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Inversion- or
TRS-breaking

More	commonly	existing	in	materials	than	thought.
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where the spin current operator Ĵki ¼ 1
2 f v̂i; ŝk g with the

spin operator ŝ and velocity operator v̂i ¼ ð1=ℏÞð∂Ĥ=∂kiÞ
and i, j, k ¼ x, y, z. Further, jn~ki and En~k are the
eigenvector and eigenvalue of the Hamiltonian Ĥ, respec-
tively. Ωs;k

n;ijð~kÞ is referred to as the spin Berry curvature, for
which the ordinary Berry curvature Ωn;ijð~kÞ can be
obtained by substituting the velocity operator v̂i for Ĵki .
In a system where sz is a good quantum number, it is simple
to understand the correlation between spin Berry curvature
and its ordinary counterpart, Ωs;z

n;xy ¼ szΩn;xyð~kÞ. The tem-
perature dependence is included in the Fermi-Dirac dis-
tribution fn~k. From Eq. (1) one can see that the SHC σkijðμÞ
is a third-order tensor and represents the spin current (js;ki )
along the ith direction generated by an electric field (Ej)
along the jth direction, where the spin current is polarized
along the kth direction, μ is the Fermi energy, and
js;ki ¼ σkijðμÞEj. For the integral in Eq. (1), a dense grid
of 500 × 500 × 500 was adopted in the first Brillouin zone
for the convergence of SHC values. More information
about the methods is in Ref. [30].
We first demonstrate the SHE in two simple systems by

effective model Hamiltonians, the quantum spin Hall effect

(QSHE) insulator and the Weyl semimetal. For the QSHE,
the well-known Bernevig-Hughes-Zhang model [32] was
considered, where sz is preserved as a good quantum
number. We can simply compute its SHC by Eq. (1).
According to the Bernevig-Hughes-Zhang model, the
conduction and valence band get inverted near the
Brillouin zone center, where the band touching points
form a nodal line [see Fig. 1(a)]. Without including SOC,
the SHC is zero. As long as the SOC is turned on, the nodal
line is fully gapped out and a nonzero SHC (σzyx) appears
spontaneously. In the two-dimensional (2D) Brillouin zone,
the SHC is dominantly contributed by the band anticrossing
region near the original nodal line, as shown in Fig. 1(b).
When the Fermi energy μ lies in the energy gap where there
is no Fermi surface, the SHC is purely a topological
quantity with a quantized value G0ðℏ=2eÞ, where G0 ¼
ð2e2=hÞ is the conductance quantum and ðℏ=2eÞ is the unit
converting from charge current to spin current. As long as μ
starts merging into conduction or valence bands, the SHC
decreases due to the Fermi surface contribution. From the
2D QSHE to the 3D TI, the SHC is still related to the band
anticrossing, but not necessarily quantized any more.
For a 3D WSM, we adopt a minimal Hamiltonian

in a two-band model [30,33], where sz is preserved and
only a single pair of Weyl points appears at $kW of
the kz axis. When Fermi energy crosses the Weyl points, the
Berry flux between this pair of Weyl points leads to a
noninteger anomalous Hall conductivity (AHC) σAHyx ¼
−ðkW=πÞðe2=hÞ, which is proportional to the Weyl point
separation and reported in Refs. [34,35]. Such an anoma-
lous Hall effect current simply carries a spin current, since

FIG. 1. Spin Hall effect in a quantum spin Hall insulator and a Weyl semimetal based on simple analytical models. In a QSHE, the
valence and conduction bands get inverted (a) and SOC opens an energy gap at the nodal-ring band crossing points (b). (c) The resultant
SHC is quantized inside the energy gap, which is mainly contributed by the nodal-ring area of the band structure. (d) Energy dispersion
in the ky ¼ 0 plane for the WSM and the corresponding spin Berry curvature distribution with the chemical potential crossing at the
Weyl points. (e) The upper panel is the energy dependent SHC for the WSM, where the maximum value appears at the the Weyl points.
And the lower panel is the kz dependent SHC (σzyx, red line) and AHC (σAHyx , dashed blue line) integrated in the kxky plane. The nonzero
quantized SHC and AHC only exist between these two Weyl points. The color bars in (b) and (d) are in arbitrary units. The units for the
AHC and SHC are ðe2=hÞ and ðe2=hÞðℏ=2eÞ, respectively.
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where the spin current operator Ĵki ¼ 1
2 f v̂i; ŝk g with the

spin operator ŝ and velocity operator v̂i ¼ ð1=ℏÞð∂Ĥ=∂kiÞ
and i, j, k ¼ x, y, z. Further, jn~ki and En~k are the
eigenvector and eigenvalue of the Hamiltonian Ĥ, respec-
tively. Ωs;k

n;ijð~kÞ is referred to as the spin Berry curvature, for
which the ordinary Berry curvature Ωn;ijð~kÞ can be
obtained by substituting the velocity operator v̂i for Ĵki .
In a system where sz is a good quantum number, it is simple
to understand the correlation between spin Berry curvature
and its ordinary counterpart, Ωs;z

n;xy ¼ szΩn;xyð~kÞ. The tem-
perature dependence is included in the Fermi-Dirac dis-
tribution fn~k. From Eq. (1) one can see that the SHC σkijðμÞ
is a third-order tensor and represents the spin current (js;ki )
along the ith direction generated by an electric field (Ej)
along the jth direction, where the spin current is polarized
along the kth direction, μ is the Fermi energy, and
js;ki ¼ σkijðμÞEj. For the integral in Eq. (1), a dense grid
of 500 × 500 × 500 was adopted in the first Brillouin zone
for the convergence of SHC values. More information
about the methods is in Ref. [30].
We first demonstrate the SHE in two simple systems by

effective model Hamiltonians, the quantum spin Hall effect

(QSHE) insulator and the Weyl semimetal. For the QSHE,
the well-known Bernevig-Hughes-Zhang model [32] was
considered, where sz is preserved as a good quantum
number. We can simply compute its SHC by Eq. (1).
According to the Bernevig-Hughes-Zhang model, the
conduction and valence band get inverted near the
Brillouin zone center, where the band touching points
form a nodal line [see Fig. 1(a)]. Without including SOC,
the SHC is zero. As long as the SOC is turned on, the nodal
line is fully gapped out and a nonzero SHC (σzyx) appears
spontaneously. In the two-dimensional (2D) Brillouin zone,
the SHC is dominantly contributed by the band anticrossing
region near the original nodal line, as shown in Fig. 1(b).
When the Fermi energy μ lies in the energy gap where there
is no Fermi surface, the SHC is purely a topological
quantity with a quantized value G0ðℏ=2eÞ, where G0 ¼
ð2e2=hÞ is the conductance quantum and ðℏ=2eÞ is the unit
converting from charge current to spin current. As long as μ
starts merging into conduction or valence bands, the SHC
decreases due to the Fermi surface contribution. From the
2D QSHE to the 3D TI, the SHC is still related to the band
anticrossing, but not necessarily quantized any more.
For a 3D WSM, we adopt a minimal Hamiltonian

in a two-band model [30,33], where sz is preserved and
only a single pair of Weyl points appears at $kW of
the kz axis. When Fermi energy crosses the Weyl points, the
Berry flux between this pair of Weyl points leads to a
noninteger anomalous Hall conductivity (AHC) σAHyx ¼
−ðkW=πÞðe2=hÞ, which is proportional to the Weyl point
separation and reported in Refs. [34,35]. Such an anoma-
lous Hall effect current simply carries a spin current, since

FIG. 1. Spin Hall effect in a quantum spin Hall insulator and a Weyl semimetal based on simple analytical models. In a QSHE, the
valence and conduction bands get inverted (a) and SOC opens an energy gap at the nodal-ring band crossing points (b). (c) The resultant
SHC is quantized inside the energy gap, which is mainly contributed by the nodal-ring area of the band structure. (d) Energy dispersion
in the ky ¼ 0 plane for the WSM and the corresponding spin Berry curvature distribution with the chemical potential crossing at the
Weyl points. (e) The upper panel is the energy dependent SHC for the WSM, where the maximum value appears at the the Weyl points.
And the lower panel is the kz dependent SHC (σzyx, red line) and AHC (σAHyx , dashed blue line) integrated in the kxky plane. The nonzero
quantized SHC and AHC only exist between these two Weyl points. The color bars in (b) and (d) are in arbitrary units. The units for the
AHC and SHC are ðe2=hÞ and ðe2=hÞðℏ=2eÞ, respectively.
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where the spin current operator Ĵki ¼ 1
2 f v̂i; ŝk g with the

spin operator ŝ and velocity operator v̂i ¼ ð1=ℏÞð∂Ĥ=∂kiÞ
and i, j, k ¼ x, y, z. Further, jn~ki and En~k are the
eigenvector and eigenvalue of the Hamiltonian Ĥ, respec-
tively. Ωs;k

n;ijð~kÞ is referred to as the spin Berry curvature, for
which the ordinary Berry curvature Ωn;ijð~kÞ can be
obtained by substituting the velocity operator v̂i for Ĵki .
In a system where sz is a good quantum number, it is simple
to understand the correlation between spin Berry curvature
and its ordinary counterpart, Ωs;z

n;xy ¼ szΩn;xyð~kÞ. The tem-
perature dependence is included in the Fermi-Dirac dis-
tribution fn~k. From Eq. (1) one can see that the SHC σkijðμÞ
is a third-order tensor and represents the spin current (js;ki )
along the ith direction generated by an electric field (Ej)
along the jth direction, where the spin current is polarized
along the kth direction, μ is the Fermi energy, and
js;ki ¼ σkijðμÞEj. For the integral in Eq. (1), a dense grid
of 500 × 500 × 500 was adopted in the first Brillouin zone
for the convergence of SHC values. More information
about the methods is in Ref. [30].
We first demonstrate the SHE in two simple systems by

effective model Hamiltonians, the quantum spin Hall effect

(QSHE) insulator and the Weyl semimetal. For the QSHE,
the well-known Bernevig-Hughes-Zhang model [32] was
considered, where sz is preserved as a good quantum
number. We can simply compute its SHC by Eq. (1).
According to the Bernevig-Hughes-Zhang model, the
conduction and valence band get inverted near the
Brillouin zone center, where the band touching points
form a nodal line [see Fig. 1(a)]. Without including SOC,
the SHC is zero. As long as the SOC is turned on, the nodal
line is fully gapped out and a nonzero SHC (σzyx) appears
spontaneously. In the two-dimensional (2D) Brillouin zone,
the SHC is dominantly contributed by the band anticrossing
region near the original nodal line, as shown in Fig. 1(b).
When the Fermi energy μ lies in the energy gap where there
is no Fermi surface, the SHC is purely a topological
quantity with a quantized value G0ðℏ=2eÞ, where G0 ¼
ð2e2=hÞ is the conductance quantum and ðℏ=2eÞ is the unit
converting from charge current to spin current. As long as μ
starts merging into conduction or valence bands, the SHC
decreases due to the Fermi surface contribution. From the
2D QSHE to the 3D TI, the SHC is still related to the band
anticrossing, but not necessarily quantized any more.
For a 3D WSM, we adopt a minimal Hamiltonian

in a two-band model [30,33], where sz is preserved and
only a single pair of Weyl points appears at $kW of
the kz axis. When Fermi energy crosses the Weyl points, the
Berry flux between this pair of Weyl points leads to a
noninteger anomalous Hall conductivity (AHC) σAHyx ¼
−ðkW=πÞðe2=hÞ, which is proportional to the Weyl point
separation and reported in Refs. [34,35]. Such an anoma-
lous Hall effect current simply carries a spin current, since

