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Maldacena, 1997

equivalence

Gravity in 
anti-de Sitter space 

Conformal Field Theory (CFT) 
on δAdS (hollow cylinder)

States are asymptotically AdS geometries

p
(solid cylinder)

( y )

Degrees of freedom organized States are asymptotically AdS geometries
Homogeneous space-time with negative 
curvature

Degrees of freedom organized 
into N x N matrices

LAdS (curvature radius) ~ N# (matrix size)



t

CFT

t

CFTμ1

CFTμ2AdS CFTμ2

( l ti  h t)

AdS
?

(equal time snapshot)

“CFT lives on the asymptotic boundary of AdS”

radial slices - define CFTs at different cutoffs
asymptotic boundary – CFT without a cutoff

Let us see examples…
CFT lives on the asymptotic boundary of AdS



CFT vacuum: |0>
nothing to break

the symmetry
pure AdSpure AdS

BH is also characterized 
by the Hawking temperature 

of black hole radiationCFT thermal state place an object
at thermal scaleat thermal scale

black

CFT state
from a given 

black
hole

eigenstate
thermalizationfrom a given 

canonical ensemble
thermalization

hypothesis things fall
into a black hole



Suppose HCFT = HA × Henv

Given |Ψ> in HCFT, form ρA = Trenv|Ψ><Ψ|
For every observable O ×1 localized in A:For every observable OA×1env localized in A:
<Ψ|OA|Ψ> = tr OA ρA

This is a mixed state on A, which mimics 
all the properties of |Ψ> 
as far as A-observables are concerned.
If we do not look at the environment, 

t
RG

A

the pure state |Ψ> appears mixed.
Entanglement entropy quantifies this:
S (A) = -Tr ρ log ρ

AdS

Sent(A) = -Tr ρA log ρA

Entanglement entropy measures how much 
effect the environment has on A.

CFT space
Entanglement entropy 
quantifies correlations



Ryu-Takayanagi, 2006

CFT1+1/AdS2+1 CFT2+1/AdS3+1

AA

UV divergence in CFTIR divergence in AdS

t
RG

A

g
is IR divergence in AdS

AdS A

CFT space
A



CFT thermal state t
Maldacena, 2001

CFT thermal state

black
hole

t

identifies black hole 
canonically purify
thermal state:

holeidentifies black hole 
entropy (area) with 

entanglement entropy

t2t1
black black 

“THERMOFIELD 
DOUBLE STATE”
is a pure state 

t2t1 holehole

CFCFT 1T 1is a pure state 
in
with identical 

black
hole

black
hole

white white 

FT
2

FT
2CF

T
CF

T
one-sided properties 
as the thermal state  two-sided black hole in Kruskal coordinates

white 
hole

white 
hole



thermofield black black t2t

van Raamsdonk, 2009; Czech et al., 2012

thermofield
double state:

FT
1

FT
1

black 
hole
black 
hole

CFT
CFT

black
hole

black
hole

t2t1

CFCF

white 
hole

white 
hole

T
2

T
2

CFT energy 
eigenstates:

black

t

black
hole i i

substitute:

Σ ( )               = i i
Entangling 

di j i t Σi(…)               = i i disjoint 
space-times 

connects them!



we are learning about 
the architecture of space and maybe space-timep y p

space is a map of the entanglement
i  th  t  t t  li i  in the quantum state living 
at asymptotic boundary

what are maps of entanglement
and how to use them? t A

|Ψ>

Tensor Networks

CFT space



What we already know:What we already know:

Minimal surfaces are 
entanglement entropies

A
entanglement entropies

Connectedness across 
a minimal surface comes 

A
a minimal surface comes 
from the entanglement 
between A and complement

N t   t t  k :
UV

Next, we want to know:

What is responsible for 
connectedness between UV IR 

IR
connectedness between 
center and periphery?

UV-IR 
entanglement?



SPACE f MINIMAL SURFACES

Czech et al., 2013-5

SPACE of MINIMAL SURFACES

S  f   l  k  So far, we only know 
minimal surfaces

Let s se them!Let us use them!



SPACE of ORIENTED GEODESICSSPACE f MINIMAL SURFACES

Czech et al., 2013-5

SPACE of ORIENTED GEODESICS

si
ze

v
SPACE of MINIMAL SURFACES

θ=0

u

S  f   l  k  

θ=0 position

So far, we only know 
minimal surfaces

L t   th !Let us use them!



SPACE of ORIENTED GEODESICS

Czech et al., 2013-5

SPACE of ORIENTED GEODESICS
v

u
intersecting geodesics

tangent geodesics

density of 
geodesics
density of 
geodesics

The density of geodesics only depends on entanglement entropy.
I (re-)discovered, then generalized this formula. 
It was known in special cases (flat space – Crofton, 1869).



