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Spontaneous symmetry breaking
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superfluid

Large t/U : system is a superfluid (Bose condensate). 
Small t/U : system is a Mott insulator (gap for charge fluctuations).

Bosons in an optical lattice
Bose-Hubbard model H = �t
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MI (n=1)

MI (n=2)

MI (n=3)

SF

Dynamics in the superfluid phase
Far from Mott, Gross-Pitaevskii action:

S =

Z
d3r
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Galilean invariant.   Goldstone mode, but no Higgs.

Near Mott at integer filling, particle-hole symmetry:

Emergent Lorentz invariance.  
Goldstone and Higgs mode.
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Varma (2002)
Huber, Theiler, Altman, Blatter (2008)



The Higgs decay

(Nepomnyaschii)2 (1978)
Sachdev (1999), Zwerger (2004)

d=3  Higgs decay rate is bounded by coupling strength

infrared
divergent!

� �

k k + p

p

d=2   self-energy diverges at low frequency,  even at weak coupling :
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The Higgs mode can decay into a pair of Goldstone bosons:
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infrared divergent in d=2

⇠ !�1

(Nepomnyaschii)2 (1978)
Sachdev (1999), Zwerger (2004)

⇠ !3

infrared regular in d=2
Podolsky, Auerbach and Arovas, PRB  (2011)

Different behavior of different response functions

scalar susceptibility
�scalar(!) = h|~�|2(!)|~�|2(�!)i

longitudinal susceptibility
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large N results
for g = 0.84 gc



Longitudinal versus scalar measurements

Scalar: couples to the magnitude of the order parameter

Example:  Lattice depth modulation of bosons

H
probe

= u
ext

|~�|2

Example : neutron scattering in an antiferromagnet.

Longitudinal: couples to order parameter as a vector

H
probe

= ~h
ext

· ~�



Why is the scalar response function sharper?

Radial motion is less damped,  since it is not effected by azimuthal meandering.
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|~�|2

large N results
for g = 0.84 gc



Higgs near criticality:
87Rb

M. Endres et al., Nature 487, 454 (2012)
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What happens near the quantum critical point?

Analytics for N=∞ 

Podolsky, Auerbach and Arovas, PRB  (2011)

L. Pollet and N. Prokof’ev, PRL (2012)

2

1/N prediction
MISSING SPECTRAL DENSITY

FIG. 1. Universal scaling predictions for scaler susceptibility
(solid lines). The dashed-dotted line depicts prediction of
Ref. [12] which is missing most of the spectral density at the
relevant energy scale � ⇥ (1� U/Uc)

� . The two alternatives
for connecting universal power laws are shown by dashed lines
(one may also imagine multiple peaks in the crossover region).

momentum at the generic, i.e., non-mean-field, QCP of
the 2D Bose-Hubbard model and how it disappears with
detuning to the SF phase. Equally important are ques-
tions regarding finite temperature e⇥ects and the role of
trapping potential in experiments with ultra-cold atoms.
A theoretical treatment of the Higgs amplitude mode is
notoriously di⌅cult and controversial. In Refs. [5, 7–9]
exact scaling laws in the low-frequency limit were estab-
lished, as well as arguments given that the mode is at the
edge of the two-phonon continuum, rendering the mode
overdamped. Huber et al. used a variational Ansatz
which, however, predicted a spurious first order SF-MI
transition, and thus was limited to the parameter regime
away from quantum criticality [10, 11]. Podolsky et al.
generalized field theoretical results of Ref. [7] to high fre-
quencies and discussed in detail the scalar response func-
tion within the 1/N and a weak coupling expansions.
They revealed a broad peak whose maximum saturates at
finite value at the QCP and concluded that close enough
to the transition, it becomes impossible to identify the
Higgs energy from the scalar response function. Their
findings are in quantitative and qualitative disagreement
with those reported here. The major problem with re-
sults of Ref. [12] is strong violation of the universal low-
frequency scaling law for scalar response function [5],
S(⇥) ⇥ �3�2/�F (⇥/�), where � ⇥ (1 � U/Uc)� is the
characteristic energy scale in proximity of the quantum
critical point at Uc, and � = 0.6717 is the correlation
length exponent, see Fig. 1. As a result, the theory is
missing most of the spectral density in the � < ⇥ < 4J
range. We refer to the supplementary material for a de-
tailed comparison [13].

In this Letter, we employ quantum Monte Carlo sim-
ulations of the 2D model (3) in the lattice path integral

representation using the worm algorithm [14–16] to study
the spectral density of the kinetic energy correlation func-
tion at zero momentum, in combination with an analytic
continuation method. We unambiguously demonstrate
the existence of a low-energy resonance peak associated
with the Higgs boson in close vicinity of the QCP by dis-
criminating it from the second broad peak at the typical
lattice-model energies. The Higgs boson energy, ⇥H, ob-
tained from the peak maximum increases with detuning
from QCP nearly identically to that of the particle-hole
gap �MI in the MI phase. We observe that the spectral
density associated with the Higgs boson broadens with
detuning and quickly overlaps with other higher energy
modes and is no longer seen as a resonance peak with
detuning as small at 20 % from QCP, in line with the
parameter regime where particle and hole masses were
found equal on the MI side [17]. On the other hand, we
find that the Higgs boson remains visible in the spec-
tral density at finite temperatures as high as Tc, and
even in the normal phase in close vicinity of QCP! More-
over, although at high temperature the resonance is no
longer visible in the spectral density, the onset of strong
response at low-frequency is barely modified. These re-
sults, as well as simulations of realistic trapped systems,
explain why the experimental protocol of extracting ⇥H

from the onset of strong response [18] works even in the
absence of low-frequency resonance.

0 5 10 15

0

0.02

0.04

0.06

0.08

0.1

0.12

H

FIG. 2. Spectral density S(�) of the kinetic energy corre-
lation function for U/J = 16 (thick solid line), 14 (dashed
line), and 12 (thin solid line) at low temperature T/J = 0.1.
The Higgs amplitude mode (�H) emerges as an isolated, well-
defined peak on approach to the quantum critical point at
Uc = 16.7424.

