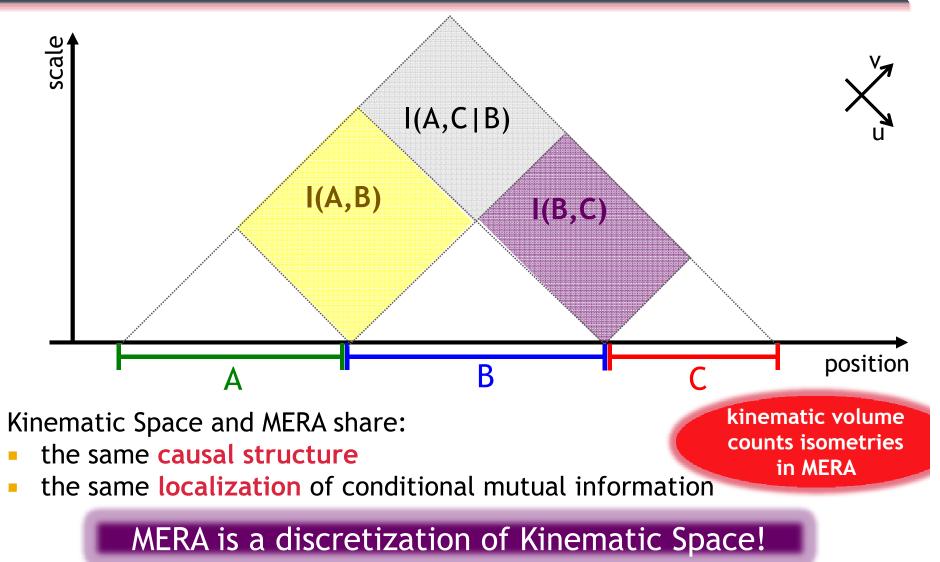
- strong subadditivity of entropy: $I(A, C | B) \ge 0$
- because of cancellations, this quantity localizes in the network
- it counts the number of isometries in a causal diamond

Structure of <u>MERA</u>



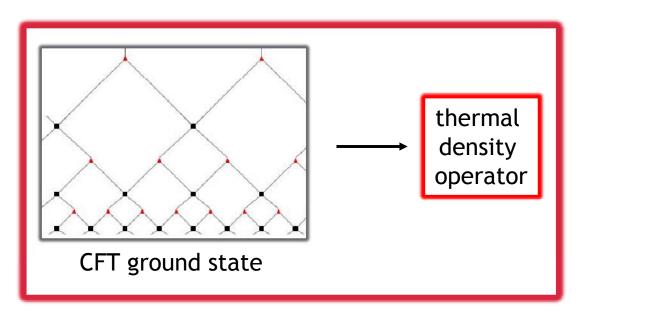
- Causal diamonds are conditional mutual informations
- Diamonds that extend all the way to the bottom are mutual informations
- Past causal diamonds of kinematic points characterize the isometric embedding of a compressed state in the Hilbert space

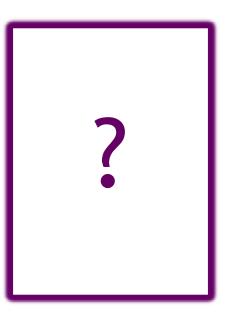
Structure of Kinematic Space



Application to many-body physics

- If MERA ≈ Kinematic Space then...
- Facts about Kinematic Space must carry over to MERA
- We will use one such fact to learn two new things about MERA in CFT₁₊₁:





Black hole is a quotient of AdS₃

Banados et al., 1993

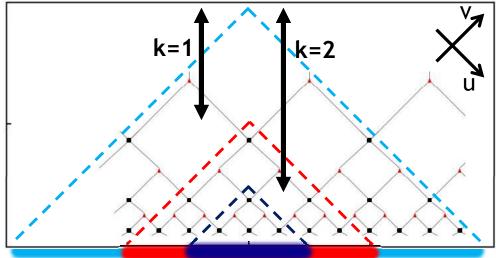
t=0 snapshot of AdS₃ SPACERAE NITEDROY BOD ESICS ME ТТ identify these geodesics this produces the dual of the thermofield double state black black hole hole

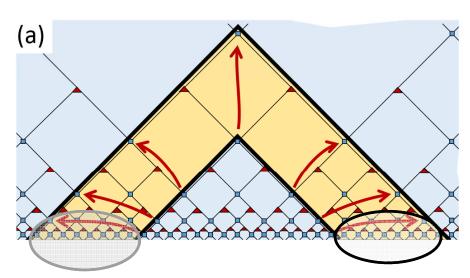
 perform the same identification in MERA!