FIG. 1. Spin Hall effect in a quantum spin Hall insulator and a Weyl semimetal based on simple analytical models. In a QSHE, the
valence and conduction bands get inverted (a) and SOC opens an energy gap at the nodal-ring band crossing points (b). (c) The resultant
SHC is quantized inside the energy gap, which is mainly contributed by the nodal-ring area of the band structure. (d) Energy dispersion
in the ky ¼ 0 plane for the WSM and the corresponding spin Berry curvature distribution with the chemical potential crossing at the
Weyl points. (e) The upper panel is the energy dependent SHC for the WSM, where the maximum value appears at the the Weyl points.
And the lower panel is the kz dependent SHC (σzyx, red line) and AHC (σAHyx , dashed blue line) integrated in the kxky plane. The nonzero
quantized SHC and AHC only exist between these two Weyl points. The color bars in (b) and (d) are in arbitrary units. The units for the
AHC and SHC are ðe2=hÞ and ðe2=hÞðℏ=2eÞ, respectively.
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where the spin current operator Ĵki ¼ 1
2 f v̂i; ŝk g with the

spin operator ŝ and velocity operator v̂i ¼ ð1=ℏÞð∂Ĥ=∂kiÞ
and i, j, k ¼ x, y, z. Further, jn~ki and En~k are the
eigenvector and eigenvalue of the Hamiltonian Ĥ, respec-
tively. Ωs;k

n;ijð~kÞ is referred to as the spin Berry curvature, for
which the ordinary Berry curvature Ωn;ijð~kÞ can be
obtained by substituting the velocity operator v̂i for Ĵki .
In a system where sz is a good quantum number, it is simple
to understand the correlation between spin Berry curvature
and its ordinary counterpart, Ωs;z

n;xy ¼ szΩn;xyð~kÞ. The tem-
perature dependence is included in the Fermi-Dirac dis-
tribution fn~k. From Eq. (1) one can see that the SHC σkijðμÞ
is a third-order tensor and represents the spin current (js;ki )
along the ith direction generated by an electric field (Ej)
along the jth direction, where the spin current is polarized
along the kth direction, μ is the Fermi energy, and
js;ki ¼ σkijðμÞEj. For the integral in Eq. (1), a dense grid
of 500 × 500 × 500 was adopted in the first Brillouin zone
for the convergence of SHC values. More information
about the methods is in Ref. [30].
We first demonstrate the SHE in two simple systems by

effective model Hamiltonians, the quantum spin Hall effect

(QSHE) insulator and the Weyl semimetal. For the QSHE,
the well-known Bernevig-Hughes-Zhang model [32] was
considered, where sz is preserved as a good quantum
number. We can simply compute its SHC by Eq. (1).
According to the Bernevig-Hughes-Zhang model, the
conduction and valence band get inverted near the
Brillouin zone center, where the band touching points
form a nodal line [see Fig. 1(a)]. Without including SOC,
the SHC is zero. As long as the SOC is turned on, the nodal
line is fully gapped out and a nonzero SHC (σzyx) appears
spontaneously. In the two-dimensional (2D) Brillouin zone,
the SHC is dominantly contributed by the band anticrossing
region near the original nodal line, as shown in Fig. 1(b).
When the Fermi energy μ lies in the energy gap where there
is no Fermi surface, the SHC is purely a topological
quantity with a quantized value G0ðℏ=2eÞ, where G0 ¼
ð2e2=hÞ is the conductance quantum and ðℏ=2eÞ is the unit
converting from charge current to spin current. As long as μ
starts merging into conduction or valence bands, the SHC
decreases due to the Fermi surface contribution. From the
2D QSHE to the 3D TI, the SHC is still related to the band
anticrossing, but not necessarily quantized any more.
For a 3D WSM, we adopt a minimal Hamiltonian

in a two-band model [30,33], where sz is preserved and
only a single pair of Weyl points appears at $kW of
the kz axis. When Fermi energy crosses the Weyl points, the
Berry flux between this pair of Weyl points leads to a
noninteger anomalous Hall conductivity (AHC) σAHyx ¼
−ðkW=πÞðe2=hÞ, which is proportional to the Weyl point
separation and reported in Refs. [34,35]. Such an anoma-
lous Hall effect current simply carries a spin current, since

FIG. 1. Spin Hall effect in a quantum spin Hall insulator and a Weyl semimetal based on simple analytical models. In a QSHE, the
valence and conduction bands get inverted (a) and SOC opens an energy gap at the nodal-ring band crossing points (b). (c) The resultant
SHC is quantized inside the energy gap, which is mainly contributed by the nodal-ring area of the band structure. (d) Energy dispersion
in the ky ¼ 0 plane for the WSM and the corresponding spin Berry curvature distribution with the chemical potential crossing at the
Weyl points. (e) The upper panel is the energy dependent SHC for the WSM, where the maximum value appears at the the Weyl points.
And the lower panel is the kz dependent SHC (σzyx, red line) and AHC (σAHyx , dashed blue line) integrated in the kxky plane. The nonzero
quantized SHC and AHC only exist between these two Weyl points. The color bars in (b) and (d) are in arbitrary units. The units for the
AHC and SHC are ðe2=hÞ and ðe2=hÞðℏ=2eÞ, respectively.
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Magneto-transport	of	WSMs
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Figure 2 Crystal structure, magnetoresistance and mobility. a, Orientation of the mea-

sured single crystal NbP with the respective X-ray diffraction patterns. b, Crystal structure

of NbP in a body-centered-tetragonal lattice. c, Temperature dependence of the resistiv-

ity measured at different transverse magnetic fields displayed next to the corresponding

curve. The inset of c shows the temperature dependence of resistance measured up to

0.1 K in zero field. d, Transverse magnetoresistance measured at different temperatures

with field up to 9 T. The inset shows the magnetoresistance at higher temperatures. e,

Temperature dependencies of the mobility (left ordinate) and carrier density (right ordi-

nate). The inset shows the evolution of the Hall coefficient with temperature. The tem-

perature regimes where electrons and holes act as main charge carriers are marked with

18

Anisotropic
σzxy ~	800	(TaAs)

~	2000	(Pt)

Js y
z = σxy

z Jx

Spin	Hall	Angle	
σSpin/σcharge

2

note that Wannier functions were well optimized, so that
the effective Hamiltonian fully respects the symmetry of
corresponding materials, which is crucial to compute the

SHE. Using above materials-specific effective Hamilto-
nian, we employed the Kubo formula approach at the
clean limit [12, 13] to calculate the SHC,
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, and

i, j, k = x, y, z. Furthre, |nk⃗ > and E
nk⃗

are the eigenvec-

tor and eigenvalue of the Hamiltonian Ĥ , respectively.
Ωs,k

n,ij(k⃗) is referred to as the spin Berry curvature, for

which the ordinary Berry curvature Ωn,ij(k⃗) can be ob-

tained by substituting the velocity operator v̂i for Ĵk
i . In

a system where sz is a good quantum number, it is simple
to understand the correlation between spin Berry curva-
ture and its ordinary counterpart, Ωs,z

n,xy = szΩn,xy(k⃗).
The temperature dependence is included in the Fermi–
Dirac distribution fnk⃗. From Eq. 1 one can see that the
SHC σk

ij (µ) is a third-order tensor and represents the

spin current (js,ki ) along the i-th direction generated by
an electric field (Ej) along the j-th direction, where the
spin current is polarized along the k-th direction, µ is the
Fermi energy, and js,ki = σk

ij(µ)Ej . For the integral in
Eq. 1, a dense grid of 500 × 500 × 500 was adopted in
the first Brilloun zone for the convergence of SHC values.
More information about the methods are in Ref. [30].

We first demonstrate the SHE in two simple sys-
tems by effective model Hamiltonians, the quantum spin
Hall effect (QSHE) insulator and the Weyl semimetal.
For QSHE, the well-known Bernevig-Hughes-Zhang
model [31] was considered, where sz is preserved as a
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model, the conduction and valence band get inverted
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yx) ap-
pears spontaneously. In the two-dimensional (2D) Bril-
louin zone, the SHC is dominantly contributed by the
band anti-crossing region near the original nodal line, as
shown in Fig. 1b. When the Fermi energy µ lies in the
energy gap where there is no Fermi surface, the SHC
is purely a topological quantity with a quantized value
G0( !

2e
) where G0 = 2e2

h
is the conductance quantum and

!

2e
is the unit converting from charge current to spin cur-

rent. As long as µ starts merging into conduction or
valence bands, the SHC decreases due to the Fermi sur-

face contribution. From the 2D QSHE to the 3D TI, the
SHC is still related to the band anti-crossing, but not
necessarily quantized any more.
For a 3D WSM, we adopt a minimal Hamiltonian in
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kz axis. When Fermi energy crosses the Weyl points,
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σAH
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π
e2

h
, which is proportional to the Weyl point

separation and reported in Refs. [33, 34]. Such anoma-
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σAH
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where the “–” sign is due to the negative charge of elec-
trons. This is further verified by our numerical calcula-
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WSM preserves the time-reversal symmetry (TRS), the
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y
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Table I shows the calculated SHC for four WSM com-
pounds, TaAs, TaP, NbAs, and NbP, in which the Fermi
energy lies at the electron–hole compensation (charge
neutral) point and the temperature is zero K. From right
to left, the amplitude of the SHC increases quickly for
a given SHC element, which is consistent with the in-
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AFM	WSMs	from	AHE	materials
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All	spins	align	in-plane.



AFM	Weyl, AHE and SHE

Mn3Sn
Mn3Ge

• AFM	WSMs
• Anomalous	Hall	and	Nernst	effects	(AHE	&	ANE)	at	room	temperature
• Intrinsic	spin	Hall	effect	due	to	spin	texture	(without	SOC)
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Weyl	materials

Linear	response	to	a	dc electric	field	field
SHE	&	AHE
• Both	Weyl	and	ordinary	bands	contribute	to	AHC.	
• Conventional	materials	work	well.

Are	there	some	properties	for	which	a	WSM	is	unique	
or	better	than	ordinary	materials?

Yes,	possibly	the	nonlinear	optical	response.	
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Recently noncentrosymmetric metals were anticipated to exhibit a nonlinear Hall-like current and
as well as a dc current caused by the dipole moment of the Berry curvature in momentum space.
Weyl semimetals (WSMs) are expected to be excellent candidates to observe these nonlinear e↵ects,
for they carry large Berry curvature concentrating in small regions, i.e. near the Weyl points. We
combined ab inito calculations and the semiclassical approach to investigate the Berry curvature
dipole for two representative groups of materials, the TaAs-family type-I WSMs and MoTe2-family
type-II WSMs. Both types WSMs exhibit a large dipole moment of the Berry curvature, which
is in orders of magnitude larger than that of common metals or doped semiconductors, promising
remarkable nonlinear electric and optical properties. We revealed the optimal materials parameters
for these e↵ects, where the type-II WSM is usually superior to the type-I because of strongly tilted
Weyl cones.

Introduction – The Weyl semimetal (WSM) is a
topological state characterized by the linear band
crossing points called Weyl points near the Fermi energy.
WSM materials have recently been discovered primarily
by observing the unique Fermi arcs of the surface
states by angle-resolved photoemission spectroscopy,
such as the TaAs-family pnitictides and MoTe2. For
the Weyl points are monopole sources or drains of
the Berry curvature of of Bloch wave functions in the
momentum space, a WSM can exhibit an anomalous
Hall e↵ect as breaking the time-reversal symmetry (TRS)
and as well the intrinsic spin Hall e↵ect, as linear
responses to an external electric field. Recent theoretical
and experiment studies revealed giant nonlinear optical
responses in WSMs, e.g. the photocurrent from the
circular photogalvanic e↵ect (CPGE), second harmonic
generation (SHG) and nonlinear Hall e↵ect. These
nonlinear e↵ects are much stronger in WSMs than
traditional electro-optic materials, also owing to the large
Berry curvature.

Very recently, the intraband contributions to CPGE
and SHG are described as a Berry phase e↵ect by
a geometrical quantity, the Berry curvature dipole
(BCD), in the semiclassical approach. In the dc
limit, the photocurrent remains finite as a transverse
Hall-like current, i.e. a nonlinear Hall e↵ect. These
nonlinear e↵ects originate from the intraband resonant
transitions at a low frequency in a noncentrosymmetric
metal. Although they have played an important role
in predicting topological materials and estimate their
linear-response properties, ab initio studies on the
nonlinear optical e↵ects of WSMs are still missing [cite
Orenstein], to reveal quantitatively the role of the Weyl
points in realistic materials. Then the nonlinear response
was usually computed with mixed interband and intrand
transitions for conventional semiconductors, while it
requires an a ab initio scheme with the Berry phase
formalism to understand WSMs.