A small uniform modulation of the optical lattice
depth [19] leads, under mapping to the Bose-Hubbard
model (3), to the perturbation proportional to the total

Numerics on Bose-Hubbard model



Scaling near criticality

Podolsky and Sachdev, PRB (2012)

critical gap: � ⇠ |g � gc|⌫ ⌫ = 0.6717(1) (N = 2)

universal function
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Lattice model:

Monte Carlo Simulations

Worm algorithm:

Dual loop model 
with N flavors:

x

y

⌧

System size: 1 ⌧ ⇠ ⌧ L (1 ⌧ 30 ⌧ 200)
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Numerical analytical continuation from Matsubara to real frequencies



Tracking the Higgs peak

|�g|

12%

0.25%
= 48

mH ⇠ B|�g|⌫

Scalar susceptibility in ordered phase: 



Numerical simulations  

Gazit, Podolsky, Auerbach PRL (2013),  Gazit, Podolsky, Auerbach, Arovas arXiv:1309.1765

Conclusion: Higgs resonance survives close to criticality in d=2 
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Optical conductivity
Higgs peak can be seen in optical conductivity of charged bosons 

Lindner and Auerbach, PRB (2010)

Spectroscopy for Cold Atom Gases in Periodically Phase-Modulated Optical Lattices

Akiyuki Tokuno and Thierry Giamarchi
DPMC-MaNEP, University of Geneva, 24 Quai Ernest-Ansermet CH-1211 Geneva, Switzerland
(Received 20 January 2011; revised manuscript received 4 April 2011; published 20 May 2011)

The response of cold atom gases to small periodic phase modulation of an optical lattice is discussed.

For bosonic gases, the energy absorption rate is given, within linear response theory, by the imaginary part

of the current autocorrelation function. For fermionic gases in a strong lattice potential, the same

correlation function can be probed via the production rate of double occupancy. The phase modulation

gives thus direct access to the conductivity of the system, as a function of the modulation frequency. We

give an example of application in the case of bosonic systems at zero temperature and discuss the link

between the phase and amplitude modulation.

DOI: 10.1103/PhysRevLett.106.205301 PACS numbers: 67.85.!d, 03.75.Ss, 05.30.Fk, 05.30.Jp

Cold atomic systems have proven to be remarkable labo-
ratories to study several effects of strongly correlated sys-
tems. In particular, the control of parameters, kinetic energy
in an optical lattice, and interaction using a Feshbach
resonance, allows us to potentially use them as quantum
simulators, with considerable success both for pure and
disordered systems [1,2]. However, in addition to realizing
the systems, the ability to probe it is important. Because of
the electrical charge neutrality of cold atoms, unlike elec-
tron systems, they are insensitive to the usual electromag-
netic probes. This makes it potentially difficult to probe
correlations in such systems. To overcome this issue, sev-
eral probes have been proposed besides the standard time of
flight (TOF) experiment such as Bragg spectroscopy [3–6]
to measure the dynamic structure factor, radio frequency
spectroscopy measurement [7,8] to count the number of
molecules formed by the Feshbach resonance, shot noise
measurement [9–12] for the density-density correlation
function, or momentum-resolved Raman spectroscopy
[12,13] for the single-body spectrum function.

Among the various spectroscopic probes a particularly
simple probe consists in changing periodically the ampli-
tude of the optical lattice [14,15]. The energy absorbed by
such a modulation can be estimated from the TOF image.
The corresponding theory of the energy absorption rate
(EAR) spectrum [16,17], was shown to give access both
to the Mott-insulating (MI) gap and to the kinetic-energy
correlations in the system. Althoughmeasuring the EAR by
the TOF was possible for bosons, a similar measure was
highly inconvenient for fermions. It was proposed [18] that
a measurement of the doublon production rate (DPR) in
response to the amplitude modulation would give access to
the same information. Such a measure was successfully
implemented for fermionic systems [19–22]. The ampli-
tude modulation of the optical lattice coupled either to EAR
or to DPR is thus a simple but powerful and versatile probe.

In this Letter we propose an alternative probe, based on a
phase modulation of an optical lattice potential. Such a
modulation is known to lead to a current [23–26] or to band

narrowing [27,28]. Here we use the phase modulation in
connection with EAR or DPR techniques, to analyze the
spectrum of the system. We show that such a probe gives
access to the current autocorrelation function and is thus
analogous to optical conductivity measurements in con-
densed matter systems, allowing a very close comparison
at the experimental level between the two domains. We
illustrate the use of such a probe by some examples for
bosonic gases and compare with the spectrum obtained by
the amplitude modulation spectroscopy.
Let us first describe our proposed probe: The optical

lattice potential is created by shining laser against a mirror.
If the mirror is stationary, the created D-dimensional opti-
cal lattice is given as VopðrÞ ¼ V0

PD
!¼1 cos

2ðQ!r!Þwhere
Q ¼ ðQ1; % % % ; QDÞ is a wave vector of the optical lattice.
One can modulate the phase by oscillating the mirror as
shown in Fig. 1. The lattice potential in the laboratory
frame is modified as Vopðr; tÞ ¼

PD
!¼1 V0cos

2½Q!ðr! !
F!ðtÞÞ' where FðtÞ represents the oscillation of the phase.
It is convenient to switch to the comoving frame by the
gauge transform UðtÞ ¼ expðiMFðtÞ % J=@Þ where M is a
mass of the atoms and J the current operator [29]. In the
comoving frame, the lattice becomes a stationary one,
VopðrÞ, and an additional term, which reflects the inertial
force, emerges in the Hamiltonian:

FIG. 1 (color online). A schematic showing the setup of the
periodic phase modulation of an optical lattice. The incident
laser and the reflected one forms the standing wave correspond-
ing to an optical lattice. The lattice potential follows mirror
oscillation, and, consequently, the phase is modulated.

PRL 106, 205301 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
20 MAY 2011

0031-9007=11=106(20)=205301(4) 205301-1 ! 2011 American Physical Society

Can be measured in cold atoms in a phase-fluctuating optical lattice:

/ �(!)For                                 the energy absorption rate is F (t) = F0 cos(!t)

Tokuno and Giamarchi, PRL (2011)
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In contrast to the disordered phase, there is a sub-gap
component to the conductivity, owing to the gaplessness
of the Goldstone mode(s). This feature is first evident
at two loop order in a perturbative calculation of the
conductivity. This was computed in Ref. 4, where it was
found that the corresponding sub-threshold (! < mH)
contribution to �(!) is
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+ O(g2) .

