Quantum Entanglement,

the Architecture of Space-time /

and Tensor Networks

Barttomiej Czech
Stanford University

Tsinghua University, 9 December 2015



Quantitative framework:
AdS/CFT corresponden

equivalence

Gravity in Conformal Field Theory (CFT)
anti-de Sitter space on 0AdS (hollow cylinder)
(solid cylinder)
States are asymptotically AdS geometries Degrees of freedom organized
Homogeneous space-time with negative into N x N matrices

curvature

L,qs (curvature radius) ~ N* (matrix size)



Extra dimension in AdS 1s RG scale in CFT

CFT,,
CFT

(equal time snapshot)

44'
CFT space

= radial slices - define CFTs at different cutoffs
= asymptotic boundary - CFT without a cutoff

of AdS”

Let us see examples...



CFT states are AdS geometries

nothing to break

CFT vacuum: |0> the symmetry

BH is also characterized
by the Hawking temperature

CFT thermal state of black hole radiation
z—1,-BH | e o
CFT Stat? eigenstate

from a given thermalization

. . things fall
canonical ensemble hypothesis A



Entanglement entropy in AdS/CFT

AdS

.

CFT space

Suppose Hepr = Hy X Henu
Given |W> in Hqp, form|p, = Trg,, | W><W|
For every observable O,x1.., localized in A:
<W|0,|W>=1tr O, p,

This is a mixed state on A, which mimics
all the properties of |W>
as far as A-observables are concerned.

If we do not look at the environment,
the pure state |W> appears mixed.

Entanglement entropy quantifies this:

Sent(A) = -Tr pylog p,

Entanglement entropy measures how much
effect the environment has on A.

Entanglement entropy

quantifies correlations



Ryu-Takayanagi proposal

\I\"'CFT space

Ryu-Takayanagi, 2006

CFT,.,/AdS,., CFT,,,/AdS,,.

( A

) IR divergence in AdS T
1S IR divergence in AdS




Application: two-sided black hole

Maldacena, 2001

CFT thermal state
Z e PH

identifies black hole
entropy (area) with

canonically purify

thermal state: entanglement entropy

Z=1/? Z e PE2 )1\, ®
“THERMOFIELD
DOUBLE STATE”

is a pure state

in CFT; ® CFT,
with identical
one-sided properties
as the thermal state

)2

two-sided black hole in Kruskal coordinates



Connectedness 1s entanglement

van Raamsdonk, 2009; Czech et al., 2012

thermofield t,
double state:

Y, 6

%

CFT energy
eigenstates:

T

substitute:

Entangling
disjoint
space-times
connects them!




If entanglement is connectedness, then...

we are learning about
the architecture of space and maybe space-time

space is a map of the entanglement
in the quantum state living
at asymptotic boundary

what are maps of entanglement /
and how to use them? Ty A

Tensor Networks

CFT space



How to read the AdS map of entanglement?

What we already know:

Minimal surfaces are
entanglement entropies

Connectedness across

a minimal surface comes
from the entanglement
between A and complement

Next, we want to know:

What is responsible for
connectedness between
center and periphery?

UV-I
” entanglement?



How to describe a center?

Czech et al., 2013-5

SPACE of MINIMAL SURFACES

So far, we only know
minimal surfaces

Let us use them!



SBRAEH6ORINMAID SHERFRERE. S

size

6=0 position

—

So far, we only know
minimal surfaces

Let us use them!




How to describe a center of AdS,?

Czech et al., 2013-5

SPACE of ORIENTED GEODESICS \
V.
/‘\><‘. x\\\h 2
u

intersecting geodesics

tangent geodesics

circumference /‘ C d
4G intersect 1 - denSity of

geodesics

The density of geodesics only depends on entanglement entropy.
| (re-)discovered, then generalized this formula.
It was known in special cases (flat space - Crofton, 1869).



What is the density of geodesics?

Czech et al., 2015
“How many” geodesics
have endpoints
in A = (u-du, u)
and C = (v, v+dv)?