In this article, we study the BCD of Weyl semimetal
materials, TaAs-family type-I and MoTe2-family type-II
WSMs, and estimate their nonlinear optical responses
by ab initio calculations combined with the semiclassical
approach. Both types WSMs exhibit a large BCD
near the Weyl point, which is in orders of magnitude
larger than that of conventional materials. As as Fermi
surface property, the BCD favors tilted Weyl cones.
Thus, the type-II WSM is usually superior to the type-I.
Further, we reveal that some small gap regions with
highly concentrated Berry curvature can also contribute
to a large dipole in the absence of Weyl points.
The semiclassical theory – We first overview previous

theoretical work on the nonlinear optical response
described by the Berry curvature. [1–4] In CPGE, the
oscillating electric field E

c
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is the BCD, ⌦
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is the Berry curvature, f0
is the equilibrium Fermi-Dirac distribution, ⌧ refers to
the relaxation time approximation in the Boltzmann
equation, "
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stand for the third rank Levi-Civita
symbol, and ~ is the reduced Planck constant. One can
find that D

bd

is a Fermi surface e↵ect that is intrinsic to
the band structure, and becomes dimensionless in three

Nonlinear	optical	response
Second-order	nonlinear	response	to	the	oscillating	E-field	of	light	
• Circular	photogalvanic effect	(CPGE)
• Second	harmonic	generation	(SHE)
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Hall e↵ect as breaking the time-reversal symmetry (TRS)
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and experiment studies revealed giant nonlinear optical
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circular photogalvanic e↵ect (CPGE), second harmonic
generation (SHG) and nonlinear Hall e↵ect. These
nonlinear e↵ects are much stronger in WSMs than
traditional electro-optic materials, also owing to the large
Berry curvature.
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and SHG are described as a Berry phase e↵ect by
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(BCD), in the semiclassical approach. In the dc
limit, the photocurrent remains finite as a transverse
Hall-like current, i.e. a nonlinear Hall e↵ect. These
nonlinear e↵ects originate from the intraband resonant
transitions at a low frequency in a noncentrosymmetric
metal. Although they have played an important role
in predicting topological materials and estimate their
linear-response properties, ab initio studies on the
nonlinear optical e↵ects of WSMs are still missing [cite
Orenstein], to reveal quantitatively the role of the Weyl
points in realistic materials. Then the nonlinear response
was usually computed with mixed interband and intrand
transitions for conventional semiconductors, while it
requires an a ab initio scheme with the Berry phase
formalism to understand WSMs.

In this article, we study the BCD of Weyl semimetal
materials, TaAs-family type-I and MoTe2-family type-II
WSMs, and estimate their nonlinear optical responses
by ab initio calculations combined with the semiclassical
approach. Both types WSMs exhibit a large BCD
near the Weyl point, which is in orders of magnitude
larger than that of conventional materials. As as Fermi
surface property, the BCD favors tilted Weyl cones.
Thus, the type-II WSM is usually superior to the type-I.
Further, we reveal that some small gap regions with
highly concentrated Berry curvature can also contribute
to a large dipole in the absence of Weyl points.
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crossing points called Weyl points near the Fermi energy.
WSM materials have recently been discovered primarily
by observing the unique Fermi arcs of the surface
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near the Weyl point, which is in orders of magnitude
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Further, we reveal that some small gap regions with
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Experiment on	WSM	TaAs:	Orenstein	17’,	Gedik 17’,	Wang	17’	
Theory:	Qi	15’,	Pesin 15’, Burkov 15’,	Ran	16’,	Fu	15’,	Moore	16’	17’,	Polini 17’,	
Nagaosa 16’,	Tanaka	16’,	Lee	17’…

Ωa ≡ εabc∂bAc; Ac ≡ −ihukj∂cjuki: ð3Þ

Within the Boltzmann picture of transport, the canonical
momentum of electrons changes in time in response to the
external electromagnetic fields. In the absence of external
magnetic fields, the change of momentum is

_kc ¼ −eEcðtÞ; ð4Þ

where EcðtÞ ¼ RefEceiωtg, with Ec ∈ C the driving
electric field which oscillates harmonically in time but
is uniform in space. In the relaxation time approximation,
the Boltzmann equation for the distribution of electrons
is [4]

−eτEa∂af þ τ∂tf ¼ f0 − f; ð5Þ

where f0 is the equilibrium distribution in the absence of
external fields. We are interested in computing the response
to second order in the electric field; hence, we expand the
distribution up to second order: f ¼ Reff0 þ f1 þ f2g,
where the term fn is understood to vanish as En. One finds a
recursive structure:

f1 ¼ fω1 e
iωt; fω1 ¼ eτEa∂af0

1þ iωτ
;

f2 ¼ f02 þ f2ω2 e2iωt; f02 ¼
ðeτÞ2E%

aEb∂abf0
2ð1þ iωτÞ

;

f2ω2 ¼ ðeτÞ2EaEb∂abf0
2ð1þ iωτÞð1þ 2iωτÞ

: ð6Þ

Writing the current as ja ¼ Refj0a þ j2ωa e2iωtg, one obtains

j0a ¼
e2

2

Z

k
εabcΩbE%

cfω1 − e
Z

k
f02∂aϵðkÞ;

j2ωa ¼ e2

2

Z

k
εabcΩbEcfω1 − e

Z

k
f2ω2 ∂aϵðkÞ: ð7Þ

The term j0a describes a rectified current while the term
j2ωa describes the second harmonic. The second terms that
appear in Eq. (7) are completely semiclassical and do not
require the presence of Berry curvature. However, within
the approximation of a constant τ, one finds that these
nonlinear terms are proportional to the integral of a three-
index tensor, ∂aϵðkÞ∂bcf0ðkÞ, which is odd under time
reversal and, hence, they are forced to vanish. Therefore,
the only surviving terms are those associated with the Berry
curvature. By writing j0a ¼ χabcEbE%

c, j2ωa ¼ χabcEbEc, one
has [5]

χabc ¼ εadc
e3τ

2ð1þ iωτÞ

Z

k
ð∂bf0ÞΩd: ð8Þ

The presence of the factor ∂bf0 will guarantee that only
states close to the Fermi surface will contribute to the
integral in the low temperature limit, so that this response is
a Fermi liquid property [6]. Equation (8) can be rewritten as
follows:

χabc ¼ −εadc
e3τ

2ð1þ iωτÞ

Z

k
f0ð∂bΩdÞ: ð9Þ

This expression [Eq. (9)] for the nonlinear conductivity
tensor, χabc, is the first main result of this work. It shows
that χabc is proportional to the dipole moment of the Berry
curvature over the occupied states, defined as

Dab ¼
Z

k
f0ð∂aΩbÞ: ð10Þ

It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ ≫ 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of the
scattering time, so that χabc directly measures the quantum
geometry of the Bloch states. In the dc limit or for linearly
polarized electric fields, the Berry curvature dipole term
always produces a current that is orthogonal to the electric
field jaEa ¼ 0 [7].
To close this section, we wish to remark that there exist

additional second-order corrections to the current arising
from modifications to Eq. (2) that are intrinsic to the band
structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
ant systems. Other type of rectifications might arise in
systems with an inversion asymmetric scattering rate,
namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
ratchet effect [9]. These semiclassical Berry-phase indepen-
dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us

explore the constraints imposed by crystal point sym-
metries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Because
the Berry curvature is a pseudovector, the Berry curvature
dipole transforms as a pseudotensor. Hence, crystal sym-
metries impose constraints of the form

D ¼ detðSÞSDST: ð11Þ

To determine which components of this tensor are nonzero,
it is convenient to decompose it into symmetric and
antisymmetric parts, D& ¼ ðD&DTÞ=2, which transform
independently under symmetry operations. The antisym-
metric part of a pseudotensor transforms as a vector, as can
be verified from Eq. (11). The components of this vector
can be taken to be da ≡ ϵabcD−

bc=2. Therefore, for it to be
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Recently noncentrosymmetric metals were anticipated to exhibit a nonlinear Hall-like current and
as well as a dc current caused by the dipole moment of the Berry curvature in momentum space.
Weyl semimetals (WSMs) are expected to be excellent candidates to observe these nonlinear e↵ects,
for they carry large Berry curvature concentrating in small regions, i.e. near the Weyl points. We
combined ab inito calculations and the semiclassical approach to investigate the Berry curvature
dipole for two representative groups of materials, the TaAs-family type-I WSMs and MoTe2-family
type-II WSMs. Both types WSMs exhibit a large dipole moment of the Berry curvature, which
is in orders of magnitude larger than that of common metals or doped semiconductors, promising
remarkable nonlinear electric and optical properties. We revealed the optimal materials parameters
for these e↵ects, where the type-II WSM is usually superior to the type-I because of strongly tilted
Weyl cones.

Introduction – The Weyl semimetal (WSM) is a
topological state characterized by the linear band
crossing points called Weyl points near the Fermi energy.
WSM materials have recently been discovered primarily
by observing the unique Fermi arcs of the surface
states by angle-resolved photoemission spectroscopy,
such as the TaAs-family pnitictides and MoTe2. For
the Weyl points are monopole sources or drains of
the Berry curvature of of Bloch wave functions in the
momentum space, a WSM can exhibit an anomalous
Hall e↵ect as breaking the time-reversal symmetry (TRS)
and as well the intrinsic spin Hall e↵ect, as linear
responses to an external electric field. Recent theoretical
and experiment studies revealed giant nonlinear optical
responses in WSMs, e.g. the photocurrent from the
circular photogalvanic e↵ect (CPGE), second harmonic
generation (SHG) and nonlinear Hall e↵ect. These
nonlinear e↵ects are much stronger in WSMs than
traditional electro-optic materials, also owing to the large
Berry curvature.

Very recently, the intraband contributions to CPGE
and SHG are described as a Berry phase e↵ect by
a geometrical quantity, the Berry curvature dipole
(BCD), in the semiclassical approach. In the dc
limit, the photocurrent remains finite as a transverse
Hall-like current, i.e. a nonlinear Hall e↵ect. These
nonlinear e↵ects originate from the intraband resonant
transitions at a low frequency in a noncentrosymmetric
metal. Although they have played an important role
in predicting topological materials and estimate their
linear-response properties, ab initio studies on the
nonlinear optical e↵ects of WSMs are still missing [cite
Orenstein], to reveal quantitatively the role of the Weyl
points in realistic materials. Then the nonlinear response
was usually computed with mixed interband and intrand
transitions for conventional semiconductors, while it
requires an a ab initio scheme with the Berry phase
formalism to understand WSMs.

In this article, we study the BCD of Weyl semimetal
materials, TaAs-family type-I and MoTe2-family type-II
WSMs, and estimate their nonlinear optical responses
by ab initio calculations combined with the semiclassical
approach. Both types WSMs exhibit a large BCD
near the Weyl point, which is in orders of magnitude
larger than that of conventional materials. As as Fermi
surface property, the BCD favors tilted Weyl cones.
Thus, the type-II WSM is usually superior to the type-I.
Further, we reveal that some small gap regions with
highly concentrated Berry curvature can also contribute
to a large dipole in the absence of Weyl points.
The semiclassical theory – We first overview previous

theoretical work on the nonlinear optical response
described by the Berry curvature. [1–4] In CPGE, the
oscillating electric field E

c

(t) = Re{E
c

ei!t} of circularly
polarized light induces a dc photocurrent j (0) as a
second-order nonlinear optical e↵ect, j

(0)
a

= �
abc

E
b

E⇤
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.
Similarly, the SHG is described by the second-harmonic
current response j (2!)e2i!t to a linearly polarized light,
where j

(2!)
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= �
abc

E
b

E
c

. In the dc limit of a linearly
polarized field, a nonlinear Hall e↵ect is characterized by
a transverse current j
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= 2j(0)
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|
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|2. In a
material with TRS, the nonlinear response tensor � were
obtained theoretically as a Berry phase e↵ect [1, 2] and
very recently further described by the BCD [3] as follows,
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where D
bd

is the BCD, ⌦
d

is the Berry curvature, f0
is the equilibrium Fermi-Dirac distribution, ⌧ refers to
the relaxation time approximation in the Boltzmann
equation, "

adc

stand for the third rank Levi-Civita
symbol, and ~ is the reduced Planck constant. One can
find that D

bd

is a Fermi surface e↵ect that is intrinsic to
the band structure, and becomes dimensionless in three