(21)

Remarkably, for N = 2, the two leading order frequency
terms in the sub-threshold conductivity vanish, result-
ing in a pronounced pseudogap behavior. Our numerical
results appear to be qualitatively consistent with this an-
alytic prediction. However, the coe�cient of the leading
!5 term is small, given by 3.2 ⇥ 10�5 g/m4

H , and is not
calculable within our numerical resolution.

For comparison, the analytic curves corresponding to
Eqs. (19) and (20) are plotted in Fig. 10. The value of
mH was taken from the scalar susceptibility analysis10

and � from the gap analysis. There is a remarkable
agreement between the analytic and numerical curves es-
pecially for low frequencies. This result is surprising since
the analytic results are based on a weak coupling expan-
sion valid far from the critical point. It is important to
notice that analytic curves are presented without any fit-
ting parameters (after setting mH and �). We could not
estimate the sub-gap weight as it was beyond the resolu-
tion of our analysis.

On general grounds, one expects the high frequency
(! � �) limit of the universal conductivity functions to
be equal on both ordered and disordered phases. Here we
find slightly di↵erent values, �

dis

(! � �) ⇡ 0.35(5) �Q

and �
ord

(! � �) ⇡ 0.25(5) �Q, although there is sig-
nificant spread which we attribute to limitations of the
analytic continuation. This high frequency value should
also match the universal conductivity in the quantum
critical regime at high frequencies (� = 0 and ! � T ).
Taking an average over both results, we estimate �⇤

c (! �
T ) ⇡ 0.3(1) �Q. This value should be compared with the
value �⇤

c = 0.39 �Q obtained in Ref. 23.

6.1. Charge-vortex duality of the dynamical
conductivity

The model in Eq. (1) with N = 2 describes relativis-
tic bosons in 2+1 dimensions. This system has a dual
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FIG. 10: The optical conductivity, Re�(!) on the ordered
and disordered phases. Curves are scaled by according to
Eq. (9) for several values of the quantum tuning parameter
�g near the critical point. The solid black curves show the
analytic results from Refs. 4 and 23

representation in terms of vortices33. Interestingly, the
conductivity of the bosons is inversely proportional to
the conductivity of the vortices34, such that:

�B(!) =
�2

Q

�V(!)
(22)

Here �B = � is the physical conductivity of the bosons,
and �V is the vortex conductivity in response to a dual
electric field, that is, a current of bosons. This relation
is a direct consequence of the duality transformation and
is therefore exact.

In the dual picture, the vortices interact with an in-
verse coupling constant. This fact can be used to relate
physical properties on opposite sides of the transition.
This mapping is not exact due to the di↵erent interac-
tion laws of bosons and vortices – the bosons have con-
tact interactions whereas the vortices have long-ranged
interactions. This discrepancy prevents us from deriving
exact results from the duality relation, yet it can be used
to construct approximate or qualitative results. This re-
lation was used in previous studies to estimate the DC
conductivity at the critical point where the vortices and
bosons are self-dual, hence �B = �V = �Q. This simple
argument, although not exact, gives the correct order of
magnitude for the DC conductivity at the QCP.

Here we ask whether this approach can be extended to
the dynamical conductivity. Duality maps the conduc-
tance of symmetric points on both side of the transition,

�B(!, ��g) = �V(!, �g). (23)

This, combined with Eq. (22) yields a relation between
the optical conductivities on both sides of the transition

�B(!, ��g) =
�2

Q

�B(!, �g)
(24)

Superfluid  Mott          

Higgs mass

Optical conductivity

Universal high
frequency

conductivity
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In contrast to the disordered phase, there is a sub-gap
component to the conductivity, owing to the gaplessness
of the Goldstone mode(s). This feature is first evident
at two loop order in a perturbative calculation of the
conductivity. This was computed in Ref. 4, where it was
found that the corresponding sub-threshold (! < mH)
contribution to �(!) is
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Remarkably, for N = 2, the two leading order frequency
terms in the sub-threshold conductivity vanish, result-
ing in a pronounced pseudogap behavior. Our numerical
results appear to be qualitatively consistent with this an-
alytic prediction. However, the coe�cient of the leading
!5 term is small, given by 3.2 ⇥ 10�5 g/m4

H , and is not
calculable within our numerical resolution.

For comparison, the analytic curves corresponding to
Eqs. (19) and (20) are plotted in Fig. 10. The value of
mH was taken from the scalar susceptibility analysis10

and � from the gap analysis. There is a remarkable
agreement between the analytic and numerical curves es-
pecially for low frequencies. This result is surprising since
the analytic results are based on a weak coupling expan-
sion valid far from the critical point. It is important to
notice that analytic curves are presented without any fit-
ting parameters (after setting mH and �). We could not
estimate the sub-gap weight as it was beyond the resolu-
tion of our analysis.

On general grounds, one expects the high frequency
(! � �) limit of the universal conductivity functions to
be equal on both ordered and disordered phases. Here we
find slightly di↵erent values, �

dis

(! � �) ⇡ 0.35(5) �Q

and �
ord

(! � �) ⇡ 0.25(5) �Q, although there is sig-
nificant spread which we attribute to limitations of the
analytic continuation. This high frequency value should
also match the universal conductivity in the quantum
critical regime at high frequencies (� = 0 and ! � T ).
Taking an average over both results, we estimate �⇤

c (! �
T ) ⇡ 0.3(1) �Q. This value should be compared with the
value �⇤

c = 0.39 �Q obtained in Ref. 23.

6.1. Charge-vortex duality of the dynamical
conductivity

The model in Eq. (1) with N = 2 describes relativis-
tic bosons in 2+1 dimensions. This system has a dual
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FIG. 10: The optical conductivity, Re�(!) on the ordered
and disordered phases. Curves are scaled by according to
Eq. (9) for several values of the quantum tuning parameter
�g near the critical point. The solid black curves show the
analytic results from Refs. 4 and 23

representation in terms of vortices33. Interestingly, the
conductivity of the bosons is inversely proportional to
the conductivity of the vortices34, such that:

�B(!) =
�2

Q

�V(!)
(22)

Here �B = � is the physical conductivity of the bosons,
and �V is the vortex conductivity in response to a dual
electric field, that is, a current of bosons. This relation
is a direct consequence of the duality transformation and
is therefore exact.

