## Seminar at IASTU, Dec. 30, 2015

# Energetics of three particles near a three-body resonance 

Shina Tan, Georgia Tech

funding: NSF, GaTech COS Cullen-Peck Fellowship

## Outline

- Introduction
- Special wave functions for three particles at a resonance
- One particle in 6 dimensions
- Three particles in the 3 dimensional box
- Other results
- Summary


## Introduction

- Ultracold atoms: small collision energies
(compared to the Van der Waals energy); large de Broglie wave lengths (compared to the Van der Waals range).
- Low-energy nucleons/nuclei are similar


## Introduction

- Ultracold atoms:
small collision energies
(compared to the Van der Waals energy); large de Broglie wave lengths (compared to the Van der Waals range).
- Low-energy nucleons/nuclei are similar

Develop a general approach for a few particles, treating $E$ and $1 / l$ as small parameters
$E$ : energy $\quad l$ : size of system

A general framework for few-body physics in the ultracold regime
Consider any number of objects, in any dimension, with generic interactions, colliding at a small energy:

$$
H \psi=E \psi
$$

In a region of configuration space small compared to the de Broglie wave length associated with $E$ :
where

$$
\psi=\sum_{\mu} c_{\mu}\left(\phi^{(\mu)}+E f^{(\mu)}+E^{2} g^{(\mu)}+\cdots\right)
$$

$$
H \phi^{(\mu)}=0 \quad H f^{(\mu)}=\phi^{(\mu)} \quad H g^{(\mu)}=f^{(\mu)}
$$

$\phi^{(\mu)}, f^{(\mu)}, g^{(\mu)}, \cdots$ : special wave functions

$$
\text { see, eg, Tan, PRA } 2008
$$

## Why study resonances

- Ultracold atoms are usually weakly interacting
- A lot are known: use two-body scattering length, two-body effective range, three-body scattering hypervolume, etc as effective interaction parameters
- Turn to resonances: system strongly interacting, and much more interesting
- But a lot are known about TWO-body resonances
- So let's turn to THREE-BODY RESONANCES


## Why study three-body resonances?

- [Definition]

If three particles have a bound state near zero energy, we say they are near a three-body resonance

- Strongly interacting and interesting
- Applications in ultracold atoms near three-body resonances, and three-body nuclear halo states
- Applications in other systems (eg, excitons, other particles)


## Textbook wisdom

Three-body problem often cannot be solved analytically (famous example: the motion of 3 gravitating celestial bodies may display chaos)

But, let us study 3-body problem analytically

Our trick: study the wave functions at small collision energies \& large inter-particle distances

## Three-body Schrödinger equation

Consider 3 bosons with interactions that are translationally, rotationally, and Galilean invariant, and short-ranged, fine-tuned such that there is a bound state with zero energy and zero orbital angular momentum.

$$
\begin{gathered}
H_{3} \psi=E \psi \\
\left(H_{3} \psi\right)_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}=\frac{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}}{2} \psi_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}+\frac{1}{2} \int_{\mathbf{k}^{\prime}} U_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}^{\prime} \mathbf{k}^{\prime \prime}} \psi_{\mathbf{k}^{\prime} \mathbf{k}^{\prime \prime} \mathbf{k}_{3}}+\frac{1}{2} \int_{\mathbf{k}^{\prime}} U_{\mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}^{\prime} \mathbf{k}^{\prime \prime}} \psi_{\mathbf{k}_{1} \mathbf{k}^{\prime} \mathbf{k}^{\prime \prime}} \\
+\frac{1}{2} \int_{\mathbf{k}^{\prime}} U_{\mathbf{k}_{3} \mathbf{k}_{1} \mathbf{k}^{\prime} \mathbf{k}^{\prime \prime}} \psi_{\mathbf{k}^{\prime} \mathbf{k}_{2} \mathbf{k}^{\prime \prime}}+\frac{1}{6} \int_{\mathbf{k}_{1}^{\prime} \mathbf{k}_{2}^{\prime}} U_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{1}^{\prime} \mathbf{k}_{2}^{\prime} \mathbf{k}_{3}^{\prime}} \psi_{\mathbf{k}_{1}^{\prime} \mathbf{k}_{2}^{\prime} \mathbf{k}_{3}^{\prime}} \\
\text { Where } \int_{\mathbf{k}^{\prime}} \equiv \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}}, \int_{\mathbf{k}_{1}^{\prime} \mathbf{k}_{2}^{\prime}} \equiv \int \frac{d^{3} k_{1}^{\prime}}{(2 \pi)^{3}} \frac{d^{3} k_{2}^{\prime}}{(2 \pi)^{3}} \quad(m=\hbar=1)
\end{gathered}
$$