At dc limit comes a nonlinear	Hall	effect.
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It is well known that a nonvanishing Hall conductivity requires broken time-reversal symmetry.
However, in this work, we demonstrate that Hall-like currents can occur in second-order response to
external electric fields in a wide class of time-reversal invariant and inversion breaking materials, at both
zero and twice the driving frequency. This nonlinear Hall effect has a quantum origin arising from the
dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when
the system is in a current-carrying state. The nonlinear Hall coefficient is a rank-two pseudotensor, whose
form is determined by point group symmetry. We discus optimal conditions to observe this effect and
propose candidate two- and three-dimensional materials, including topological crystalline insulators,
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Introduction.—The Hall conductivity of an electron
system whose Hamiltonian is invariant under time-reversal
symmetry is forced to vanish. Crystals with sufficiently low
symmetry can have resistivity tensors which are aniso-
tropic, but Onsager’s reciprocity relations [1] force the
conductivity to be a symmetric tensor in the presence of
time-reversal symmetry. Hence, when the electric field is
along its principal axes the current and the electric field are
collinear, at least to the first order in electric fields.
However, this constraint is only about the linear response
and does not necessarily enforce the full current to flow
collinearly with the local electric field.
In this Letter we study a special type of such nonlinear

Hall-like currents. We will demonstrate that metals without
inversion symmetry can have a nonlinear Hall-like current
arising from the Berry curvature in momentum space. The
conventional Hall conductivity can be viewed as the zero-
order moment of the Berry curvature over occupied states,
namely, as an integral of the Berry curvature within the
metal’s Fermi surface. The effect we discuss here is
determined by a pseudotensorial quantity that measures
a first-order moment of the Berry curvature over the
occupied states, and hence we call it the Berry curvature
dipole. This nonlinear Hall effect has a quantum origin
arising from the anomalous velocity of Bloch electrons
generated by the Berry curvature [2], but it is not expected
to be quantized.
In a time-reversal invariant system, the Berry curvature is

odd in momentum space, ΩaðkÞ ¼ −Ωað−kÞ, and hence its
integral weighed by the equilibrium Fermi distribution is
forced to vanish, because Kramers pair states at k and −k
are equally occupied. However, the second-order response
is determined by the integral of the Berry curvature
evaluated in the nonequilibrium distribution of electrons
computed to first order in the electric field. Since the

nonequilibrium current-carrying distribution is not sym-
metric under k → −k, the integral of the Berry curvature
weighed by it can be finite, leading to a net anomalous
velocity and hence a transverse current.
Our study builds upon a seminal work by Moore and

Orenstein [3], which predicted a dc photocurrent in
quantum wells without inversion symmetry due to the
anomalous velocity associated with the Berry phase. The
quantum nonlinear Hall effect presented here can be
regarded as a generalization of this effect. We predict that
an oscillating electric field can generate a transverse current
at both zero and twice the frequency in two- and three-
dimensional materials with a large class of crystal point
group symmetries. In particular, the second harmonic
generation is a distinctive signature that may facilitate
the experimental detection of the quantum nonlinear Hall
effect. Additionally, the effect does remain finite in the dc
limit of the applied electric field.
General theory.—The electric current density is given by

the integral of the physical velocity of the electrons va
weighed by their occupation function fðkÞ:

ja ¼ −e
Z

k
fðkÞva: ð1Þ

For simplicity, we imagine a single band system but allow it
to be two or three dimensional:

R
k ≡

R
ddk=ð2πÞd. The

velocity contains two contributions, namely, the group
velocity of the electron wave and the anomalous velocity
arising from the Berry curvature [2] (ℏ ¼ 1):

va ¼ ∂aϵðkÞ þ εabcΩb
_kc; ð2Þ

where ∂a ¼ ∂=∂ka , ϵ and Ωb are the energy dispersion and
the Berry curvature of the electrons in question:
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Introduction.—The Hall conductivity of an electron
system whose Hamiltonian is invariant under time-reversal
symmetry is forced to vanish. Crystals with sufficiently low
symmetry can have resistivity tensors which are aniso-
tropic, but Onsager’s reciprocity relations [1] force the
conductivity to be a symmetric tensor in the presence of
time-reversal symmetry. Hence, when the electric field is
along its principal axes the current and the electric field are
collinear, at least to the first order in electric fields.
However, this constraint is only about the linear response
and does not necessarily enforce the full current to flow
collinearly with the local electric field.
In this Letter we study a special type of such nonlinear

Hall-like currents. We will demonstrate that metals without
inversion symmetry can have a nonlinear Hall-like current
arising from the Berry curvature in momentum space. The
conventional Hall conductivity can be viewed as the zero-
order moment of the Berry curvature over occupied states,
namely, as an integral of the Berry curvature within the
metal’s Fermi surface. The effect we discuss here is
determined by a pseudotensorial quantity that measures
a first-order moment of the Berry curvature over the
occupied states, and hence we call it the Berry curvature
dipole. This nonlinear Hall effect has a quantum origin
arising from the anomalous velocity of Bloch electrons
generated by the Berry curvature [2], but it is not expected
to be quantized.
In a time-reversal invariant system, the Berry curvature is

odd in momentum space, ΩaðkÞ ¼ −Ωað−kÞ, and hence its
integral weighed by the equilibrium Fermi distribution is
forced to vanish, because Kramers pair states at k and −k
are equally occupied. However, the second-order response
is determined by the integral of the Berry curvature
evaluated in the nonequilibrium distribution of electrons
computed to first order in the electric field. Since the

nonequilibrium current-carrying distribution is not sym-
metric under k → −k, the integral of the Berry curvature
weighed by it can be finite, leading to a net anomalous
velocity and hence a transverse current.
Our study builds upon a seminal work by Moore and

Orenstein [3], which predicted a dc photocurrent in
quantum wells without inversion symmetry due to the
anomalous velocity associated with the Berry phase. The
quantum nonlinear Hall effect presented here can be
regarded as a generalization of this effect. We predict that
an oscillating electric field can generate a transverse current
at both zero and twice the frequency in two- and three-
dimensional materials with a large class of crystal point
group symmetries. In particular, the second harmonic
generation is a distinctive signature that may facilitate
the experimental detection of the quantum nonlinear Hall
effect. Additionally, the effect does remain finite in the dc
limit of the applied electric field.
General theory.—The electric current density is given by

the integral of the physical velocity of the electrons va
weighed by their occupation function fðkÞ:

ja ¼ −e
Z

k
fðkÞva: ð1Þ

For simplicity, we imagine a single band system but allow it
to be two or three dimensional:

R
k ≡

R
ddk=ð2πÞd. The

velocity contains two contributions, namely, the group
velocity of the electron wave and the anomalous velocity
arising from the Berry curvature [2] (ℏ ¼ 1):

va ¼ ∂aϵðkÞ þ εabcΩb
_kc; ð2Þ

where ∂a ¼ ∂=∂ka , ϵ and Ωb are the energy dispersion and
the Berry curvature of the electrons in question:
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Anomalous	velocity	

Ωa ≡ εabc∂bAc; Ac ≡ −ihukj∂cjuki: ð3Þ

Within the Boltzmann picture of transport, the canonical
momentum of electrons changes in time in response to the
external electromagnetic fields. In the absence of external
magnetic fields, the change of momentum is

_kc ¼ −eEcðtÞ; ð4Þ

where EcðtÞ ¼ RefEceiωtg, with Ec ∈ C the driving
electric field which oscillates harmonically in time but
is uniform in space. In the relaxation time approximation,
the Boltzmann equation for the distribution of electrons
is [4]

−eτEa∂af þ τ∂tf ¼ f0 − f; ð5Þ

where f0 is the equilibrium distribution in the absence of
external fields. We are interested in computing the response
to second order in the electric field; hence, we expand the
distribution up to second order: f ¼ Reff0 þ f1 þ f2g,
where the term fn is understood to vanish as En. One finds a
recursive structure:

f1 ¼ fω1 e
iωt; fω1 ¼ eτEa∂af0

1þ iωτ
;

f2 ¼ f02 þ f2ω2 e2iωt; f02 ¼
ðeτÞ2E%

aEb∂abf0
2ð1þ iωτÞ

;

f2ω2 ¼ ðeτÞ2EaEb∂abf0
2ð1þ iωτÞð1þ 2iωτÞ

: ð6Þ

Writing the current as ja ¼ Refj0a þ j2ωa e2iωtg, one obtains

j0a ¼
e2

2

Z

k
εabcΩbE%

cfω1 − e
Z

k
f02∂aϵðkÞ;

j2ωa ¼ e2

2

Z

k
εabcΩbEcfω1 − e

Z

k
f2ω2 ∂aϵðkÞ: ð7Þ

The term j0a describes a rectified current while the term
j2ωa describes the second harmonic. The second terms that
appear in Eq. (7) are completely semiclassical and do not
require the presence of Berry curvature. However, within
the approximation of a constant τ, one finds that these
nonlinear terms are proportional to the integral of a three-
index tensor, ∂aϵðkÞ∂bcf0ðkÞ, which is odd under time
reversal and, hence, they are forced to vanish. Therefore,
the only surviving terms are those associated with the Berry
curvature. By writing j0a ¼ χabcEbE%

c, j2ωa ¼ χabcEbEc, one
has [5]

χabc ¼ εadc
e3τ

2ð1þ iωτÞ

Z

k
ð∂bf0ÞΩd: ð8Þ

The presence of the factor ∂bf0 will guarantee that only
states close to the Fermi surface will contribute to the
integral in the low temperature limit, so that this response is
a Fermi liquid property [6]. Equation (8) can be rewritten as
follows:

χabc ¼ −εadc
e3τ

2ð1þ iωτÞ

Z

k
f0ð∂bΩdÞ: ð9Þ

This expression [Eq. (9)] for the nonlinear conductivity
tensor, χabc, is the first main result of this work. It shows
that χabc is proportional to the dipole moment of the Berry
curvature over the occupied states, defined as

Dab ¼
Z

k
f0ð∂aΩbÞ: ð10Þ

It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ ≫ 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of the
scattering time, so that χabc directly measures the quantum
geometry of the Bloch states. In the dc limit or for linearly
polarized electric fields, the Berry curvature dipole term
always produces a current that is orthogonal to the electric
field jaEa ¼ 0 [7].
To close this section, we wish to remark that there exist

additional second-order corrections to the current arising
from modifications to Eq. (2) that are intrinsic to the band
structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
ant systems. Other type of rectifications might arise in
systems with an inversion asymmetric scattering rate,
namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
ratchet effect [9]. These semiclassical Berry-phase indepen-
dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us

explore the constraints imposed by crystal point sym-
metries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Because
the Berry curvature is a pseudovector, the Berry curvature
dipole transforms as a pseudotensor. Hence, crystal sym-
metries impose constraints of the form

D ¼ detðSÞSDST: ð11Þ

To determine which components of this tensor are nonzero,
it is convenient to decompose it into symmetric and
antisymmetric parts, D& ¼ ðD&DTÞ=2, which transform
independently under symmetry operations. The antisym-
metric part of a pseudotensor transforms as a vector, as can
be verified from Eq. (11). The components of this vector
can be taken to be da ≡ ϵabcD−

bc=2. Therefore, for it to be
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Ωa ≡ εabc∂bAc; Ac ≡ −ihukj∂cjuki: ð3Þ

Within the Boltzmann picture of transport, the canonical
momentum of electrons changes in time in response to the
external electromagnetic fields. In the absence of external
magnetic fields, the change of momentum is

_kc ¼ −eEcðtÞ; ð4Þ

where EcðtÞ ¼ RefEceiωtg, with Ec ∈ C the driving
electric field which oscillates harmonically in time but
is uniform in space. In the relaxation time approximation,
the Boltzmann equation for the distribution of electrons
is [4]