In the dual picture, the vortices interact with an in-
verse coupling constant. This fact can be used to relate
physical properties on opposite sides of the transition.
This mapping is not exact due to the di↵erent interac-
tion laws of bosons and vortices – the bosons have con-
tact interactions whereas the vortices have long-ranged
interactions. This discrepancy prevents us from deriving
exact results from the duality relation, yet it can be used
to construct approximate or qualitative results. This re-
lation was used in previous studies to estimate the DC
conductivity at the critical point where the vortices and
bosons are self-dual, hence �B = �V = �Q. This simple
argument, although not exact, gives the correct order of
magnitude for the DC conductivity at the QCP.

Here we ask whether this approach can be extended to
the dynamical conductivity. Duality maps the conduc-
tance of symmetric points on both side of the transition,

�B(!, ��g) = �V(!, �g). (23)

This, combined with Eq. (22) yields a relation between
the optical conductivities on both sides of the transition

�B(!, ��g) =
�2

Q

�B(!, �g)
(24)

Superfluid Mott
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Light can induce topological behavior
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Floquet Theorem

Time-periodic Hamiltonian

Solutions to Schrödinger equation:

“Floquet Hamiltonian”

H(t) = H(t+ ⌧)
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Two-level problem (NMR)

Rotating wave approximation

NMR

H(t) = �
z

�/2 + �
x

B cos(⌦t)

�

p
(�� ⌦)2 +B2H

F

⇡ �
z

(�� ⌦)/2 + �
x

B/2

⌦
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FIG. 4. Quasi-energy spectrum of the Floquet equation (3) of
the Hamiltonian (17), in the strip geometry: periodic bound-
ary conditions in the x direction, and vanishing ones in the
y direction. The driving field was taken to be in the ẑ di-
rection. The horizontal axis labels the momentum k

x

. The
vertical axis labels the quasi-energies in units of |M |. Two
linearly dispersing chiral edge modes traverse the gap in the
quasi-energy spectrum. The parameters used are ! = 2.3|M |,
|V| = A = |B| = 0.2|M |. The inset shows the dispersion of
the original Hamiltonian (17), for the same parameters.

The quasi-energies of the bottom and top band represent
modes which are extended spatially, while for each value
of k

x

there are two modes which are localized in the y
direction.

As is evident from Fig. 4, the quasi-energies of these
modes disperse linearly, "(k

x

) / k
x

, hence they are
propagating with a fixed velocity. Consider a wave
packet which is initially described by f0(kx). From
equation (3) we see that it will evolve into  (t) =R
dk

x

ei"(kx

)tf0(kx)�e

k

x

(y, t), where �e

k

x

denotes the quasi
energy edge states with momentum k

x

. Clearly, this will
give a velocity of hẋi = R

dk
x

|f(k
x

)|2 @✏

@k

x

.
In general, the solutions �

",k

x

(t) are time-dependent.
An important finding is that the density edge modes are
only very weakly dependent on time. This can be seen
in Fig. 5, in which we plot the time dependence of the
density profile of these modes.

EXPERIMENTAL REALIZATION OF THE FTI

To experimentally realize the proposed state, we
need identify a proper time-dependent interaction in the
HgTe/CdTe wells. Below we consider several options,
of which the most promising one uses a periodic electric

FIG. 5. Density of edge mode as function of time, |�(y, t)|2,
(a) for k

x

= 0, and (b) for k
x

= 0.84, where the edge modes
meet the bulk states. The horizontal axis display the distance
from the edge, y, in units of the lattice constant, and the time
in units of 2⇡/!. Only the density for the 20 lattice sites
closest to the edge are shown for clarity.

field, and the strong linear Stark e↵ect that arises due to
the unique band structure.

Magnetic field realization – Perhaps the simplest real-
ization of a time dependent perturbation of the form (9)
is by a microwave-THz oscillating magnetic field, polar-
ized in the z direction. The e↵ect of Zeeman energies
in thin Hg/CdTe quantum wells can be evaluated by re-
calling that the e↵ective model (4) includes states with
m

J

= ±(1/2, 3/2) in the upper and lower block respec-
tively. This would result in an e↵ective Zeeman splitting
between the two states in each block [23]. The value
for the g-factor for HgTe semiconductor quantum wells
was measured to be g ⇡ 20 [24]. Therefore, a gap in
the quasienergy spectrum on the order of 0.1K can be
achieved using magnetic fields of 10mT. Bigger gaps may
be achieved by using Se instead of Te, as its g-factor is
roughly twice as large [25].

As can be seen by inspecting Eq. (12), the Chern
numbers CF for each block in this realization depend only
on the winding of the vector d̂(k). Therefore, the two
blocks will exhibit opposite CF , resulting in two counter -
propagating helical edge modes. As we explain in the
next section, the counter-propagating edge modes cannot
couple to open a gap in the quasi-energy spectrum, even
though a magnetic field is odd under time reversal.

Stress Modulation – Stress modulation of the quan-
tum wells using piezo-electric materials, would lead to
modulation of the parameter M in (5), and leads to two
counter propagating edge states.

Electric field realization – An in-plane electric field is
perhaps the most promising route to the FTI, can pro-
duce large gaps in the quasi-energy spectrum (compared
the Zeeman case), and leads to robust co-propagating
edge modes. The electric field is given by

Ě = Re(E · exp i!t)irk. (18)

Add time-dependent perturbation

Hk = ~dk · ~�
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the Hamiltonian (17), in the strip geometry: periodic bound-
ary conditions in the x direction, and vanishing ones in the
y direction. The driving field was taken to be in the ẑ di-
rection. The horizontal axis labels the momentum k

x

. The
vertical axis labels the quasi-energies in units of |M |. Two
linearly dispersing chiral edge modes traverse the gap in the
quasi-energy spectrum. The parameters used are ! = 2.3|M |,
|V| = A = |B| = 0.2|M |. The inset shows the dispersion of
the original Hamiltonian (17), for the same parameters.
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there are two modes which are localized in the y
direction.
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An important finding is that the density edge modes are
only very weakly dependent on time. This can be seen
in Fig. 5, in which we plot the time dependence of the
density profile of these modes.