## Two-body special wave functions

$$
\begin{gathered}
H_{2} \psi=E \psi \\
\left(H_{2} \psi\right)_{\mathbf{k}}=k^{2} \psi_{\mathbf{k}}+\frac{1}{2} \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} U_{\mathbf{k},-\mathbf{k}, \mathbf{k}^{\prime},-\mathbf{k}^{\prime}} \psi_{\mathbf{k}^{\prime}}
\end{gathered}
$$

In the ultracold regime, $E$ is small.
May expand the wave function as

$$
\begin{gathered}
\psi_{\mathbf{k}}=\phi_{\mathbf{k}}+E f_{\mathbf{k}}+E^{2} g_{\mathbf{k}}+\cdots \\
H \phi_{\mathbf{k}}=0 \quad H f_{\mathbf{k}}=\phi_{\mathbf{k}} \quad H g_{\mathbf{k}}=f_{\mathbf{k}}
\end{gathered}
$$

Outside the range of interaction, we have

$$
\phi(\mathbf{r})=1-a / r \quad f(\mathbf{r})=-r^{2} / 6+a r / 2-a r_{s} / 2
$$

$\phi_{\hat{\mathbf{n}}}^{(d)}(\mathbf{r})=\left(r^{2} / 15-3 a_{d} / r^{3}\right) P_{2}(\hat{\mathbf{n}} \cdot \hat{\mathbf{r}})$

## Three-body special wave functions

$$
H_{3} \psi=E \psi
$$

In the ultracold regime, $E$ is small.
May expand the wave function as

$$
\psi=\phi^{(3)}+E f^{(3)}+E^{2} g^{(3)}+\cdots
$$

where $\phi_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{(3)}, f_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{(3)}, g_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{(3)}$, etc, are special wave functions, and serve as building blocks of the wave functions at arbitrary energies.

$$
\begin{aligned}
H_{3} \phi^{(3)} & =0 \\
H_{3} f^{(3)} & =\phi^{(3)} \\
H_{3} g^{(3)} & =f^{(3)} \\
\ldots & \ldots
\end{aligned}
$$

## Three-body special wave functions

Once we know the special wave functions, $\phi_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{(3)}, f_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{(3)}, g_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{(3)}$, etc, we know ALL the details of three-body effective interactions at low energy

The effective parameters such as the three-body scattering hypervolume appear in the large-distance or low-momentum expansions of these functions

## The special wave function $\phi^{(3)}$



$$
w=\frac{4 \pi}{3}-\sqrt{3}
$$

When $s_{1}, s_{2}, s_{3}$ are all large,

$$
\begin{array}{r}
\phi^{(3)}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3}\right) \propto 1+\left[\sum_{i=1}^{3}-\frac{a}{s_{i}}+\frac{4 a^{2} \theta_{i}}{\pi R_{i} s_{i}}-\frac{2 w a^{3}}{\pi \rho^{2} s_{i}}+\frac{8 \sqrt{3} w a^{4}\left(\ln \frac{\rho}{|a|}+\gamma-1-\theta_{i} \cot 2 \theta_{i}\right)}{\pi^{2} \rho^{4}}\right]-\frac{\sqrt{3} D}{8 \pi^{3} \rho^{4}}+O\left(\rho^{-5}\right) \\
\text { Tan, } P R A 2008
\end{array}
$$

At a three-body resonance, $D \rightarrow \pm \infty$, and

$$
\phi^{(3)}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3}\right) \propto \frac{1}{\rho^{4}}+O\left(\rho^{-5}\right)
$$

which is also the wave function of the shallow three-body bound state

## The special wave function $\phi^{(3)}$

The formula $\phi^{(3)}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3}\right) \propto \frac{1}{\rho^{4}}+O\left(\rho^{-5}\right)$ at large distances
corresponds to $\phi_{\mathbf{q}_{1} \mathbf{q}_{2} \mathbf{q}_{3}}^{(3)} \propto \frac{2}{q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}+O\left(q^{-1}\right)$

## The special wave function $\phi^{(3)}$

There are small-momentum asymptotic expansions for

$$
\phi_{\mathbf{q}_{1} \mathbf{q}_{2} \mathbf{q}_{3}}^{(3)} \text { and } \phi_{\mathbf{q},-\mathbf{q} / 2+\mathbf{k},-\mathbf{q} / 2-\mathbf{k}}^{(3)}
$$

where q 's are small but k is not.

