Neutron scattering study of iron based high T_c superconductors

赵俊 复旦大学物理系 2013年12月4日于清华高研

Outline

- □ Introduction of neutron scattering techniques
- Spin wave and magnetic exchange interactions in the parent compounds of iron based superconductors
- □ Spin excitations in iron based superconductors

□ Summary

中子的特点和强关联电子体系

世界各地主要中子源分布

IN22 triple axis spectrometer, ILL, France

Time of Flight Chopper Spectrometer, ISIS, U.K.

Discovery of Iron-based high T_c Superconductors

What are universal ? What are material dependent?

Antiferromagnetism & superconductivity

Parent compound: antiferromagnetic Insulators

Fe pnictides: antiferromagnetic Semi-metals

Antiferromagnetism is universal !

Spin waves in the parent compounds of Cuprates

Magnetic structures of Fe pnictide parent compounds

Anisotropic magnetic exchange interactions in CaFe₂As₂

C b a

J. Zhao et al., Nature Physics 5, 555 (2009)

磁相互作用各项异性理论解释

- 1. Orbital ordering
- 2. Nematic ordering

.

- 3. Biquadratic interactions
- 4. Fermi Surface nesting
- 5. Combination of local moments and itinerant electrons

Discovery of $K_{0.8}Fe_{1.7}Se_2(T_c = 32 \text{ K})$

Hall effect: Heavily electron doped

J. Guo et al., PRB 82 180520 (2010)

ARPES measurements on K_{0.8}Fe_{1.7}Se₂

Magnetic and crystal structures of semiconducting K_{0.85}Fe_{1.54}Se₂

J. Zhao et al., Phys. Rev. Lett. 109, 267003 (2012)

What about superconductors ?

Spin excitations in cuprate superconductors

Resonance is a universal feature in cuprates

□ Found in different classes of materials, both electron and hole-doped cuprates.

□ Intensity increases like an order parameter below T_c .

The energy of the mode scales with T_{c} .

J. Zhao et al., Phys. Rev. Lett. 99, 017001 (2007).

Neutron resonance in Fe pnictides

(Ba,K)Fe₂As₂ (*T_c*=38K)

 $BaFe_{1.9}Ni_{0.1}As_2 (T_c=20 \text{ K})$ (1,0,-1) 200 d Counts/20 min 150 100 -50 2 10 12 8 14 E (meV) E=7 meV (1,0,-1) 600 Counts/20 mins. 550 500 20 25 30 35 40 45 5 10 15 Temperature (K) S. Chi et al., Phys. Rev. Lett. 102, 107006 (2009).

Resonance is a universal feature for high T_c superconductors

J. Zhao et al., Phys. Rev. Lett. 99, 017001 (2007).

Theoretical model for resonance: collective spin-1 excitation

Field effect on the dynamic susceptibility

Isovalent Doping effect

21	22	23	24	25	26	27	28	29	30
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
39	40	41	42	43	44	45	46	47	48
Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
71	72	73	74	75	76	77	78	79	80
Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg
103	104	105	106	107	108	109	110	111	112
Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn

Phase diagrams of isovalent doped iron based superconductors

Damped resonance mode in Ba(Fe_{1-x}Ru_x)₂As₂

Effect of electron correlation on the resonance intensity

Summary

- The iron-based superconductors exhibit a similar phase diagram to those of the cuprates.
- □ In the parent compounds of iron-based superconductors, the Fe spin dynamics provide needed high energy scale (~200 meV) for the pairing.
- All parent compounds display a stripe AFM order with large in plane anisotropy of the exchange coupling constants; such stripe AFM order is driven by exchange interactions between local moments and does not necessarily only appear under Fermi surface nesting.
- Low energy spin excitations of iron-based superconductors are dominated by a resonance mode.
- □ No Zeeman splitting observed for the resonance mode.
- □ The resonance energy is proportional to the superconducting gap.
- Resonance is damped when electron correlations are weakened.
 Resonance may not be the only ingredient for pairing.

Acknowledgements

Fudan University

Yao Shen, Qisi Wang, Yiqing Hao, Yu Feng

UC Berkeley

Robert Birgeneau, Dung-Hai Lee Edith Bourret-Courchesne University of Tennessee & Oak Ridge National Laboratory Pengcheng Dai Group HFIR and SNS of ORNL Huibo Cao, D. L. Abernathy NIST Center for Neutron Research J. Lynn, Q. Huang , Y. Zhao, W. Ratcliff, Y. Chen, M. A. Green

ISIS, Rutherford-Appleton Lab U.K. D. T. Adroja, R. Bewley ILL, Grenoble, France L.P. Regnualt, P. Steffens, A. Hiess Purdue University & IOP Jiangping Hu, Daoxin Yao, Chen Fang **Renmin University** Zhongyi Lu, Miao Gao Institute of Physics, Chinese Academy of Sciences Z.X. Zhao, F, Zhou, Z. Li, N. L. Wang, G. F. Chen, J. L. Luo University of Science of Technology of China X. H. Chen, X. F. Wang, G. Wu