EXPERIMENTAL REALIZATION OF THE FTI

To experimentally realize the proposed state, we
need identify a proper time-dependent interaction in the
HgTe/CdTe wells. Below we consider several options,
of which the most promising one uses a periodic electric

FIG. 5. Density of edge mode as function of time, |�(y, t)|2,
(a) for k

x

= 0, and (b) for k
x

= 0.84, where the edge modes
meet the bulk states. The horizontal axis display the distance
from the edge, y, in units of the lattice constant, and the time
in units of 2⇡/!. Only the density for the 20 lattice sites
closest to the edge are shown for clarity.

field, and the strong linear Stark e↵ect that arises due to
the unique band structure.

Magnetic field realization – Perhaps the simplest real-
ization of a time dependent perturbation of the form (9)
is by a microwave-THz oscillating magnetic field, polar-
ized in the z direction. The e↵ect of Zeeman energies
in thin Hg/CdTe quantum wells can be evaluated by re-
calling that the e↵ective model (4) includes states with
m

J

= ±(1/2, 3/2) in the upper and lower block respec-
tively. This would result in an e↵ective Zeeman splitting
between the two states in each block [23]. The value
for the g-factor for HgTe semiconductor quantum wells
was measured to be g ⇡ 20 [24]. Therefore, a gap in
the quasienergy spectrum on the order of 0.1K can be
achieved using magnetic fields of 10mT. Bigger gaps may
be achieved by using Se instead of Te, as its g-factor is
roughly twice as large [25].

As can be seen by inspecting Eq. (12), the Chern
numbers CF for each block in this realization depend only
on the winding of the vector d̂(k). Therefore, the two
blocks will exhibit opposite CF , resulting in two counter -
propagating helical edge modes. As we explain in the
next section, the counter-propagating edge modes cannot
couple to open a gap in the quasi-energy spectrum, even
though a magnetic field is odd under time reversal.

Stress Modulation – Stress modulation of the quan-
tum wells using piezo-electric materials, would lead to
modulation of the parameter M in (5), and leads to two
counter propagating edge states.

Electric field realization – An in-plane electric field is
perhaps the most promising route to the FTI, can pro-
duce large gaps in the quasi-energy spectrum (compared
the Zeeman case), and leads to robust co-propagating
edge modes. The electric field is given by

Ě = Re(E · exp i!t)irk. (18)

6

with PP∗ = ±1. Any Bogoliubov-de Gennes Hamilto-
nian describing the dynamics of superconducting quasi-
particles possesses this symmetry (with PP∗ = 1), even
if a time-dependent perturbation is added.
Many results from the study of topological properties

in static systems can be directly translated to period-
ically driven systems, with the understanding that the
topologically-protected phenomena apply to the behav-
iors of Floquet states. For example, the edge of a static
two dimensional system characterized by a non-zero
Chern number is known to host chiral edge states. In Sec-
tion V, we study dynamics in a driven two-dimensional
tight-binding system, and show that driving can induce
non-zero Chern numbers in the bands of the effective
Hamiltonian. The edge of such a system hosts chiral Flo-
quet edge states which propagate unidirectionally when
viewed at integer periods of the driving. Analogously, the
edge of a system with a time-reversal-invariant effective
Hamiltonian can host helical Floquet edge states26.

V. DYNAMICALLY-INDUCED TOPOLOGICAL
PHASES IN A HEXAGONAL LATTICE

In this section, we study single-particle dynamics in a
two dimensional hexagonal lattice tight-binding model,
where the hopping amplitudes are varied in a spatially
uniform, but time-dependent, cyclic fashion. Here we
choose the hexagonal lattice but expect that similar
physics can be realized in other lattices as well. In differ-
ent parameter regimes, the system can support topologi-
cal phases of either the Floquet operator homotopy type,
or of the effective Hamiltonian type. For weak driving,
there is no winding of the quasi-energy bands (ν1 = 0),
but the driving induces non-zero first Chern numbers in
the two bands of the effective Hamiltonian. For larger
driving amplitudes, the Chern numbers associated with
each of the two bands become zero. While the bulk topol-
ogy given by the Chern number is trivial, the invariant
ν1 becomes non-zero in a system with edges.
We start from a tight-binding model Hamiltonian on a

hexagonal lattice:

H =
∑

k

(

c†
k,A c†

k,B

)

H(k)

(

ck,A
ck,B

)

(9)

H(k) = −
∑

i

Ji(t) (cos(bi · k)σx + sin(bi · k)σy) ,

where A and B label the two sublattices of the hexag-
onal lattice, {Ji} are the hopping amplitudes from B
sites to the neighboring A sites in the three directions
i = 1, 2, 3 (see Fig. 3), and {bi} are the vectors given
by b1 = (−1/2,

√
3/2), b2 = (−1/2,−

√
3/2) and b3 =

(1, 0). Here c†
k,α is the creation operator for a Bloch state

with crystal momentum k on sublattice α = A,B. Ex-
pressed in terms of local (site-specific) creation operators
{c†xi,α}, we have c†

k,α = 1√
N

∑

xi
c†xi,αe

ik·xi , where N is

the number of unit cells in the system. Here and in the

J1

J1

J2

J3
AB

J3

J2

J2 J1

FIG. 3: Hexagonal lattice structure. Sublattice A is marked
with filled circles and sublattice B is marked with open circles.
Ji for i = 1, 2, 3 represent the hopping amplitudes between the
sites.

nT< t <nT+T/3

nT+T/3< t <nT+2T/3 nT+2T/3< t <(n+1)T

λJ

JJ

λJ

J
J λJ

J

J

FIG. 4: Driving cycle considered in the text, in which the
hopping amplitudes {Ji} are varied in a cyclic fashion. Here
we consider only λ ≥ 1, where the hopping amplitude along
one of the three bond types is uniformly increased relative to
the other two during each stage of the cycle.

following, the distance between any site and its nearest
neighboring sites in the hexagonal lattice is taken to be
1.
We consider a driving protocol where the hopping am-

plitudes {Ji(t)} are modulated cyclically in time accord-
ing to (see Fig.4):