Solving the exact Schrödinger equation, we can refine the two asymptotic expansions back and forth, in a zig-zag manner.

## The special wave function $\phi^{(3)}$

Asymptotic expansions at small q's:

$$
\begin{array}{r}
\phi_{\mathbf{q},-\mathbf{q} / 2+\mathbf{k},-\mathbf{q} / 2-\mathbf{k}}^{(3)}=\left[-\frac{\sqrt{3}}{8 \pi} q+\frac{a}{\sqrt{3} \pi^{2}} q^{2} \ln (q|a|)+\left(\frac{9+2 \sqrt{3} \pi}{72 \pi^{2}} a^{2}+\frac{3 \sqrt{3}}{64 \pi} a r_{s}\right) q^{3}\right] \phi_{\mathbf{k}} \\
+\frac{3 \sqrt{3}}{32 \pi} q^{3} f_{\mathbf{k}}+d_{\mathbf{k}}+q^{2} d_{\hat{\mathbf{q}} \mathbf{k}}^{(2)}+O\left(q^{4}\right) \\
\phi_{\mathbf{q}_{1} \mathbf{q}_{2} \mathbf{q}_{3}}^{(3)}=\frac{2}{q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}\left\{1+\sum_{i=1}^{3}\left[\frac{\sqrt{3}}{2} a q_{i}-\frac{4}{\sqrt{3} \pi} a^{2} q_{i}^{2} \ln \left(q_{i}|a|\right)\right]\right\}+\chi_{0}+O(q) \\
a: \text { two-body scattering length } \\
r_{-} s: \text { two-body effective range }
\end{array}
$$

These expansions will be essential in the ultracold physics of three or more such particles

## The special wave function $f^{(3)}$

$$
H_{3} f^{(3)}=\phi^{(3)}
$$

At small q's, we get

$$
f_{\mathbf{q}_{1} \mathbf{q}_{2} \mathbf{q}_{3}}^{(3)}=r_{3}(2 \pi)^{6} \delta\left(\mathbf{q}_{1}\right) \delta\left(\mathbf{q}_{2}\right)+O\left(q^{-5}\right),
$$

where $r_{3}$ is the three-body effective range.
It's the MOST IMPORTANT three-body parameter at a resonance (its dimension: $1 /$ length $\wedge 2$ ).

Using the Schrödinger equation, we get

$$
\int_{\mathbf{k}_{1} \mathbf{k}_{2}}\left|\phi_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{(3)}\right|^{2}=-r_{3}
$$

## $r_{3}$ as a probability constant

From the formula

$$
\int_{\mathbf{k}_{1} \mathbf{k}_{2}}\left|\phi_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{(3)}\right|^{2}=-r_{3}
$$

we find

$$
\int_{\rho<\eta} d^{3} r d^{3} R\left|\phi^{(3)}(\mathbf{r} / 2,-\mathbf{r} / 2, \mathbf{R})\right|^{2} \propto 16 \sqrt{3} \pi^{3}\left|r_{3}\right|-\frac{1}{\eta^{2}}+O\left(\eta^{-3}\right)
$$