−eτEa∂af þ τ∂tf ¼ f0 − f; ð5Þ

where f0 is the equilibrium distribution in the absence of
external fields. We are interested in computing the response
to second order in the electric field; hence, we expand the
distribution up to second order: f ¼ Reff0 þ f1 þ f2g,
where the term fn is understood to vanish as En. One finds a
recursive structure:

f1 ¼ fω1 e
iωt; fω1 ¼ eτEa∂af0

1þ iωτ
;

f2 ¼ f02 þ f2ω2 e2iωt; f02 ¼
ðeτÞ2E%

aEb∂abf0
2ð1þ iωτÞ

;

f2ω2 ¼ ðeτÞ2EaEb∂abf0
2ð1þ iωτÞð1þ 2iωτÞ

: ð6Þ

Writing the current as ja ¼ Refj0a þ j2ωa e2iωtg, one obtains

j0a ¼
e2

2

Z

k
εabcΩbE%

cfω1 − e
Z

k
f02∂aϵðkÞ;

j2ωa ¼ e2

2

Z

k
εabcΩbEcfω1 − e

Z

k
f2ω2 ∂aϵðkÞ: ð7Þ

The term j0a describes a rectified current while the term
j2ωa describes the second harmonic. The second terms that
appear in Eq. (7) are completely semiclassical and do not
require the presence of Berry curvature. However, within
the approximation of a constant τ, one finds that these
nonlinear terms are proportional to the integral of a three-
index tensor, ∂aϵðkÞ∂bcf0ðkÞ, which is odd under time
reversal and, hence, they are forced to vanish. Therefore,
the only surviving terms are those associated with the Berry
curvature. By writing j0a ¼ χabcEbE%

c, j2ωa ¼ χabcEbEc, one
has [5]

χabc ¼ εadc
e3τ

2ð1þ iωτÞ

Z

k
ð∂bf0ÞΩd: ð8Þ

The presence of the factor ∂bf0 will guarantee that only
states close to the Fermi surface will contribute to the
integral in the low temperature limit, so that this response is
a Fermi liquid property [6]. Equation (8) can be rewritten as
follows:

χabc ¼ −εadc
e3τ

2ð1þ iωτÞ

Z

k
f0ð∂bΩdÞ: ð9Þ

This expression [Eq. (9)] for the nonlinear conductivity
tensor, χabc, is the first main result of this work. It shows
that χabc is proportional to the dipole moment of the Berry
curvature over the occupied states, defined as

Dab ¼
Z

k
f0ð∂aΩbÞ: ð10Þ

It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ ≫ 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of the
scattering time, so that χabc directly measures the quantum
geometry of the Bloch states. In the dc limit or for linearly
polarized electric fields, the Berry curvature dipole term
always produces a current that is orthogonal to the electric
field jaEa ¼ 0 [7].
To close this section, we wish to remark that there exist

additional second-order corrections to the current arising
from modifications to Eq. (2) that are intrinsic to the band
structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
ant systems. Other type of rectifications might arise in
systems with an inversion asymmetric scattering rate,
namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
ratchet effect [9]. These semiclassical Berry-phase indepen-
dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us

explore the constraints imposed by crystal point sym-
metries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Because
the Berry curvature is a pseudovector, the Berry curvature
dipole transforms as a pseudotensor. Hence, crystal sym-
metries impose constraints of the form

D ¼ detðSÞSDST: ð11Þ

To determine which components of this tensor are nonzero,
it is convenient to decompose it into symmetric and
antisymmetric parts, D& ¼ ðD&DTÞ=2, which transform
independently under symmetry operations. The antisym-
metric part of a pseudotensor transforms as a vector, as can
be verified from Eq. (11). The components of this vector
can be taken to be da ≡ ϵabcD−

bc=2. Therefore, for it to be
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Ωa ≡ εabc∂bAc; Ac ≡ −ihukj∂cjuki: ð3Þ

Within the Boltzmann picture of transport, the canonical
momentum of electrons changes in time in response to the
external electromagnetic fields. In the absence of external
magnetic fields, the change of momentum is

_kc ¼ −eEcðtÞ; ð4Þ

where EcðtÞ ¼ RefEceiωtg, with Ec ∈ C the driving
electric field which oscillates harmonically in time but
is uniform in space. In the relaxation time approximation,
the Boltzmann equation for the distribution of electrons
is [4]

−eτEa∂af þ τ∂tf ¼ f0 − f; ð5Þ

where f0 is the equilibrium distribution in the absence of
external fields. We are interested in computing the response
to second order in the electric field; hence, we expand the
distribution up to second order: f ¼ Reff0 þ f1 þ f2g,
where the term fn is understood to vanish as En. One finds a
recursive structure:

f1 ¼ fω1 e
iωt; fω1 ¼ eτEa∂af0

1þ iωτ
;

f2 ¼ f02 þ f2ω2 e2iωt; f02 ¼
ðeτÞ2E%

aEb∂abf0
2ð1þ iωτÞ

;

f2ω2 ¼ ðeτÞ2EaEb∂abf0
2ð1þ iωτÞð1þ 2iωτÞ

: ð6Þ

Writing the current as ja ¼ Refj0a þ j2ωa e2iωtg, one obtains

j0a ¼
e2

2

Z

k
εabcΩbE%

cfω1 − e
Z

k
f02∂aϵðkÞ;

j2ωa ¼ e2

2

Z

k
εabcΩbEcfω1 − e

Z

k
f2ω2 ∂aϵðkÞ: ð7Þ

The term j0a describes a rectified current while the term
j2ωa describes the second harmonic. The second terms that
appear in Eq. (7) are completely semiclassical and do not
require the presence of Berry curvature. However, within
the approximation of a constant τ, one finds that these
nonlinear terms are proportional to the integral of a three-
index tensor, ∂aϵðkÞ∂bcf0ðkÞ, which is odd under time
reversal and, hence, they are forced to vanish. Therefore,
the only surviving terms are those associated with the Berry
curvature. By writing j0a ¼ χabcEbE%

c, j2ωa ¼ χabcEbEc, one
has [5]

χabc ¼ εadc
e3τ

2ð1þ iωτÞ

Z

k
ð∂bf0ÞΩd: ð8Þ

The presence of the factor ∂bf0 will guarantee that only
states close to the Fermi surface will contribute to the
integral in the low temperature limit, so that this response is
a Fermi liquid property [6]. Equation (8) can be rewritten as
follows:

χabc ¼ −εadc
e3τ

2ð1þ iωτÞ

Z

k
f0ð∂bΩdÞ: ð9Þ

This expression [Eq. (9)] for the nonlinear conductivity
tensor, χabc, is the first main result of this work. It shows
that χabc is proportional to the dipole moment of the Berry
curvature over the occupied states, defined as

Dab ¼
Z

k
f0ð∂aΩbÞ: ð10Þ

It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ ≫ 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of the
scattering time, so that χabc directly measures the quantum
geometry of the Bloch states. In the dc limit or for linearly
polarized electric fields, the Berry curvature dipole term
always produces a current that is orthogonal to the electric
field jaEa ¼ 0 [7].
To close this section, we wish to remark that there exist

additional second-order corrections to the current arising
from modifications to Eq. (2) that are intrinsic to the band
structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
ant systems. Other type of rectifications might arise in
systems with an inversion asymmetric scattering rate,
namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
ratchet effect [9]. These semiclassical Berry-phase indepen-
dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us

explore the constraints imposed by crystal point sym-
metries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Because
the Berry curvature is a pseudovector, the Berry curvature
dipole transforms as a pseudotensor. Hence, crystal sym-
metries impose constraints of the form

D ¼ detðSÞSDST: ð11Þ

To determine which components of this tensor are nonzero,
it is convenient to decompose it into symmetric and
antisymmetric parts, D& ¼ ðD&DTÞ=2, which transform
independently under symmetry operations. The antisym-
metric part of a pseudotensor transforms as a vector, as can
be verified from Eq. (11). The components of this vector
can be taken to be da ≡ ϵabcD−

bc=2. Therefore, for it to be
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Solve the Boltzmann	equation	to	the	second	order
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where EcðtÞ ¼ RefEceiωtg, with Ec ∈ C the driving
electric field which oscillates harmonically in time but
is uniform in space. In the relaxation time approximation,
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is [4]

−eτEa∂af þ τ∂tf ¼ f0 − f; ð5Þ

where f0 is the equilibrium distribution in the absence of
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to second order in the electric field; hence, we expand the
distribution up to second order: f ¼ Reff0 þ f1 þ f2g,
where the term fn is understood to vanish as En. One finds a
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iωt; fω1 ¼ eτEa∂af0

1þ iωτ
;

f2 ¼ f02 þ f2ω2 e2iωt; f02 ¼
ðeτÞ2E%

aEb∂abf0
2ð1þ iωτÞ

;

f2ω2 ¼ ðeτÞ2EaEb∂abf0
2ð1þ iωτÞð1þ 2iωτÞ

: ð6Þ
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k
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structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
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namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
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dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us
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To determine which components of this tensor are nonzero,
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Recently noncentrosymmetric metals were anticipated to exhibit a nonlinear Hall-like current and
as well as a dc current caused by the dipole moment of the Berry curvature in momentum space.
Weyl semimetals (WSMs) are expected to be excellent candidates to observe these nonlinear e↵ects,
for they carry large Berry curvature concentrating in small regions, i.e. near the Weyl points. We
combined ab inito calculations and the semiclassical approach to investigate the Berry curvature
dipole for two representative groups of materials, the TaAs-family type-I WSMs and MoTe2-family
type-II WSMs. Both types WSMs exhibit a large dipole moment of the Berry curvature, which
is in orders of magnitude larger than that of common metals or doped semiconductors, promising
remarkable nonlinear electric and optical properties. We revealed the optimal materials parameters
for these e↵ects, where the type-II WSM is usually superior to the type-I because of strongly tilted
Weyl cones.

Introduction – The Weyl semimetal (WSM) is a
topological state characterized by the linear band
crossing points called Weyl points near the Fermi energy.
WSM materials have recently been discovered primarily
by observing the unique Fermi arcs of the surface
states by angle-resolved photoemission spectroscopy,
such as the TaAs-family pnitictides and MoTe2. For
the Weyl points are monopole sources or drains of
the Berry curvature of of Bloch wave functions in the
momentum space, a WSM can exhibit an anomalous
Hall e↵ect as breaking the time-reversal symmetry (TRS)
and as well the intrinsic spin Hall e↵ect, as linear
responses to an external electric field. Recent theoretical
and experiment studies revealed giant nonlinear optical
responses in WSMs, e.g. the photocurrent from the
circular photogalvanic e↵ect (CPGE), second harmonic
generation (SHG) and nonlinear Hall e↵ect. These
nonlinear e↵ects are much stronger in WSMs than
traditional electro-optic materials, also owing to the large
Berry curvature.

Very recently, the intraband contributions to CPGE
and SHG are described as a Berry phase e↵ect by
a geometrical quantity, the Berry curvature dipole
(BCD), in the semiclassical approach. In the dc
limit, the photocurrent remains finite as a transverse
Hall-like current, i.e. a nonlinear Hall e↵ect. These
nonlinear e↵ects originate from the intraband resonant
transitions at a low frequency in a noncentrosymmetric
metal. Although they have played an important role
in predicting topological materials and estimate their
linear-response properties, ab initio studies on the
nonlinear optical e↵ects of WSMs are still missing [cite
Orenstein], to reveal quantitatively the role of the Weyl
points in realistic materials. Then the nonlinear response
was usually computed with mixed interband and intrand
transitions for conventional semiconductors, while it
requires an a ab initio scheme with the Berry phase
formalism to understand WSMs.