IN B |

825’ |A I )

5 (uv) du dv u-du u vV v+dv
uOv

S(u-du, u) + S(u,v+dv) - S(u,v) - S(u-du, d+dv)

S(AB) + S(BC) - S(B) - S(ABC)

= this is non-negative by the strong subadditivity of entanglement entropy
= it is called the conditional mutual information | I(A,C|B)

= quantifies the correlations between A and C not mediated by B

l

density of geodesics = density of correlations



Space of Geodesics has a “causal structure”

Czech et al., 2015

SPACE of ORIENTED GEODESICS vV
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, v
X v
u u
'V
u u V U V v u “
Timelike separated (u,V): Past: all intervals contained in (u,v)
interval (u,v) contains (u,v) Future: all intervals containing (u,v)
Spacelike separated (u,v): .
neither interval contains the other SPEES B CEEEES 15 el

Lightlike separated: common endpoint the Space of Intervals

left (u = u) or right (v =v) Endpoint coordinates u,v

are lightlike



Structure of Kinematic Space

Czech et al., 2015

scale

3 3 >
position

Volumes of causal diamonds are conditional mutual informations
Diamonds that extend all the way to the bottom are mutual informations

These volumes are “bouquets” of gseodesics!



Summary so far

Space is a fabric woven from geodesics.
Geodesics are carriers of correlations.
Density of geodesics

= density of correlations

= conditional mutual information I(A,C|B)
Geodesics have a causal structure.

All this is captured by

the Kinematic Space.

QUESTION:
Have we seen a structure like this before?

Tensor Networks




What are Tensor Networks?

A tool in condensed matter theory
useful for efficiently representing many-body wavefunctions:

AR W T
// 1117.. AN

O(#N) parameters

cover the whole Hilbert space

L> efficient representation

The art is to define a class of tensor network states
with desired physical properties

For understanding the holographic architecture of AdS,, use
Multi-scale Entanglement Renormalization Ansatz:

(Vidal, 2005) BN MERA




What is MERA?

Vidal, 2005

Two types of unitary tensoi’sm \
Disentanglers remove / \/

UV entanglement

xh..
I A ; Ja !;Z
10> Isometries set aside / \ ;A
/ \UV degrees of freedom | ™. SR AN P S
; 3 /n\ /} A A A n\. F
- , ..""- # ; - b # .
m :.w _.-!w .-\m \.:,_ Hl\/ .-:."'\-. i x.f
spatial direction of CFT,,,

Implements real space coarse-graining (renormalization group)
A successful variational ansatz for finding ground states

of 1+1-dimensional critical systems (e.g. Ising model) T
model of CFT,,



Causal structure and locality in MERA

Vidal, 2005

! k
N

Compute <W|0|W> =Tr O|W><W| - «FUTURE”

Unitarity of tensors implies: determines expe?ﬁaiizn )
value

of local operato

\

||
JHHI||IIII|||"»»..m...u...“.,h

il
—o

Causal Structure

(in auxiliary time <> scale) N /\




Null coordinates in MERA

Czech et al., 2015

tensor at (u,v) is the last one = (u,v), ><
. 4 % Py ™,

which cancels out when Pa '~ \
interval (u,v) is traced out
each field theory interval B
uniquely identifies a tensor
the relation between the two N 1__..“-{_%! j’i'_t_'“fix!_,ﬁ"ﬁ\_ AN
is via causal cuts ¢ ¢ ¢ S

'. .-.T N II‘-\--' i

™ 4 %,

x -



Causal cuts and entanglement entropy

The causal structure
determines which tensors
affect which

expectation values

The state on top
of a causal cut
is a compressed state on A

This gives an upper bound

for the entanglement entropy:

S(A) = #(cuts)

It turns out that:

S(A) ~ #(cuts)
This reproduces S(A) ~ log | A|

Vidal, 2005

 these tensors do not
affect expectation values
of operators acting on A€

» they form an isometry
that acts within #,




Conditional mutual information in MERA

Czech et al., 2015
|
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I(A,C|B) = S(AB) + S(BC) - S(ABC) - S(B)

strong subadditivity of entropy: I(A,C|B) >0 > [#(A) >0
because of cancellations, this quantity localizes in the network
it counts the number of isometries in a causal diamond




Structure of MERA
e

Czech et al., 2015

Causal diamonds are conditional mutual informations

Diamonds that extend all the way to the bottom are mutual informations
Past causal diamonds of kinematic points characterize the isometric
embedding of a compressed state in the Hilbert space



Structure of Kinematic Space

Czech et al., 2015

BA
u
A position
Kinematic Space and MERA share: kinematic volume

counts isometries

the same causal structure in MERA

the same localization of conditional mutual information

MERA is a discretization of Kinematic Space!