“How many” geodesics
Czech et al., 2015

How many  geodesics
have endpoints
in A = (u-du, u)
and C = (v, v+dv)?

A CB
u vu-du v+dv

= S(u-du, u) + S(u,v+dv) – S(u,v) – S(u-du, d+dv) S(u du, u)  S(u,v dv) S(u,v) S(u du, d dv)

= S(AB) + S(BC) – S(B) – S(ABC)

this is non-negative by the strong subadditivity of entanglement entropy
it is called the conditional mutual information

tifi  th  l ti  b t  A d C t di t d b  B
I(A,C|B)

quantifies the correlations between A and C not mediated by B

density of geodesics = density of correlations



SPACE of ORIENTED GEODESICS v
Czech et al., 2015

SPACE of ORIENTED GEODESICS
v

u( )

v

v

u(u,v)

(u v) (u v)
v

u

u

(u,v) (u,v)

u

Timelike separated (u,v):
interval (u,v) contains (u,v)

vu vu vu u
Past: all intervals contained in (u,v)
Future: all intervals containing (u,v)

u

te val (u,v) co ta s (u,v)
Spacelike separated (u,v):
neither interval contains the other
Lightlike separated: common endpoint

g ( , )

Space of Geodesics is also
the Space of Intervals g p p

left (u = u) or right (v = v)
Endpoint coordinates u,v

are lightlike



e ddv

Czech et al., 2015

v

uI(A,C|B)

sc
al

e dudv

u( , | )

I(A,B) I(B,C)( , )

A B C position

Volumes of causal diamonds are conditional mutual informations
Diamonds that extend all the way to the bottom are mutual informationsDiamonds that extend all the way to the bottom are mutual informations

These volumes are “bouquets” of geodesics!



Space is a fabric woven from geodesics.
Geodesics are carriers of correlations.
Density of geodesicsDensity of geodesics
= density of correlations
= conditional mutual information I(A,C|B)
Geodesics have a causal structure

SPACE of ORIENTED GEODESICS / INTERVALS

Geodesics have a causal structure.
All this is captured by
the Kinematic Space.

SPACE of ORIENTED GEODESICS / INTERVALS
v

u( )

QUESTION:
Have we seen a structure like this before?

u(u,v)

(u,v) (u,v)Tensor Networks

vu vu vu



A tool in condensed matter theoryA tool in condensed matter theory
useful for efficiently representing many-body wavefunctions:

a vectora tensora tracea wavefunction

in some α-dimensional vector space
α – “bond dimension”

O(N) parameters O(# N) parameters

This class of states does not cover the whole Hilbert space

The art is to define a class of tensor network states 

efficient representation

The art is to define a class of tensor network states 
with desired physical properties

For understanding the understanding the holographic holographic architecture of AdSarchitecture of AdS33, use gg g pg p 33,
Multi-scale Entanglement Renormalization Ansatz:
(Vidal, 2005) MERA



Two types of unitary tensors:

Vidal, 2005

Two types of unitary tensors:

Disentanglers remove 

IR

Disentanglers remove 
UV entanglement

Isometries set aside 
UV degrees of freedom

|0>

UV
spatial direction of CFT1+1

Implements real space coarse-graining (renormalization group)
A successful variational ansatz for finding ground states 
f d l l d lof 1+1-dimensional critical systems (e.g. Ising model) a working 

model of CFT1+1



Vidal, 2005

Compute <Ψ|O|Ψ> = Tr O|Ψ><Ψ|

Unitarity of tensors implies:
“FUTURE” 

determines expeciation
value

of local operator

= == =11

Causal Structure
(in auxiliary time      scale)(in auxiliary time      scale)



Czech et al., 2015

v

u

(u,v)tensor at (u,v) is the last one
which cancels out when

u
interval (u,v) is traced out

h fi ld th  i t l 

vu

each field theory interval 
uniquely identifies a tensor

the relation between the two
is via causal cuts



The causal structure 

Vidal, 2005

The causal structure 
determines which tensors 
affect which
expectation values
The state on top 
f  l tof a causal cut

is a compressed state on A
This gives an upper bound

A AC

This gives an upper bound
for the entanglement entropy:
S(A) ≤ #(cuts)
It turns out that:

S(A) ~ #(cuts)
• these tensors do not 
affect expectation values 
of operators acting on AC

This reproduces S(A) ~ log|A|
p g

• they form an isometry 
that acts within HA



Czech et al., 2015

v

uu

A B C

strong subadditivity of entropy: I(A C|B) ≥ 0

I(A,C|B) = S(AB) + S(BC) – S(ABC) – S(B)

#(Δ) ≥ 0strong subadditivity of entropy: I(A,C|B) ≥ 0
because of cancellations, this quantity localizes in the network
it counts the number of isometries in a causal diamond

#(Δ) ≥ 0



Czech et al., 2015

v

uI(A,C|B) u( , | )