In this article, we study the BCD of Weyl semimetal
materials, TaAs-family type-I and MoTe2-family type-II
WSMs, and estimate their nonlinear optical responses
by ab initio calculations combined with the semiclassical
approach. Both types WSMs exhibit a large BCD
near the Weyl point, which is in orders of magnitude
larger than that of conventional materials. As as Fermi
surface property, the BCD favors tilted Weyl cones.
Thus, the type-II WSM is usually superior to the type-I.
Further, we reveal that some small gap regions with
highly concentrated Berry curvature can also contribute
to a large dipole in the absence of Weyl points.
The semiclassical theory – We first overview previous

theoretical work on the nonlinear optical response
described by the Berry curvature. [1–4] In CPGE, the
oscillating electric field E

c

(t) = Re{E
c

ei!t} of circularly
polarized light induces a dc photocurrent j (0) as a
second-order nonlinear optical e↵ect, j

(0)
a

= �
abc

E
b

E⇤
c

.
Similarly, the SHG is described by the second-harmonic
current response j (2!)e2i!t to a linearly polarized light,
where j

(2!)
a

= �
abc

E
b

E
c

. In the dc limit of a linearly
polarized field, a nonlinear Hall e↵ect is characterized by
a transverse current j

a

= 2j(0)
a

|
!!0 = 2�

abb

|E
b

|2. In a
material with TRS, the nonlinear response tensor � were
obtained theoretically as a Berry phase e↵ect [1, 2] and
very recently further described by the BCD [3] as follows,

�
abc

= �"
adc

e3⌧

2~2(1 + i!⌧)
D

bd

(1)

D
bd

=

Z

k

f0
@⌦

d
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b
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where D
bd

is the BCD, ⌦
d

is the Berry curvature, f0
is the equilibrium Fermi-Dirac distribution, ⌧ refers to
the relaxation time approximation in the Boltzmann
equation, "

adc

stand for the third rank Levi-Civita
symbol, and ~ is the reduced Planck constant. One can
find that D

bd

is a Fermi surface e↵ect that is intrinsic to
the band structure, and becomes dimensionless in three
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It is well known that a nonvanishing Hall conductivity requires broken time-reversal symmetry.
However, in this work, we demonstrate that Hall-like currents can occur in second-order response to
external electric fields in a wide class of time-reversal invariant and inversion breaking materials, at both
zero and twice the driving frequency. This nonlinear Hall effect has a quantum origin arising from the
dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when
the system is in a current-carrying state. The nonlinear Hall coefficient is a rank-two pseudotensor, whose
form is determined by point group symmetry. We discus optimal conditions to observe this effect and
propose candidate two- and three-dimensional materials, including topological crystalline insulators,
transition metal dichalcogenides, and Weyl semimetals.
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Introduction.—The Hall conductivity of an electron
system whose Hamiltonian is invariant under time-reversal
symmetry is forced to vanish. Crystals with sufficiently low
symmetry can have resistivity tensors which are aniso-
tropic, but Onsager’s reciprocity relations [1] force the
conductivity to be a symmetric tensor in the presence of
time-reversal symmetry. Hence, when the electric field is
along its principal axes the current and the electric field are
collinear, at least to the first order in electric fields.
However, this constraint is only about the linear response
and does not necessarily enforce the full current to flow
collinearly with the local electric field.
In this Letter we study a special type of such nonlinear

Hall-like currents. We will demonstrate that metals without
inversion symmetry can have a nonlinear Hall-like current
arising from the Berry curvature in momentum space. The
conventional Hall conductivity can be viewed as the zero-
order moment of the Berry curvature over occupied states,
namely, as an integral of the Berry curvature within the
metal’s Fermi surface. The effect we discuss here is
determined by a pseudotensorial quantity that measures
a first-order moment of the Berry curvature over the
occupied states, and hence we call it the Berry curvature
dipole. This nonlinear Hall effect has a quantum origin
arising from the anomalous velocity of Bloch electrons
generated by the Berry curvature [2], but it is not expected
to be quantized.
In a time-reversal invariant system, the Berry curvature is

odd in momentum space, ΩaðkÞ ¼ −Ωað−kÞ, and hence its
integral weighed by the equilibrium Fermi distribution is
forced to vanish, because Kramers pair states at k and −k
are equally occupied. However, the second-order response
is determined by the integral of the Berry curvature
evaluated in the nonequilibrium distribution of electrons
computed to first order in the electric field. Since the

nonequilibrium current-carrying distribution is not sym-
metric under k → −k, the integral of the Berry curvature
weighed by it can be finite, leading to a net anomalous
velocity and hence a transverse current.
Our study builds upon a seminal work by Moore and

Orenstein [3], which predicted a dc photocurrent in
quantum wells without inversion symmetry due to the
anomalous velocity associated with the Berry phase. The
quantum nonlinear Hall effect presented here can be
regarded as a generalization of this effect. We predict that
an oscillating electric field can generate a transverse current
at both zero and twice the frequency in two- and three-
dimensional materials with a large class of crystal point
group symmetries. In particular, the second harmonic
generation is a distinctive signature that may facilitate
the experimental detection of the quantum nonlinear Hall
effect. Additionally, the effect does remain finite in the dc
limit of the applied electric field.
General theory.—The electric current density is given by

the integral of the physical velocity of the electrons va
weighed by their occupation function fðkÞ:

ja ¼ −e
Z

k
fðkÞva: ð1Þ

For simplicity, we imagine a single band system but allow it
to be two or three dimensional:

R
k ≡

R
ddk=ð2πÞd. The

velocity contains two contributions, namely, the group
velocity of the electron wave and the anomalous velocity
arising from the Berry curvature [2] (ℏ ¼ 1):

va ¼ ∂aϵðkÞ þ εabcΩb
_kc; ð2Þ

where ∂a ¼ ∂=∂ka , ϵ and Ωb are the energy dispersion and
the Berry curvature of the electrons in question:
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It is well known that a nonvanishing Hall conductivity requires broken time-reversal symmetry.
However, in this work, we demonstrate that Hall-like currents can occur in second-order response to
external electric fields in a wide class of time-reversal invariant and inversion breaking materials, at both
zero and twice the driving frequency. This nonlinear Hall effect has a quantum origin arising from the
dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when
the system is in a current-carrying state. The nonlinear Hall coefficient is a rank-two pseudotensor, whose
form is determined by point group symmetry. We discus optimal conditions to observe this effect and
propose candidate two- and three-dimensional materials, including topological crystalline insulators,
transition metal dichalcogenides, and Weyl semimetals.
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Introduction.—The Hall conductivity of an electron
system whose Hamiltonian is invariant under time-reversal
symmetry is forced to vanish. Crystals with sufficiently low
symmetry can have resistivity tensors which are aniso-
tropic, but Onsager’s reciprocity relations [1] force the
conductivity to be a symmetric tensor in the presence of
time-reversal symmetry. Hence, when the electric field is
along its principal axes the current and the electric field are
collinear, at least to the first order in electric fields.
However, this constraint is only about the linear response
and does not necessarily enforce the full current to flow
collinearly with the local electric field.
In this Letter we study a special type of such nonlinear

Hall-like currents. We will demonstrate that metals without
inversion symmetry can have a nonlinear Hall-like current
arising from the Berry curvature in momentum space. The
conventional Hall conductivity can be viewed as the zero-
order moment of the Berry curvature over occupied states,
namely, as an integral of the Berry curvature within the
metal’s Fermi surface. The effect we discuss here is
determined by a pseudotensorial quantity that measures
a first-order moment of the Berry curvature over the
occupied states, and hence we call it the Berry curvature
dipole. This nonlinear Hall effect has a quantum origin
arising from the anomalous velocity of Bloch electrons
generated by the Berry curvature [2], but it is not expected
to be quantized.
In a time-reversal invariant system, the Berry curvature is

odd in momentum space, ΩaðkÞ ¼ −Ωað−kÞ, and hence its
integral weighed by the equilibrium Fermi distribution is
forced to vanish, because Kramers pair states at k and −k
are equally occupied. However, the second-order response
is determined by the integral of the Berry curvature
evaluated in the nonequilibrium distribution of electrons
computed to first order in the electric field. Since the

nonequilibrium current-carrying distribution is not sym-
metric under k → −k, the integral of the Berry curvature
weighed by it can be finite, leading to a net anomalous
velocity and hence a transverse current.
Our study builds upon a seminal work by Moore and

Orenstein [3], which predicted a dc photocurrent in
quantum wells without inversion symmetry due to the
anomalous velocity associated with the Berry phase. The
quantum nonlinear Hall effect presented here can be
regarded as a generalization of this effect. We predict that
an oscillating electric field can generate a transverse current
at both zero and twice the frequency in two- and three-
dimensional materials with a large class of crystal point
group symmetries. In particular, the second harmonic
generation is a distinctive signature that may facilitate
the experimental detection of the quantum nonlinear Hall
effect. Additionally, the effect does remain finite in the dc
limit of the applied electric field.
General theory.—The electric current density is given by

the integral of the physical velocity of the electrons va
weighed by their occupation function fðkÞ:

ja ¼ −e
Z

k
fðkÞva: ð1Þ

For simplicity, we imagine a single band system but allow it
to be two or three dimensional:

R
k ≡

R
ddk=ð2πÞd. The

velocity contains two contributions, namely, the group
velocity of the electron wave and the anomalous velocity
arising from the Berry curvature [2] (ℏ ¼ 1):

va ¼ ∂aϵðkÞ þ εabcΩb
_kc; ð2Þ

where ∂a ¼ ∂=∂ka , ϵ and Ωb are the energy dispersion and
the Berry curvature of the electrons in question:
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Anomalous	velocity	

Ωa ≡ εabc∂bAc; Ac ≡ −ihukj∂cjuki: ð3Þ

Within the Boltzmann picture of transport, the canonical
momentum of electrons changes in time in response to the
external electromagnetic fields. In the absence of external
magnetic fields, the change of momentum is

_kc ¼ −eEcðtÞ; ð4Þ

where EcðtÞ ¼ RefEceiωtg, with Ec ∈ C the driving
electric field which oscillates harmonically in time but
is uniform in space. In the relaxation time approximation,
the Boltzmann equation for the distribution of electrons
is [4]

−eτEa∂af þ τ∂tf ¼ f0 − f; ð5Þ

where f0 is the equilibrium distribution in the absence of
external fields. We are interested in computing the response
to second order in the electric field; hence, we expand the
distribution up to second order: f ¼ Reff0 þ f1 þ f2g,
where the term fn is understood to vanish as En. One finds a
recursive structure:

f1 ¼ fω1 e
iωt; fω1 ¼ eτEa∂af0

1þ iωτ
;

f2 ¼ f02 þ f2ω2 e2iωt; f02 ¼
ðeτÞ2E%

aEb∂abf0
2ð1þ iωτÞ

;

f2ω2 ¼ ðeτÞ2EaEb∂abf0
2ð1þ iωτÞð1þ 2iωτÞ

: ð6Þ

Writing the current as ja ¼ Refj0a þ j2ωa e2iωtg, one obtains

j0a ¼
e2

2

Z

k
εabcΩbE%

cfω1 − e
Z

k
f02∂aϵðkÞ;

j2ωa ¼ e2

2

Z

k
εabcΩbEcfω1 − e

Z

k
f2ω2 ∂aϵðkÞ: ð7Þ

The term j0a describes a rectified current while the term
j2ωa describes the second harmonic. The second terms that
appear in Eq. (7) are completely semiclassical and do not
require the presence of Berry curvature. However, within
the approximation of a constant τ, one finds that these
nonlinear terms are proportional to the integral of a three-
index tensor, ∂aϵðkÞ∂bcf0ðkÞ, which is odd under time
reversal and, hence, they are forced to vanish. Therefore,
the only surviving terms are those associated with the Berry
curvature. By writing j0a ¼ χabcEbE%

c, j2ωa ¼ χabcEbEc, one
has [5]

χabc ¼ εadc
e3τ

2ð1þ iωτÞ

Z

k
ð∂bf0ÞΩd: ð8Þ

The presence of the factor ∂bf0 will guarantee that only
states close to the Fermi surface will contribute to the
integral in the low temperature limit, so that this response is
a Fermi liquid property [6]. Equation (8) can be rewritten as
follows:

χabc ¼ −εadc
e3τ

2ð1þ iωτÞ

Z

k
f0ð∂bΩdÞ: ð9Þ

This expression [Eq. (9)] for the nonlinear conductivity
tensor, χabc, is the first main result of this work. It shows
that χabc is proportional to the dipole moment of the Berry
curvature over the occupied states, defined as

Dab ¼
Z

k
f0ð∂aΩbÞ: ð10Þ

It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ ≫ 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of the
scattering time, so that χabc directly measures the quantum
geometry of the Bloch states. In the dc limit or for linearly
polarized electric fields, the Berry curvature dipole term
always produces a current that is orthogonal to the electric
field jaEa ¼ 0 [7].
To close this section, we wish to remark that there exist

additional second-order corrections to the current arising
from modifications to Eq. (2) that are intrinsic to the band
structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
ant systems. Other type of rectifications might arise in
systems with an inversion asymmetric scattering rate,
namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
ratchet effect [9]. These semiclassical Berry-phase indepen-
dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us

explore the constraints imposed by crystal point sym-
metries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Because
the Berry curvature is a pseudovector, the Berry curvature
dipole transforms as a pseudotensor. Hence, crystal sym-
metries impose constraints of the form