Application to many-body physics

If MERA = Kinematic Space then...
Facts about Kinematic Space must carry over to MERA

We will use one such fact to learn two new things
about MERA in CFT,,,:

thermal
density ?

operator ®

F ol -
- T " M
A /1\_ Y Y ;'

'_," '/ \. . N % S "'\_ __,’ V.
. m A G G S

CFT ground state




Black hole is a quotient of AdS,

Banados et al., 1993
SPACE RACERHENNEDRVEQDESICS t=0 snapshot of AdS,

X
MEBA\/ /\ —

S ‘-'\_‘./ % . /./ \/. ‘ ‘- \\‘\. /.‘_,\_. ;\‘\
wyow .'.n-f_//\,.-;f. W W\ \- N W W

identify these geodesics

this produces the dual
of the thermofield double state

perform the same identification
in MERA! two-sided black hole




MERA quotient prepares thermal state

Czech et al., 2015

O e 0 .0:90.0.9.9.

25 S VoWe VS

KINEMATIC SPACE / MERA

this is a density operator

with two sets of open indices

the TFD spectrum should be e-84/2
B is given in terms of parameter k:

B = 4m2/k(log2)

therefore we expect: © ©




MERA quotient prepares thermal state

Czech et al., 2015
KINEMATIC SPACE / MERA

Test in the critical 1+1d Ising model

Substitute the known critical
dimensions A; and plot:

L
Aa: o6 AO
\
this is a density operator ol 27%/log(2) = 28.48
with two sets of open indices R Y AN &
the TFD spectrum should be e84/2 7 [k
B is given in terms of parameter k: 2o

4 the quotient
B = 4m2/k(log2) 151 " prepares the

correct state!
therefore we expect:

log (A,/ ) = - 2m2A,/k(log2) o 2




Application to many-body physics

Czech et al., 2015

If MERA = Kinematic Space then...
Facts about Kinematic Space must carry over to MERA

We will use one such fact to learn two new things
about MERA in CFT,,,:

thermal
density ?

operator ®

F ol -
- T " M
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CFT ground state




Why did it work?

Czech et al., 2015

We could also construct

the thermal state by a local
conformal transformation of
the Euclidean path integral z

ground state

w = (B/m) log z>

To get the state on a circle,

quotient by translation m

We did our quotient directly
in the MERA representation quotient
of the ground state MERA

The quotient selected a set
of indices, which become
uniformly distributed after
the conformal transformation

redraw

Erasing these tensors performs

a local conformal transformation!

<
quotient to put
theory on a circle

thermal state

>



Application to many-body physics

Czech et al., 2015

If MERA = Kinematic Space then...
Facts about Kinematic Space must carry over to MERA

We will use one such fact to learn two new things
about MERA in CFT,,,:

We learned
how to perform
local conformal
transformations

thermal
density
operator

KN, in MERA

\._ "\__ l,"' . S "-\_ /
U G

CFT ground state




We made precise the statement that
connectedness = entanglement in AdS;:

Density of Geodesics = Density of Correlations

We explained how this program relates to tensor networks

Kinematic Space (of Geodesics) = MERA

We learned new things about the MERA network:

to extract the thermal density operator from the vacuum MERA
to perform local conformal transformations in MERA



Future directions

How does AdS. ; emerge?
How to include time dependence?

What is time?



Space of Geodesics has a “causal structure”

u u V U V v u Y

Timelike separated (u,V): Past: all intervals contained in (u,v)
interval (u,v) contains (u,v) Future: all intervals containing (u,v)
Spacelike separated (u,v): .

neither interval contains the other Sfpeies Of (CEmeisas 13 i

Lightlike separated: common endpoint the Space of Intervals

left (u = u) or right (v =v) Endpoint coordinates u,v

are lightlike



Future directions

How does AdS. ; emerge?

How to include time dependence?

Is Kinematic Space a model

s A

of the emergence of time?
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