at a large cutoff hyperradius $\eta$

## The special wave function $f^{(3)}$

$$
\begin{aligned}
\begin{aligned}
& f_{\mathbf{q},-\mathbf{q} / 2+\mathbf{k},-\mathbf{q} / 2-\mathbf{k}}^{(3)}= {[ } \\
& r_{3}(2 \pi)^{3} \delta(\mathbf{q})-\frac{8 \pi a r_{3}}{q^{2}}+\left(4 \pi w a^{2} r_{3}+\frac{\sqrt{3}}{12 \pi}\right) \frac{1}{q}+\left(16 w a^{3} r_{3}-\frac{a}{2 \sqrt{3} \pi^{2}}\right) \ln (q|a|) \\
&\left.+\left(24 \sqrt{3} w a^{4} r_{3}+\frac{a^{2}}{4 \pi^{2}}\right) q \ln (q|a|)+c_{1} q\right] \phi_{\mathbf{k}}-\left(3 \pi w a^{2} r_{3}+\frac{3 \sqrt{3}}{16 \pi}\right) q f_{\mathbf{k}} \\
&+\left[10 \pi a r_{3}-10 \pi(2 \pi-3 \sqrt{3}) a^{2} r_{3} q\right] \phi_{\hat{\mathbf{q}} \mathbf{k}}^{(d)}+\hat{d}_{\mathbf{k}}+O\left(q^{2}\right)
\end{aligned} \\
\begin{aligned}
f_{\mathbf{q}_{1} \mathbf{q}_{2} \mathbf{q}_{3}}^{(3)}= & r_{3}(2 \pi)^{6} \delta\left(\mathbf{q}_{1}\right) \delta\left(\mathbf{q}_{2}\right)+\left(\frac{2}{q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}\right)^{2}\left\{1+\sum_{i=1}^{3}\left[\frac{\sqrt{3}}{2} a q_{i}-\frac{4}{\sqrt{3} \pi} a^{2} q_{i}^{2} \ln \left(q_{i}|a|\right)\right]\right\} \\
& +\frac{2}{q_{1}^{2}+q_{2}^{2}+q_{3}^{2}} \sum_{i=1}^{3}\left[-4 \pi a r_{3}(2 \pi)^{3} \delta\left(\mathbf{q}_{i}\right)+\frac{32 \pi^{2} a^{2} r_{3}}{q_{i}^{2}}-\left(16 \pi^{2} w a^{3} r_{3}+\frac{a}{\sqrt{3}}\right) \frac{1}{q_{i}}\right. \\
& \left.+\left(-64 \pi w a^{4} r_{3}+\frac{2}{\sqrt{3} \pi} a^{2}\right) \ln \left(q_{i}|a|\right)\right] \\
& +u_{0} r_{3} \sum_{i=1}^{3}\left[(2 \pi)^{3} \delta\left(\mathbf{q}_{i}\right)-\frac{8 \pi a}{q_{i}^{2}}\right]+O\left(q^{-1}\right), \\
c_{1} \equiv[-8(\sqrt{3}- & \left.\left.\frac{\pi}{3}\right) w a^{4}-\frac{3}{2} \pi w a^{3} r_{s}\right] r_{3}+\left(\frac{1}{4 \pi^{2}}-\frac{1}{12 \sqrt{3} \pi}\right) a^{2}-\frac{3 \sqrt{3}}{32 \pi} a r_{s}
\end{aligned}
\end{aligned}
$$

Now place the 3 particles in a large cubic box, and impose the periodic boundary condition


Question: how does the energy scale with $L$ ?
My previous conjecture: $\quad E=-\frac{\#}{\left|r_{3}\right| L^{4}}+O\left(L^{-5}\right)$
But this turns out to be incorrect :(
And even the question itself is slightly incorrect!

Before solving the above problem, consider an analogous, but easier problem:
ONE body in 6 dimensions, at a resonance

$$
-\nabla^{2} \psi(\mathbf{r})+\int d^{6} r^{\prime} V\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right)=E \psi(\mathbf{r})
$$

$$
(2 m=\hbar=1)
$$

$V$ : rotationally invariant, and short-ranged
(vanishes outside a finite 6 d sphere around the origin)
Effective-range expansion for the $s$-wave phase shift $\delta$ :

$$
k^{4} \cot \delta=-\frac{1}{a}+\frac{1}{2} r_{s} k^{2}+\frac{2}{\pi} k^{4} \ln \left(k r_{s}^{\prime}\right)+O\left(k^{6}\right)
$$

$r_{-} s$ : effective range (dimension: $1 /$ length ${ }^{\wedge} 2$ )
$a= \pm \infty$ at resonance