D ¼ detðSÞSDST: ð11Þ

To determine which components of this tensor are nonzero,
it is convenient to decompose it into symmetric and
antisymmetric parts, D& ¼ ðD&DTÞ=2, which transform
independently under symmetry operations. The antisym-
metric part of a pseudotensor transforms as a vector, as can
be verified from Eq. (11). The components of this vector
can be taken to be da ≡ ϵabcD−

bc=2. Therefore, for it to be
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Ωa ≡ εabc∂bAc; Ac ≡ −ihukj∂cjuki: ð3Þ

Within the Boltzmann picture of transport, the canonical
momentum of electrons changes in time in response to the
external electromagnetic fields. In the absence of external
magnetic fields, the change of momentum is

_kc ¼ −eEcðtÞ; ð4Þ

where EcðtÞ ¼ RefEceiωtg, with Ec ∈ C the driving
electric field which oscillates harmonically in time but
is uniform in space. In the relaxation time approximation,
the Boltzmann equation for the distribution of electrons
is [4]

−eτEa∂af þ τ∂tf ¼ f0 − f; ð5Þ

where f0 is the equilibrium distribution in the absence of
external fields. We are interested in computing the response
to second order in the electric field; hence, we expand the
distribution up to second order: f ¼ Reff0 þ f1 þ f2g,
where the term fn is understood to vanish as En. One finds a
recursive structure:

f1 ¼ fω1 e
iωt; fω1 ¼ eτEa∂af0

1þ iωτ
;

f2 ¼ f02 þ f2ω2 e2iωt; f02 ¼
ðeτÞ2E%

aEb∂abf0
2ð1þ iωτÞ

;

f2ω2 ¼ ðeτÞ2EaEb∂abf0
2ð1þ iωτÞð1þ 2iωτÞ

: ð6Þ

Writing the current as ja ¼ Refj0a þ j2ωa e2iωtg, one obtains

j0a ¼
e2

2

Z

k
εabcΩbE%

cfω1 − e
Z

k
f02∂aϵðkÞ;

j2ωa ¼ e2

2

Z

k
εabcΩbEcfω1 − e

Z

k
f2ω2 ∂aϵðkÞ: ð7Þ

The term j0a describes a rectified current while the term
j2ωa describes the second harmonic. The second terms that
appear in Eq. (7) are completely semiclassical and do not
require the presence of Berry curvature. However, within
the approximation of a constant τ, one finds that these
nonlinear terms are proportional to the integral of a three-
index tensor, ∂aϵðkÞ∂bcf0ðkÞ, which is odd under time
reversal and, hence, they are forced to vanish. Therefore,
the only surviving terms are those associated with the Berry
curvature. By writing j0a ¼ χabcEbE%

c, j2ωa ¼ χabcEbEc, one
has [5]

χabc ¼ εadc
e3τ

2ð1þ iωτÞ

Z

k
ð∂bf0ÞΩd: ð8Þ

The presence of the factor ∂bf0 will guarantee that only
states close to the Fermi surface will contribute to the
integral in the low temperature limit, so that this response is
a Fermi liquid property [6]. Equation (8) can be rewritten as
follows:

χabc ¼ −εadc
e3τ

2ð1þ iωτÞ

Z

k
f0ð∂bΩdÞ: ð9Þ

This expression [Eq. (9)] for the nonlinear conductivity
tensor, χabc, is the first main result of this work. It shows
that χabc is proportional to the dipole moment of the Berry
curvature over the occupied states, defined as

Dab ¼
Z

k
f0ð∂aΩbÞ: ð10Þ

It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ ≫ 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of the
scattering time, so that χabc directly measures the quantum
geometry of the Bloch states. In the dc limit or for linearly
polarized electric fields, the Berry curvature dipole term
always produces a current that is orthogonal to the electric
field jaEa ¼ 0 [7].
To close this section, we wish to remark that there exist

additional second-order corrections to the current arising
from modifications to Eq. (2) that are intrinsic to the band
structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
ant systems. Other type of rectifications might arise in
systems with an inversion asymmetric scattering rate,
namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
ratchet effect [9]. These semiclassical Berry-phase indepen-
dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us

explore the constraints imposed by crystal point sym-
metries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Because
the Berry curvature is a pseudovector, the Berry curvature
dipole transforms as a pseudotensor. Hence, crystal sym-
metries impose constraints of the form

D ¼ detðSÞSDST: ð11Þ

To determine which components of this tensor are nonzero,
it is convenient to decompose it into symmetric and
antisymmetric parts, D& ¼ ðD&DTÞ=2, which transform
independently under symmetry operations. The antisym-
metric part of a pseudotensor transforms as a vector, as can
be verified from Eq. (11). The components of this vector
can be taken to be da ≡ ϵabcD−

bc=2. Therefore, for it to be
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Light	field	

Ωa ≡ εabc∂bAc; Ac ≡ −ihukj∂cjuki: ð3Þ

Within the Boltzmann picture of transport, the canonical
momentum of electrons changes in time in response to the
external electromagnetic fields. In the absence of external
magnetic fields, the change of momentum is

_kc ¼ −eEcðtÞ; ð4Þ

where EcðtÞ ¼ RefEceiωtg, with Ec ∈ C the driving
electric field which oscillates harmonically in time but
is uniform in space. In the relaxation time approximation,
the Boltzmann equation for the distribution of electrons
is [4]

−eτEa∂af þ τ∂tf ¼ f0 − f; ð5Þ

where f0 is the equilibrium distribution in the absence of
external fields. We are interested in computing the response
to second order in the electric field; hence, we expand the
distribution up to second order: f ¼ Reff0 þ f1 þ f2g,
where the term fn is understood to vanish as En. One finds a
recursive structure:

f1 ¼ fω1 e
iωt; fω1 ¼ eτEa∂af0

1þ iωτ
;

f2 ¼ f02 þ f2ω2 e2iωt; f02 ¼
ðeτÞ2E%

aEb∂abf0
2ð1þ iωτÞ

;

f2ω2 ¼ ðeτÞ2EaEb∂abf0
2ð1þ iωτÞð1þ 2iωτÞ

: ð6Þ

Writing the current as ja ¼ Refj0a þ j2ωa e2iωtg, one obtains

j0a ¼
e2

2

Z

k
εabcΩbE%

cfω1 − e
Z

k
f02∂aϵðkÞ;

j2ωa ¼ e2

2

Z

k
εabcΩbEcfω1 − e

Z

k
f2ω2 ∂aϵðkÞ: ð7Þ

The term j0a describes a rectified current while the term
j2ωa describes the second harmonic. The second terms that
appear in Eq. (7) are completely semiclassical and do not
require the presence of Berry curvature. However, within
the approximation of a constant τ, one finds that these
nonlinear terms are proportional to the integral of a three-
index tensor, ∂aϵðkÞ∂bcf0ðkÞ, which is odd under time
reversal and, hence, they are forced to vanish. Therefore,
the only surviving terms are those associated with the Berry
curvature. By writing j0a ¼ χabcEbE%

c, j2ωa ¼ χabcEbEc, one
has [5]

χabc ¼ εadc
e3τ

2ð1þ iωτÞ

Z

k
ð∂bf0ÞΩd: ð8Þ

The presence of the factor ∂bf0 will guarantee that only
states close to the Fermi surface will contribute to the
integral in the low temperature limit, so that this response is
a Fermi liquid property [6]. Equation (8) can be rewritten as
follows:

χabc ¼ −εadc
e3τ

2ð1þ iωτÞ

Z

k
f0ð∂bΩdÞ: ð9Þ

This expression [Eq. (9)] for the nonlinear conductivity
tensor, χabc, is the first main result of this work. It shows
that χabc is proportional to the dipole moment of the Berry
curvature over the occupied states, defined as

Dab ¼
Z

k
f0ð∂aΩbÞ: ð10Þ

It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ ≫ 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of the
scattering time, so that χabc directly measures the quantum
geometry of the Bloch states. In the dc limit or for linearly
polarized electric fields, the Berry curvature dipole term
always produces a current that is orthogonal to the electric
field jaEa ¼ 0 [7].
To close this section, we wish to remark that there exist

additional second-order corrections to the current arising
from modifications to Eq. (2) that are intrinsic to the band
structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
ant systems. Other type of rectifications might arise in
systems with an inversion asymmetric scattering rate,
namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
ratchet effect [9]. These semiclassical Berry-phase indepen-
dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us

explore the constraints imposed by crystal point sym-
metries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Because
the Berry curvature is a pseudovector, the Berry curvature
dipole transforms as a pseudotensor. Hence, crystal sym-
metries impose constraints of the form

D ¼ detðSÞSDST: ð11Þ

To determine which components of this tensor are nonzero,
it is convenient to decompose it into symmetric and
antisymmetric parts, D& ¼ ðD&DTÞ=2, which transform
independently under symmetry operations. The antisym-
metric part of a pseudotensor transforms as a vector, as can
be verified from Eq. (11). The components of this vector
can be taken to be da ≡ ϵabcD−

bc=2. Therefore, for it to be
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Solve the Boltzmann	equation	to	the	second	order

Ωa ≡ εabc∂bAc; Ac ≡ −ihukj∂cjuki: ð3Þ

Within the Boltzmann picture of transport, the canonical
momentum of electrons changes in time in response to the
external electromagnetic fields. In the absence of external
magnetic fields, the change of momentum is

_kc ¼ −eEcðtÞ; ð4Þ

where EcðtÞ ¼ RefEceiωtg, with Ec ∈ C the driving
electric field which oscillates harmonically in time but
is uniform in space. In the relaxation time approximation,
the Boltzmann equation for the distribution of electrons
is [4]

−eτEa∂af þ τ∂tf ¼ f0 − f; ð5Þ

where f0 is the equilibrium distribution in the absence of
external fields. We are interested in computing the response
to second order in the electric field; hence, we expand the
distribution up to second order: f ¼ Reff0 þ f1 þ f2g,
where the term fn is understood to vanish as En. One finds a
recursive structure:

f1 ¼ fω1 e
iωt; fω1 ¼ eτEa∂af0

1þ iωτ
;

f2 ¼ f02 þ f2ω2 e2iωt; f02 ¼
ðeτÞ2E%

aEb∂abf0
2ð1þ iωτÞ

;

f2ω2 ¼ ðeτÞ2EaEb∂abf0
2ð1þ iωτÞð1þ 2iωτÞ

: ð6Þ

Writing the current as ja ¼ Refj0a þ j2ωa e2iωtg, one obtains

j0a ¼
e2

2

Z

k
εabcΩbE%

cfω1 − e
Z

k
f02∂aϵðkÞ;

j2ωa ¼ e2

2

Z

k
εabcΩbEcfω1 − e

Z

k
f2ω2 ∂aϵðkÞ: ð7Þ

The term j0a describes a rectified current while the term
j2ωa describes the second harmonic. The second terms that
appear in Eq. (7) are completely semiclassical and do not
require the presence of Berry curvature. However, within
the approximation of a constant τ, one finds that these
nonlinear terms are proportional to the integral of a three-
index tensor, ∂aϵðkÞ∂bcf0ðkÞ, which is odd under time
reversal and, hence, they are forced to vanish. Therefore,
the only surviving terms are those associated with the Berry
curvature. By writing j0a ¼ χabcEbE%

c, j2ωa ¼ χabcEbEc, one
has [5]

χabc ¼ εadc
e3τ

2ð1þ iωτÞ

Z

k
ð∂bf0ÞΩd: ð8Þ

The presence of the factor ∂bf0 will guarantee that only
states close to the Fermi surface will contribute to the
integral in the low temperature limit, so that this response is
a Fermi liquid property [6]. Equation (8) can be rewritten as
follows:

χabc ¼ −εadc
e3τ

2ð1þ iωτÞ

Z

k
f0ð∂bΩdÞ: ð9Þ

This expression [Eq. (9)] for the nonlinear conductivity
tensor, χabc, is the first main result of this work. It shows
that χabc is proportional to the dipole moment of the Berry
curvature over the occupied states, defined as