1. J1 = λJ ; J2, J3 = J for nT < t ≤ nT + T/3

2. J2 = λJ ; J1, J3 = J for nT +T/3 < t ≤ nT +2T/3

3. J3 = λJ ; J1, J2 = J for nT + 2T/3 < t ≤ nT + T .

In the following, we consider the cases λ ≥ 1. Notice

Kitagawa, Berg, Rudner, Demler, PRB 2010
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Floquet Spectrum and Transport Through an Irradiated Graphene Ribbon
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Graphene subject to a spatially uniform, circularly-polarized electric field supports a Floquet
spectrum with properties akin to those of a topological insulator, including non-vanishing Chern
numbers associated with bulk bands and current-carrying edge states. Transport properties of this
system however are complicated by the non-equilibrium occupations of the Floquet states. We
address this by considering transport in a two-terminal ribbon geometry for which the leads have
well-defined chemical potentials, with an irradiated central scattering region. We demonstrate the
presence of edge states, which for infinite mass boundary conditions may be associated with only
one of the two valleys. At low frequencies, the bulk DC conductivity near zero energy is shown to be
dominated by a series of states with very narrow anticrossings, leading to super-diffusive behavior.
For very long ribbons, a ballistic regime emerges in which edge state transport dominates.

PACS numbers: 72.80.Vp,73.23.-b,73.22.Pr

Introduction and Key Results – The electronic proper-
ties of graphene are very unusual among two-dimensional
conducting systems, in large part because the low energy
physics is controlled by two Dirac points, which form the
Fermi surface of the system when undoped [1–3]. One of
the very interesting possibilities for this system is that,
with spin-orbit coupling, it may represent the simplest
example of a topological insulator [4–6]. Topological
insulators are systems for which the bulk spectrum is
gapped, but which support robust, gapless edge states.
Unfortunately, spin-orbit coupling in graphene appears
to be too weak to allow observation of this behavior with
currently available samples.

Very recently, theoretical studies have suggested that
an analog of topological insulating behavior can be in-
duced in graphene by a time-dependent electric poten-
tial [7–12]. The proposal entails exposing graphene to
circularly-polarized electromagnetic radiation of wave-
length much larger than the physical sample size, such
that only the electric field has significant coupling to the
electron degrees of freedom. The periodic nature of the
field necessitates that the quantum states of the elec-
trons are solutions of a Floquet problem, characterized
by a “quasi-energy” εα with allowed values in the inter-
val [−ω/2,ω/2], where ω is the frequency of the radiation
[13]. This same physics allows one to induce topological-
insulating properties in a variety of systems that are oth-
erwise only “almost” topological insulators [8]. Because
time-reversal symmetry is explicitly broken in this sys-
tem, it should support a Hall effect [7] which, when mea-
sured in an appropriate geometry, may be quantized [11].

A key challenge one faces in determining transport
properties of this system is the assignment of electron
occupations to the Floquet states. In general, the
quasienergies εα cannot be simply inserted as energies
in a Fermi-Dirac distribution since they are limited to a
finite interval of real values, determined by the frequency.
In this study, we assume Fermi-Dirac distributions only

FIG. 1: (Color online) Schematic diagram of device geome-
try.

for the incoming waves far in the non-irradiated leads.
Thus we assume that electrons are injected and removed
from the system via highly doped, ideal leads in which
any possible effects of an electric field have been screened
out, and that the transport within the (finite) irradiated
region is quantum coherent. Our geometry is a direct
analog of one studied in Ref. 14 for the time-independent
case, and is illustrated in Fig. 1. Identical leads are taken
to be made of highly doped graphene. This leads to a
vanishing time-averaged current in the absence of a DC
bias, which avoids photovoltaic (charge pumping) effects.

For an infinite ribbon geometry, the momentum kx
along the ribbon axis is a good quantum number, and
one may compute an effective band structure for the Flo-
quet eigenvalue εα. Fig. 2 illustrates this for several
cases. Fig. 2(a) displays the bands closest to ε = 0
for a relatively large frequency, !ω = 3t where t is the
tight-binding hopping parameter. This result is illustra-
tive for its relative simplicity, but is only relevant to very
small system sizes for which the electric field may be ap-
proximated as uniform throughout the sample [11]. One
may see two sets of minima/maxima, corresponding to

Gu, Fertig, Arovas, Auerbach, PRL 2011

 
 
Fig. 1: Geometry and band structure of honeycomb photonic Floquet topological 
insulator lattice.  (a) Input facet of photonic lattice, honeycomb geometry with “zig-zag” 
edge terminations on the top and bottom, and “armchair” terminations on the left and 
right sides.  (b) Schematic diagram of the helical waveguides.  The waveguides are 
helical with their rotation axis in the z-direction, with radius R and pitch Z.   (c) Spatial 
band structure (β vs. (kx,ky)) for the case of non-helical waveguides comprising a 
honeycomb lattice (R=0). Note the band crossings at the Dirac point. (d) Spatial bulk 
band structure for the photonic topological insulator: helical waveguides with R=8µm 
arranged in a honeycomb lattice.  Note the band gap opening up at the Dirac points 
(labeled with the red, double-sided arrow), which corresponds to the band gap in a 
Floquet topological insulator.     
 
  

 
 
Fig. 5:  
Experiments and simulations showing topological protection in the presence of a 
defect. The lattice is triangularly-shaped, and the waveguides are helically spinning with 
R=8µm. (a) Microscope image of photonic lattice with missing waveguide (acting as a 
defect) on the right-most zig-zag edge. A light beam of λ=633nm is launched into the 
single waveguide at the upper-right corner (surrounded by a yellow circle). (b) 
Experimental image of light emerging from the output facet after z=10cm of propagation, 
showing no backscattering despite the presence of the defect (a signature of topological 
protection). (c)-(h) Numerical simulation of light propagation through the lattice at 
various propagation distances (z=0cm, 2cm, 4cm, 6cm, 8cm and 10cm, respectively).  
After minimal bulk scattering, the light propagates along the edge, encounters the defect, 
propagates around it, and continues past it without scattering, in agreement with (b).            
 