MERA quotient prepares thermal state

Czech et al., 2015

KINEMATIC SPACE / MERA





- this is a density operator with two sets of open indices
- the TFD spectrum should be $e^{-\beta\Delta/2}$
- B is given in terms of parameter k:

 $\beta = 4\pi^2/k(\log 2)$

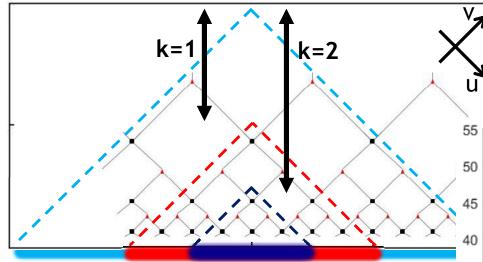
therefore we expect:

 $\log (\lambda_i / \lambda_0) = -2\pi^2 \Delta_i / k(\log 2)$

MERA quotient prepares thermal state

Czech et al., 2015

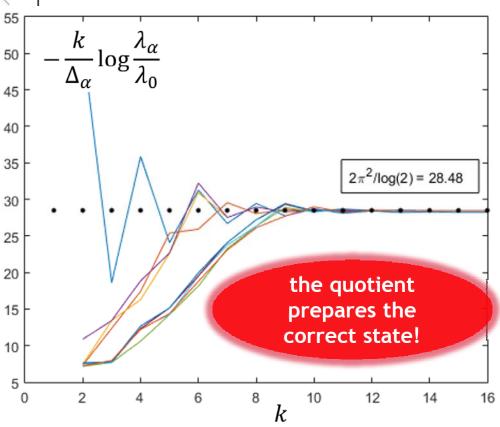
KINEMATIC SPACE / MERA



- Test in the critical 1+1d Ising model
- Substitute the known critical dimensions Δ_i and plot:

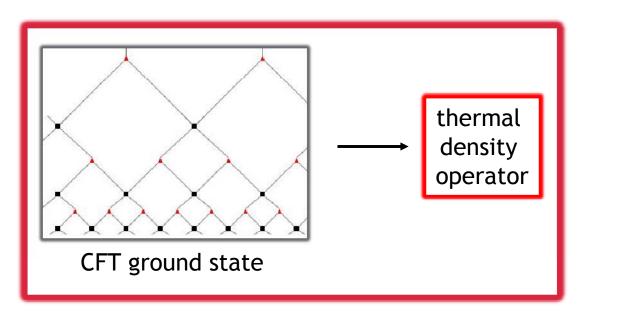
- this is a density operator with two sets of open indices
- the TFD spectrum should be $e^{-B\Delta/2}$
- B is given in terms of parameter k:
 B = 4π²/k(log2)
- therefore we expect:

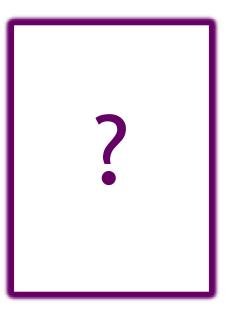
 $\log (\lambda_i / \lambda_0) = -2\pi^2 \Delta_i / k(\log 2)$



Application to many-body physics

- If MERA ≈ Kinematic Space then...
- Facts about Kinematic Space must carry over to MERA
- We will use one such fact to learn two new things about MERA in CFT₁₊₁:



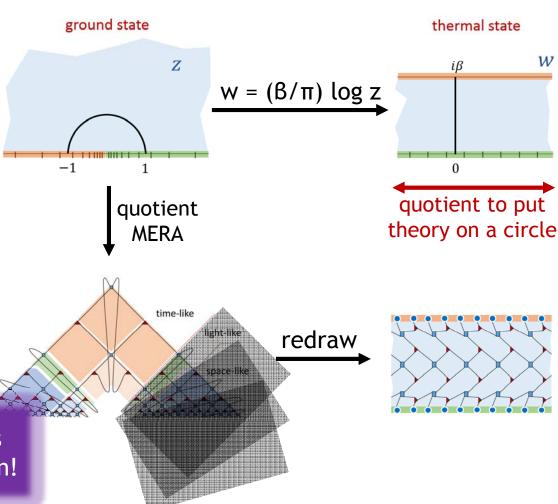


Why did it work?