I(A,B) I(B,C)( , )

dA-S(A) dB-S(B)

A B C

dC-S(C)

Causal diamonds are conditional mutual informations
Diamonds that extend all the way to the bottom are mutual informationsy
Past causal diamonds of kinematic points characterize the isometric 
embedding of a compressed state in the Hilbert space



e
Czech et al., 2015

v

uI(A,C|B)

sc
al

e

u( , | )

I(A,B) I(B,C)( , )

A B C position

Kinematic Space and MERA share:
the same causal structure
the same localization of conditional mutual information

kinematic volume 
counts isometries 

in MERA 

kinematic volume 
counts isometries 

in MERA 
the same localization of conditional mutual information

MERA is a discretization of Kinematic Space!



If MERA ≈ Kinematic Space then… 

Facts about Kinematic Space must carry over to MERAp y

We will use one such fact to learn two new things 
about MERA in CFT1+1:about MERA in CFT1+1:

thermal 
density 

t ?
CFT ground state

operator ?
CFT ground state



SPACE of INTERVALSSPACE of ORIENTED GEODESICS t=0 snapshot of AdS3

Banados et al., 1993

v

uu

M E R A

identify these geodesics

this produces the dual 
of the thermofield double state black

hole
black
hole

perform the same identification 
in MERA! 

holehole

two-sided black hole



KINEMATIC SPACE / MERA

Czech et al., 2015

v

u
k=1 k=2

u

this is a density operator 
with two sets of open indices
the TFD spectrum should be e-βΔ/2the TFD spectrum should be e
β is given in terms of parameter k:

β = 4π2/k(log2)

therefore we expect:

log (λi/ λ0) = - 2π2Δi/k(log2)



KINEMATIC SPACE / MERA

Czech et al., 2015

v

u
k=1 k=2

Test in the critical 1+1d Ising model

Substitute the known critical 
dimensions Δ and plot: u dimensions Δi and plot: 

this is a density operator 
with two sets of open indices
the TFD spectrum should be e-βΔ/2the TFD spectrum should be e
β is given in terms of parameter k:

β = 4π2/k(log2)
the quotient 
prepares the 
correct state!

the quotient 
prepares the 
correct state!

therefore we expect:

log (λi/ λ0) = - 2π2Δi/k(log2)

correct state!correct state!



Czech et al., 2015

If MERA ≈ Kinematic Space then… 

Facts about Kinematic Space must carry over to MERAp y

We will use one such fact to learn two new things 
about MERA in CFT1+1:about MERA in CFT1+1:

thermal 
density 

t ?
CFT ground state

operator ?
CFT ground state



W  ld l  t t 

Czech et al., 2015

We could also construct 
the thermal state by a local 
conformal transformation of 
the Euclidean path integral

w = (β/π) log z
the Euclidean path integral

To get the state on a circle, 
quotient by translation

quotient to put 
theory on a circle

quotient
MERA

We did our quotient directly 
in the MERA representation 
of the ground stateof the ground state

The quotient selected a set 
of indices, which become 
uniformly distributed after duniformly distributed after 
the conformal transformation

redraw

Erasing these tensors performs 
a local conformal transformation!



Czech et al., 2015

If MERA ≈ Kinematic Space then… 

Facts about Kinematic Space must carry over to MERAp y

We will use one such fact to learn two new things 
about MERA in CFT1+1:about MERA in CFT1+1:

thermal 
density 

t

We learned 
how to perform 
local conformal 

CFT ground state

operator local conformal 
transformations

in MERA

CFT ground state



We made precise the statement that 
connectedness = entanglement in AdS3:

Density of Geodesics = Density of Correlations

W  l i d h  thi   l t  t  t  t kWe explained how this program relates to tensor networks

Kinematic Space (of Geodesics) = MERAp ( )

We learned new things about the MERA network:
to extract the thermal density operator from the vacuum MERAto extract the thermal density operator from the vacuum MERA
to perform local conformal transformations in MERA



How does AdS>3 emerge?

How to include time dependence?

What is time?



SPACE of ORIENTED GEODESICS vSPACE of ORIENTED GEODESICS
v

u( )

v

v

u(u,v)

(u v) (u v)
v

u

u

(u,v) (u,v)

u

Timelike separated (u,v):
interval (u,v) contains (u,v)

vu vu vu u
Past: all intervals contained in (u,v)
Future: all intervals containing (u,v)

u

te val (u,v) co ta s (u,v)
Spacelike separated (u,v):
neither interval contains the other
Lightlike separated: common endpoint

g ( , )

Space of Geodesics is also
the Space of Intervals g p p

left (u = u) or right (v = v)
Endpoint coordinates u,v

are lightlike



How does AdS>3 emerge?

How to include time dependence?

What is time?Is Kinematic Space a model Is Kinematic Space a model 
of the emergence of time?
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