 
 

3

FIG. 1. Energy dispersion ✏(k) and pseudospin configuration
�d̂(k) for the original bands of Ȟ(k) in the non topological
phase (M/B < 0). The non-topological phase is characterized
by a spin-texture which does not wrap around the unit sphere.
Upon application of a periodic modulation of frequency !
bigger than the band gap, a resonance appears; the green
circles and arrow depict the resonance condition.

of M and B. Within the approximation of Eq. (8), far
away from the � point, d(k) must point south (in the
negative z direction). At the � point, d(k) is point-
ing north for M > 0, but south for M < 0. For the
simplified band structure, the Chern numbers are clearly
C± = ± [1 + sign(M/B)] /2. For a generic band struc-
ture corresponding to Eq. (8) near the �-point, the same
logic applies, and we can easily see that a change of sign
in M induces a change of the Chern number, C, by 1.

We now show that a similar non-trivial topological
structure can be induced in such quantum wells, start-
ing with the non-topological phase, via periodic modu-
lation of the Hamiltonian, which allows transitions be-
tween same-momentum states with energy di↵erence of
~!. This creates a circle in the FBZ where transitions be-
tween the valence and conduction band are at resonance
(see Fig. 1). We intend to use the modulation to reshu✏e
the spectrum such that the resulting valence band con-
sists of two parts: the original valence band outside the
resonance circle drawn in Fig. 1, and the original conduc-
tion band inside the resonance circle, near the � point.
From Fig. 1, we see that this indeed leads to the desired
structure, with the reshu✏ed pseudospin configuration
pointing south near the � point and north at large k-
values (for M < 0). On the resonance circle, we expect
an avoided crossing separating the reshu✏ed lower band
from the upper band.

FLOQUET TOPOLOGICAL INSULATOR IN A
NON-EQUILIBRIUM (Cd,Hg)Te

HETEROSTRUCTURE

Let us next consider the Floquet problem in a
Zincblende spectrum in detail. We add a time depen-
dent field to the Hamiltonian (5)

V̌ (t) = V · �̌ cos(!t), (9)

where V is a three-dimensional vector, which has to be
carefully chosen to obtain the desired result. It is con-
venient to transform the bare Hamiltonian to a “rotat-
ing frame of reference” such that the bottom band is
shifted by ~!. This is achieved using the unitary trans-
formation Ǔ(k, t) = P̌+(k) + P̌�(k)ei!t, where P̌±(k) =
1
2

h
I ± d̂(k) · �̌

i
are projectors on the of upper and lower

bands ofH(k). This results in the following Hamiltonian:

Ȟ
I

(t) = P̌+(k)✏+(k) + P̌�(k) [✏�(k) + !] + Ǔ V̌ (t)Ǔ†,
(10)

where ✏±(k) are the energies corresponding to P̌±(k). In
the “rotating” picture, the two bands cross if ! is larger
then the gap M . The second term in the right-hand-side
of Eq. (10) is the driving term, which directly couples the
bands and has a time-independent component.

The solution of H
I

can also be given in terms of a
spinor pointing along a unit vector, n̂k, which will play
the same role as d̂(k) for the stationary Ȟ(k). n̂k will
encode the topological properties of the FTI.

H
I

is solved by the eigenstates | ±
I

(k)i, which for the
values of momenta, k, away from the resonance ring are
only weakly modified compared to the equilibrium, V =
0, case. We define the vector n̂k = h �

I

(k)|�̌| �
I

(k)i,
which characterizes the pseudospin configuration in the
lower (�) band of H

I

. The vector n̂k is plotted in Fig. 2
for M/B < 0. Indeed, near the � point we see that
n̂k points towards the south pole, and for larger values
of k, the band consists of the original lower band, and
therefore n̂k points towards the northern hemisphere for
these k values. These two regimes are separated by the
resonance ring, denoted by �, for which ! = e+(k) �
e�(k) (the green curve in Fig. 1).

The topological aspects of the reshu✏ed lower band
depend crucially on the properties of n̂k on �, which are,
in turn, inherited from the geometric properties of the
driving potential, encoded in V. These are best illus-
trated by employing the rotating wave approximation,
as we shall proceed to do below. An exact numerical
solution will be presented in the next section.

The driving field V̌ (t) contains both counter-rotating
and co-rotating terms. In the rotating wave approxima-
tion it is given by

V̌RWA = P̌+(k) (V · �̌) P̌�(k) + P̌�(k) (V · �̌) P̌+(k).
(11)

⌦

Rechtsman, Zeuner, Plotnik, Lumer, Podolsky, 
Dreisow, Nolte, Segev, Szameit, Nature 496, 196 2013



Graphene + circularly polarized light

For                , non-resonant bandgap opens:

Dirac cones receive opposite masses  ==>  (Chern #) = 1.

Light polarization chooses the chirality of edge modes

⌦ > W

Gu, Fertig, Arovas, Auerbach, PRL 2011

⌦ W

We calculate the edge band structure by using a unit cell that is
periodic in the x direction but finite in the y direction, ending with two
‘zig-zag’ edges (infinite in the x direction). The zig-zag edge is one of
three typical edge terminations of the honeycomb lattice; the other two
are the ‘armchair edge’ and the ‘bearded edge’. Note that the presence
of chiral edge states can be derived using the bulk–edge correspond-
ence principle by calculating the Chern number4,5,17,29. In our sample
(see Fig. 1a), the top and bottom edges are zig-zag edges and the right
and left edges are armchair edges. The band structure of the zig-zag
edge is presented in Fig. 2a for the case where the waveguides are not
helical (R 5 0). There are two sets of states, one per edge. Their disper-
sion curves are flat and completely coincide (that is, they are degenerate
with one another), residing between kx 5 2p/3a and kx 5 4p/3a, occu-
pying one-third of kx space, where a 5 15

ffiffiffi
3
p

mm is the lattice constant.
The Floquet band structure when the lattice is helical with R 5 8mm is
shown in Fig. 2b. Here, the edge states are no longer degenerate, but
now have opposite slopes. Specifically, the transverse group velocity