Czech et al., 2015

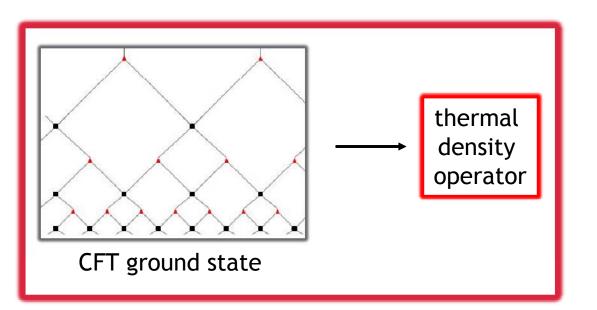
- We could also construct the thermal state by a local conformal transformation of the Euclidean path integral
- To get the state on a circle, quotient by translation
- We did our quotient directly in the MERA representation of the ground state
- The quotient selected a set of indices, which become uniformly distributed after the conformal transformation

Erasing these tensors performs a local conformal transformation!



Application to many-body physics

- If MERA ≈ Kinematic Space then...
- Facts about Kinematic Space must carry over to MERA
- We will use one such fact to learn two new things about MERA in CFT₁₊₁:



We learned how to perform local conformal transformations in MERA

Summary

We made precise the statement that connectedness = entanglement in AdS₃:

Density of Geodesics = Density of Correlations

We explained how this program relates to tensor networks

Kinematic Space (of Geodesics) = MERA

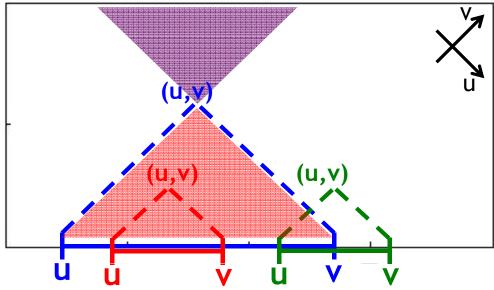
- We learned new things about the MERA network:
 - to extract the thermal density operator from the vacuum MERA
 - to perform local conformal transformations in MERA

Future directions

- How does AdS_{>3} emerge?
- How to include time dependence?
- What is time?

Space of Geodesics has a "causal structure"

SPACE of ORIENTED GEODESICS



- Timelike separated (u,v):
 interval (u,v) contains (u,v)
- Spacelike separated (u,v):
 neither interval contains the other
- Lightlike separated: common endpoint left (u = u) or right (v = v)

- Past: all intervals contained in (u,v)
- Future: all intervals containing (u,v)

Space of Geodesics is also the Space of Intervals

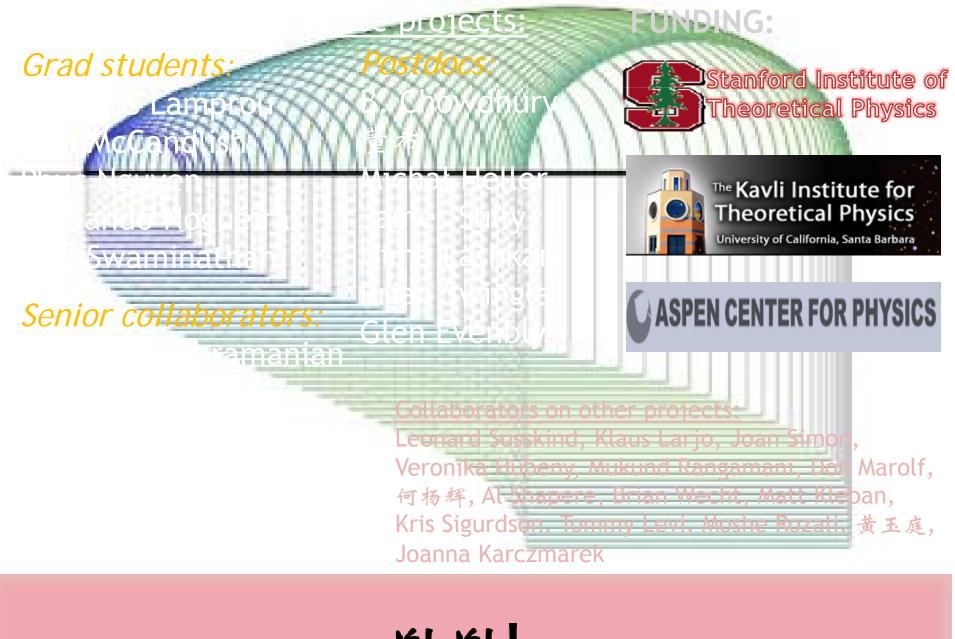
Endpoint coordinates u,v are lightlike

Future directions

How does AdS_{>3} emerge?

How to include time dependence?

Is Kinematic Space a model of the emergence of time?



谢谢!