ONE body in 6 dimensions at a resonance

$$
-\nabla^{2} \psi(\mathbf{r})+\int d^{6} r^{\prime} V\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right)=E \psi(\mathbf{r})
$$

s-wave special wave functions
In real space (outside the range of potential):

$$
\begin{aligned}
\phi(\mathbf{r}) & =\frac{1}{4 \pi^{3} r^{4}} \\
f(\mathbf{r}) & =\frac{r_{s}}{256 \pi^{2}}+\frac{1}{16 \pi^{3} r^{2}}
\end{aligned}
$$

In momentum space:

$$
\begin{aligned}
\phi_{\mathbf{k}} & =\frac{1}{k^{2}}+(\text { smooth function of } \mathbf{k}) \\
f_{\mathbf{k}} & =\frac{r_{s}}{256 \pi^{2}}(2 \pi)^{6} \delta(\mathbf{k})+\frac{1}{k^{4}}+(\text { smooth function of } \mathbf{k})
\end{aligned}
$$

ONE body in 6 dimensions at a resonance
Now impose the periodic boundary condition:

$$
\psi\left(x_{1}+L, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\cdots=\psi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)
$$

Result:

$$
E= \pm \frac{16 \pi}{\sqrt{\left|r_{s}\right|}} L^{-3}+\frac{32 \alpha_{1}}{r_{s}} L^{-4} \pm \frac{32\left(\alpha_{1}^{2}-4 \alpha_{2}\right)}{\pi\left|r_{s}\right|^{3 / 2}} L^{-5}+O\left(L^{-6}\right)
$$

There are TWO states with energies close to zero!
The energy of each state scales like $1 / L^{\wedge} 3$ at large $L$, rather than $1 / L^{\wedge} 4$ as I previously conjectured.

$$
\begin{aligned}
& \alpha_{1} \equiv \sum_{\mathbf{n} \neq 0}^{\prime} \frac{1}{n^{2}}=-3.37968478344314798726129011 \\
& \alpha_{2} \equiv \sum_{\mathbf{n} \neq 0} \frac{1}{n^{4}}=\pi \alpha_{1}
\end{aligned}
$$

ONE body in 6 dimensional box
When $V=0$, we know the energy-momentum eigenstates:

$$
E=\frac{(2 \pi|\mathbf{n}|)^{2}}{L^{2}} \quad \mathbf{p}=\frac{2 \pi \mathbf{n}}{L}
$$

Ground state: nondegenerate


But at resonance, there are TWO low energy states, with energies

$$
E_{-} \approx-\frac{16 \pi}{\sqrt{\left|r_{s}\right|}} L^{-3} \quad E_{+} \approx+\frac{16 \pi}{\sqrt{\left|r_{s}\right|}} L^{-3}
$$

So where does the positive energy state, $E_{+}$, come from?
Answer: it has evolved from the equal superposition of the 12 first excited states.
confirmed using a separable potential $V_{\mathbf{k k}^{\prime}}=-\eta e^{-\frac{k^{2}}{2}} e^{-\frac{k^{\prime 2}}{2}}$

Now return to the 3 particles in the 3 -dimensional box


Strategy: in the momentum space, expand the wave function and energy in powers of $\varepsilon \equiv 1 / \mathrm{L}$ :

$$
\begin{aligned}
\psi_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}} & =\mathcal{R}_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{(0)}+\mathcal{R}_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{(1)}+\mathcal{R}_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{(2)}+\cdots \\
\psi_{\mathbf{q},-\mathbf{q} / 2+\mathbf{k},-\mathbf{q} / 2-\mathbf{k}} & =\mathcal{S}_{\mathbf{k}}^{(0) \mathbf{q}}+\mathcal{S}_{\mathbf{k}}^{(1) \mathbf{q}}+\mathcal{S}_{\mathbf{k}}^{(2) \mathbf{q}}+\cdots \\
\psi_{\mathbf{q}_{1} \mathbf{q}_{2} \mathbf{q}_{3}} & =\mathcal{T}_{\mathbf{q}_{1} \mathbf{q}_{2} \mathbf{q}_{3}}^{(-3)}+\mathcal{T}_{\mathbf{q}_{1} \mathbf{q}_{2} \mathbf{q}_{3}}^{(-2)}+\mathcal{T}_{\mathbf{q}_{1} \mathbf{q}_{2} \mathbf{q}_{3}}^{((-1)}+\cdots \\
E & =E^{(3)}+E^{(4)}+E^{(5)} \cdots
\end{aligned}
$$