(i.e., the group velocity in the (x–y) plane) on the top edge is now
directed to the right, and on the bottom edge to the left, corresponding
to clockwise circulations. However, there are no edge states whatsoever
circulating in the anti-clockwise direction. Hence, the edge states pre-
sented in Fig. 2b are the topologically protected edge states of a Floquet
topological insulator. The lack of a counter-propagating edge state on a
given edge directly implies that any edge-defect (or disorder) cannot
backscatter, as there is no backwards-propagating state available into
which to scatter, contrary to the case of R 5 0, where there are multiple
states into which scattering is possible. This is the essence of why topo-
logical protection occurs. The transverse group velocity (for brevity, we
henceforth drop ‘transverse’) of these edge states has a non-trivial
dependence on the helix radius, R. For small R, the group velocity of
the edge states increases, but eventually it reaches a maximum and
decreases again. Before the group velocity crosses zero, the Chern
number is calculated to be 21 (indicating the presence of a clockwise
edge state, as seen in Fig. 2b). However, after the group velocity crosses

kx
ky

Bandgap

b

c d

a
15 15 μm

x

y

kx
ky

Figure 1 | Geometry and band structure of honeycomb photonic Floquet
topological insulator lattice. a, Microscope image of the input facet of the
photonic lattice, showing honeycomb geometry with ‘zig-zag’ edge
terminations on the top and bottom, and ‘armchair’ terminations on the left
and right sides. Scale bar at top right, 15mm. The yellow ellipse indicates the
position and shape of the input beam to this lattice. b, Sketch of the helical
waveguides. Their rotation axis is in the z direction, with radius R and period

Z. c, Band structure (b versus (kx, ky)) for the case of non-helical waveguides
comprising a honeycomb lattice (R 5 0). Note the band crossings at the Dirac
point. d, Bulk band structure for the photonic topological insulator: helical
waveguides with R 5 8mm arranged in a honeycomb lattice. Note the bandgap
opening up at the Dirac points (labelled with the red, double-ended arrow),
which corresponds to the bandgap in a Floquet topological insulator.
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Figure 2 | Dispersion curves of the edge states, highlighting the unique
dispersion properties of the topologically protected edge states for helical
waveguides in the honeycomb lattice. a, Band structure of the edge states on the
top and bottom of the array when the waveguides are straight (R 5 0). The
dispersion of both top and bottom edge states (red and green curves) is flat,
therefore they have zero group velocity. The bands of the bulk honeycomb lattice

are drawn in black. b, Dispersion curves of the edge states in the Floquet topological
insulator for helical waveguides with R 5 8mm: the band gap is open and the edge
states acquire non-zero group velocity. These edge states reside strictly within the
bulk band gap of the bulk lattice (drawn in black). c, Group velocity (slope of green
and red curves) versus helix radius, R, of the helical waveguides comprising the
honeycomb lattice. The maximum occurs at R 5 10.3mm.

LETTER RESEARCH

1 1 A P R I L 2 0 1 3 | V O L 4 9 6 | N A T U R E | 1 9 7

Macmillan Publishers Limited. All rights reserved©2013



Helical rotation induces a gauge field

x

0
= x+R cos⌦z

y0 = y +R sin⌦z

z0 = z

i@z = 1
2k0

(ir+A(z))2  �k0�n(x,y)
n0

 � k0R
2⌦2

2  

A(z) = k0R⌦(sin⌦z, cos⌦z)

H(z) =
X

m,hni

eiA(z)·rmn †
n m

15µm



Triangular sample with defect

missing waveguide R = 8 µm 
z = 10cm 

Rechtsman, Zeuner, Plotnik, Lumer, Podolsky, Dreisow, 
 Nolte, Segev, Szameit, Nature 496, 196 (2013)



What happens if we add spatial 
modulation?



Interface between two regions with       phase shift:

Delay phase:

Effect of delay:

Spectrum unaffected  
==> Chern number independent of 

Domain wall in phase

H = �
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Domain wall

Numerical simulation:

Analytic understanding?



Nambu Hamiltonian:

When       depends on position, problem becomes BdG equation

Domain wall  ==>  pi-junction in p+ip superconductor

Analogy to p+ip superconductor

HF
k ⇡

✓
⇠k �ke

�i↵

�⇤
ke

i↵ �⇠k

◆

⇠k = |~dk|� ⌦/2

�
k

= (V?,k

/2k) (k
x

+ ik
y

)

⌦

↵



Topological protection

For fixed      , define 

For             ,           changes sign

Crossing of modes is protected by particle-hole symmetry

Particle-hole symmetry breaking opens a small gap

k
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C 0
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Control density of nodes by angle of incident light

Enhanced conductivity along the nodes

Anisotropic transpor t?

Gu, Fertig, Arovas, Auerbach, PRL 2011
Kundu and Seradjeh, arxiv:1301.4433



Vor tex states

Vortex in the phase

Vortex lattice can be created using three lasers

Expect vortex core state with zero quasi-energy

Read & Green 2000; Ivanov 2001 
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↵ = 0



Vor tex states

Numerical results:

Hybridization with edge mode exponentially small

Analogous to Majorana, fractional excitation



Analogue of supercurrents?

Noether’s theorem:

Linear response

Caveat: relies on occupation of “valence band”

Photogalvanic effect
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Some generalizations

Graphene with circularly polarized light

Position-dependent frequency

 
 
Fig. 1: Geometry and band structure of honeycomb photonic Floquet topological 
insulator lattice.  (a) Input facet of photonic lattice, honeycomb geometry with “zig-zag” 
edge terminations on the top and bottom, and “armchair” terminations on the left and 
right sides.  (b) Schematic diagram of the helical waveguides.  The waveguides are 
helical with their rotation axis in the z-direction, with radius R and pitch Z.   (c) Spatial 
band structure (β vs. (kx,ky)) for the case of non-helical waveguides comprising a 
honeycomb lattice (R=0). Note the band crossings at the Dirac point. (d) Spatial bulk 
band structure for the photonic topological insulator: helical waveguides with R=8µm 
arranged in a honeycomb lattice.  Note the band gap opening up at the Dirac points 
(labeled with the red, double-sided arrow), which corresponds to the band gap in a 
Floquet topological insulator.     
 
  



Summary

Modulation leads to interesting new effects

- domain wall modes
- vortex core states
- photogalvanic effect

Demonstration of the versatility of Floquet topological insulators

Generalizations:

- graphene
- position-dependent frequency
- 3D



Thank you!