where q's are of order $\varepsilon$, and k's are independent of $\varepsilon$, and

$$
X^{(s)} \sim \varepsilon^{s}
$$

3 particles at a resonance in the 3-dimensional box


Solving the Schrödinger equation perturbatively in powers of $\varepsilon$, I find, eg,

$$
\mathcal{R}_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{(0)}=\phi_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{(3)}
$$

$$
\mathcal{R}_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{(3)}=E^{(3)} f_{\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}}^{(3)}+(\text { terms that are less singular at or }
$$

$$
\mathcal{T}_{\mathbf{q}_{1} \mathbf{q}_{2} \mathbf{q}_{3}}^{(-3)}=j \epsilon^{3}(2 \pi)^{6} \delta\left(\mathbf{q}_{1}\right) \delta\left(\mathbf{q}_{2}\right)
$$

$$
\mathcal{S}_{\mathbf{k}}^{(0) \mathbf{q}}=(2 \pi \epsilon)^{3} j \delta(\mathbf{q}) \phi_{\mathbf{k}}+d_{\mathbf{k}} \sum_{\mathbf{n}}(2 \pi \epsilon)^{3} \delta(\mathbf{q}-2 \pi \epsilon \mathbf{n})
$$

$$
\left(12 \pi a-E^{(3)} \epsilon^{-3}\right) j=1
$$

$$
j=E^{(3)} \epsilon^{-3} r_{3}
$$

3 particles at a resonance in the 3-dimensional box


Solving the equations

$$
\begin{gathered}
\left(12 \pi a-E^{(3)} \epsilon^{-3}\right) j=1 \\
j=E^{(3)} \epsilon^{-3} r_{3}
\end{gathered}
$$

we get TWO low energy states, with energies

$$
E=\frac{6 \pi a \pm \sqrt{(6 \pi a)^{2}+\frac{1}{\left|r_{3}\right|}}}{L^{3}}+O\left(L^{-4}\right)
$$

3 particles at a resonance in the 3-dimensional box

$$
\begin{aligned}
& E=\frac{6 \pi a \pm \sqrt{(6 \pi a)^{2}+\frac{1}{\left|r_{3}\right|}}}{L^{3}}+O\left(L^{-4}\right)
\end{aligned}
$$

If the two scattering length $a=0$,

$$
E \approx \pm \frac{1}{\sqrt{\left|r_{3}\right|} L^{3}}
$$

analogous to the one body at a resonance in 6 -dimensional box

3 particles at a resonance in the 3-dimensional box


$$
E=\frac{6 \pi a \pm \sqrt{(6 \pi a)^{2}+\frac{1}{\left|r_{3}\right|}}}{L^{3}}+O\left(L^{-4}\right)
$$

If the resonance is very narrow $\left(r_{3} \rightarrow-\infty\right)$,

$$
\begin{gathered}
E_{1} \approx \frac{12 \pi a}{L^{3}} \quad \begin{array}{l}
\text { (3-body state with an energy } \\
\text { mainly due to two-body interactions) }
\end{array} \\
E_{2} \approx-\frac{1}{12 \pi a\left|r_{3}\right| L^{3}} \quad \text { (another 3-body state) }
\end{gathered}
$$

## Other results

If the interaction is slightly more attractive than the critical interaction, so that $D$ is large and positive, there is a shallow three-body bound state with energy

$$
E \approx-\frac{1}{\left|r_{3}\right| D}
$$

But if the interaction is slightly less attractive than the critical interaction, so that $D$ is large and negative, there is a metastable three-body state with energy

$$
E \approx+\frac{1}{\left|r_{3} D\right|}-i(\text { small imaginary part })
$$

## Summary

- Determined the special three-body wave functions at a three-body resonance in powers of $1 /\{$ size of the system $\}$.
- Defined the three-body effective range in terms of the special wave functions
- Determined the low lying energy eigenstates in a large periodic volume. Found TWO such states.


## Future directions on this subject

- Three particles at a three-body resonance in a harmonic trap
- Definition of three-body effective range away from resonance
- More precise formula for the three-body bound state (or metastable state) energy slightly off resonance
- Three-body resonances in the presence of longrange Van der Waals potential
- Three-body resonances for identical fermions
- ...