Dab ¼
Z

k
f0ð∂aΩbÞ: ð10Þ

It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ ≫ 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of the
scattering time, so that χabc directly measures the quantum
geometry of the Bloch states. In the dc limit or for linearly
polarized electric fields, the Berry curvature dipole term
always produces a current that is orthogonal to the electric
field jaEa ¼ 0 [7].
To close this section, we wish to remark that there exist

additional second-order corrections to the current arising
from modifications to Eq. (2) that are intrinsic to the band
structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
ant systems. Other type of rectifications might arise in
systems with an inversion asymmetric scattering rate,
namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
ratchet effect [9]. These semiclassical Berry-phase indepen-
dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us

explore the constraints imposed by crystal point sym-
metries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Because
the Berry curvature is a pseudovector, the Berry curvature
dipole transforms as a pseudotensor. Hence, crystal sym-
metries impose constraints of the form

D ¼ detðSÞSDST: ð11Þ

To determine which components of this tensor are nonzero,
it is convenient to decompose it into symmetric and
antisymmetric parts, D& ¼ ðD&DTÞ=2, which transform
independently under symmetry operations. The antisym-
metric part of a pseudotensor transforms as a vector, as can
be verified from Eq. (11). The components of this vector
can be taken to be da ≡ ϵabcD−

bc=2. Therefore, for it to be
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Ωa ≡ εabc∂bAc; Ac ≡ −ihukj∂cjuki: ð3Þ

Within the Boltzmann picture of transport, the canonical
momentum of electrons changes in time in response to the
external electromagnetic fields. In the absence of external
magnetic fields, the change of momentum is

_kc ¼ −eEcðtÞ; ð4Þ

where EcðtÞ ¼ RefEceiωtg, with Ec ∈ C the driving
electric field which oscillates harmonically in time but
is uniform in space. In the relaxation time approximation,
the Boltzmann equation for the distribution of electrons
is [4]

−eτEa∂af þ τ∂tf ¼ f0 − f; ð5Þ

where f0 is the equilibrium distribution in the absence of
external fields. We are interested in computing the response
to second order in the electric field; hence, we expand the
distribution up to second order: f ¼ Reff0 þ f1 þ f2g,
where the term fn is understood to vanish as En. One finds a
recursive structure:

f1 ¼ fω1 e
iωt; fω1 ¼ eτEa∂af0

1þ iωτ
;

f2 ¼ f02 þ f2ω2 e2iωt; f02 ¼
ðeτÞ2E%

aEb∂abf0
2ð1þ iωτÞ

;

f2ω2 ¼ ðeτÞ2EaEb∂abf0
2ð1þ iωτÞð1þ 2iωτÞ

: ð6Þ

Writing the current as ja ¼ Refj0a þ j2ωa e2iωtg, one obtains

j0a ¼
e2

2

Z

k
εabcΩbE%

cfω1 − e
Z

k
f02∂aϵðkÞ;

j2ωa ¼ e2

2

Z

k
εabcΩbEcfω1 − e

Z

k
f2ω2 ∂aϵðkÞ: ð7Þ

The term j0a describes a rectified current while the term
j2ωa describes the second harmonic. The second terms that
appear in Eq. (7) are completely semiclassical and do not
require the presence of Berry curvature. However, within
the approximation of a constant τ, one finds that these
nonlinear terms are proportional to the integral of a three-
index tensor, ∂aϵðkÞ∂bcf0ðkÞ, which is odd under time
reversal and, hence, they are forced to vanish. Therefore,
the only surviving terms are those associated with the Berry
curvature. By writing j0a ¼ χabcEbE%

c, j2ωa ¼ χabcEbEc, one
has [5]

χabc ¼ εadc
e3τ

2ð1þ iωτÞ

Z

k
ð∂bf0ÞΩd: ð8Þ

The presence of the factor ∂bf0 will guarantee that only
states close to the Fermi surface will contribute to the
integral in the low temperature limit, so that this response is
a Fermi liquid property [6]. Equation (8) can be rewritten as
follows:

χabc ¼ −εadc
e3τ

2ð1þ iωτÞ

Z

k
f0ð∂bΩdÞ: ð9Þ

This expression [Eq. (9)] for the nonlinear conductivity
tensor, χabc, is the first main result of this work. It shows
that χabc is proportional to the dipole moment of the Berry
curvature over the occupied states, defined as

Dab ¼
Z

k
f0ð∂aΩbÞ: ð10Þ

It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ ≫ 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of the
scattering time, so that χabc directly measures the quantum
geometry of the Bloch states. In the dc limit or for linearly
polarized electric fields, the Berry curvature dipole term
always produces a current that is orthogonal to the electric
field jaEa ¼ 0 [7].
To close this section, we wish to remark that there exist

additional second-order corrections to the current arising
from modifications to Eq. (2) that are intrinsic to the band
structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
ant systems. Other type of rectifications might arise in
systems with an inversion asymmetric scattering rate,
namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
ratchet effect [9]. These semiclassical Berry-phase indepen-
dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us

explore the constraints imposed by crystal point sym-
metries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Because
the Berry curvature is a pseudovector, the Berry curvature
dipole transforms as a pseudotensor. Hence, crystal sym-
metries impose constraints of the form

D ¼ detðSÞSDST: ð11Þ

To determine which components of this tensor are nonzero,
it is convenient to decompose it into symmetric and
antisymmetric parts, D& ¼ ðD&DTÞ=2, which transform
independently under symmetry operations. The antisym-
metric part of a pseudotensor transforms as a vector, as can
be verified from Eq. (11). The components of this vector
can be taken to be da ≡ ϵabcD−

bc=2. Therefore, for it to be
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Recently noncentrosymmetric metals were anticipated to exhibit a nonlinear Hall-like current and
as well as a dc current caused by the dipole moment of the Berry curvature in momentum space.
Weyl semimetals (WSMs) are expected to be excellent candidates to observe these nonlinear e↵ects,
for they carry large Berry curvature concentrating in small regions, i.e. near the Weyl points. We
combined ab inito calculations and the semiclassical approach to investigate the Berry curvature
dipole for two representative groups of materials, the TaAs-family type-I WSMs and MoTe2-family
type-II WSMs. Both types WSMs exhibit a large dipole moment of the Berry curvature, which
is in orders of magnitude larger than that of common metals or doped semiconductors, promising
remarkable nonlinear electric and optical properties. We revealed the optimal materials parameters
for these e↵ects, where the type-II WSM is usually superior to the type-I because of strongly tilted
Weyl cones.

Introduction – The Weyl semimetal (WSM) is a
topological state characterized by the linear band
crossing points called Weyl points near the Fermi energy.
WSM materials have recently been discovered primarily
by observing the unique Fermi arcs of the surface
states by angle-resolved photoemission spectroscopy,
such as the TaAs-family pnitictides and MoTe2. For
the Weyl points are monopole sources or drains of
the Berry curvature of of Bloch wave functions in the
momentum space, a WSM can exhibit an anomalous
Hall e↵ect as breaking the time-reversal symmetry (TRS)
and as well the intrinsic spin Hall e↵ect, as linear
responses to an external electric field. Recent theoretical
and experiment studies revealed giant nonlinear optical
responses in WSMs, e.g. the photocurrent from the
circular photogalvanic e↵ect (CPGE), second harmonic
generation (SHG) and nonlinear Hall e↵ect. These
nonlinear e↵ects are much stronger in WSMs than
traditional electro-optic materials, also owing to the large
Berry curvature.

Very recently, the intraband contributions to CPGE
and SHG are described as a Berry phase e↵ect by
a geometrical quantity, the Berry curvature dipole
(BCD), in the semiclassical approach. In the dc
limit, the photocurrent remains finite as a transverse
Hall-like current, i.e. a nonlinear Hall e↵ect. These
nonlinear e↵ects originate from the intraband resonant
transitions at a low frequency in a noncentrosymmetric
metal. Although they have played an important role
in predicting topological materials and estimate their
linear-response properties, ab initio studies on the
nonlinear optical e↵ects of WSMs are still missing [cite
Orenstein], to reveal quantitatively the role of the Weyl
points in realistic materials. Then the nonlinear response
was usually computed with mixed interband and intrand
transitions for conventional semiconductors, while it
requires an a ab initio scheme with the Berry phase
formalism to understand WSMs.

In this article, we study the BCD of Weyl semimetal
materials, TaAs-family type-I and MoTe2-family type-II
WSMs, and estimate their nonlinear optical responses
by ab initio calculations combined with the semiclassical
approach. Both types WSMs exhibit a large BCD
near the Weyl point, which is in orders of magnitude
larger than that of conventional materials. As as Fermi
surface property, the BCD favors tilted Weyl cones.
Thus, the type-II WSM is usually superior to the type-I.
Further, we reveal that some small gap regions with
highly concentrated Berry curvature can also contribute
to a large dipole in the absence of Weyl points.
The semiclassical theory – We first overview previous

theoretical work on the nonlinear optical response
described by the Berry curvature. [1–4] In CPGE, the
oscillating electric field E

c
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ei!t} of circularly
polarized light induces a dc photocurrent j (0) as a
second-order nonlinear optical e↵ect, j
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Similarly, the SHG is described by the second-harmonic
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|2. In a
material with TRS, the nonlinear response tensor � were
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d

is the Berry curvature, f0
is the equilibrium Fermi-Dirac distribution, ⌧ refers to
the relaxation time approximation in the Boltzmann
equation, "
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stand for the third rank Levi-Civita
symbol, and ~ is the reduced Planck constant. One can
find that D

bd

is a Fermi surface e↵ect that is intrinsic to
the band structure, and becomes dimensionless in three
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responses in WSMs, e.g. the photocurrent from the
circular photogalvanic e↵ect (CPGE), second harmonic
generation (SHG) and nonlinear Hall e↵ect. These
nonlinear e↵ects are much stronger in WSMs than
traditional electro-optic materials, also owing to the large
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Very recently, the intraband contributions to CPGE
and SHG are described as a Berry phase e↵ect by
a geometrical quantity, the Berry curvature dipole
(BCD), in the semiclassical approach. In the dc
limit, the photocurrent remains finite as a transverse
Hall-like current, i.e. a nonlinear Hall e↵ect. These
nonlinear e↵ects originate from the intraband resonant
transitions at a low frequency in a noncentrosymmetric
metal. Although they have played an important role
in predicting topological materials and estimate their
linear-response properties, ab initio studies on the
nonlinear optical e↵ects of WSMs are still missing [cite
Orenstein], to reveal quantitatively the role of the Weyl
points in realistic materials. Then the nonlinear response
was usually computed with mixed interband and intrand
transitions for conventional semiconductors, while it
requires an a ab initio scheme with the Berry phase
formalism to understand WSMs.

In this article, we study the BCD of Weyl semimetal
materials, TaAs-family type-I and MoTe2-family type-II
WSMs, and estimate their nonlinear optical responses
by ab initio calculations combined with the semiclassical
approach. Both types WSMs exhibit a large BCD
near the Weyl point, which is in orders of magnitude
larger than that of conventional materials. As as Fermi
surface property, the BCD favors tilted Weyl cones.
Thus, the type-II WSM is usually superior to the type-I.
Further, we reveal that some small gap regions with
highly concentrated Berry curvature can also contribute
to a large dipole in the absence of Weyl points.
The semiclassical theory – We first overview previous

theoretical work on the nonlinear optical response
described by the Berry curvature. [1–4] In CPGE, the
oscillating electric field E
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equation, "
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find that D
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the band structure, and becomes dimensionless in three

Ωa ≡ εabc∂bAc; Ac ≡ −ihukj∂cjuki: ð3Þ

Within the Boltzmann picture of transport, the canonical
momentum of electrons changes in time in response to the
external electromagnetic fields. In the absence of external
magnetic fields, the change of momentum is

_kc ¼ −eEcðtÞ; ð4Þ

where EcðtÞ ¼ RefEceiωtg, with Ec ∈ C the driving
electric field which oscillates harmonically in time but
is uniform in space. In the relaxation time approximation,
the Boltzmann equation for the distribution of electrons
is [4]

−eτEa∂af þ τ∂tf ¼ f0 − f; ð5Þ

where f0 is the equilibrium distribution in the absence of
external fields. We are interested in computing the response
to second order in the electric field; hence, we expand the
distribution up to second order: f ¼ Reff0 þ f1 þ f2g,
where the term fn is understood to vanish as En. One finds a
recursive structure:

f1 ¼ fω1 e
iωt; fω1 ¼ eτEa∂af0

1þ iωτ
;

f2 ¼ f02 þ f2ω2 e2iωt; f02 ¼
ðeτÞ2E%

aEb∂abf0
2ð1þ iωτÞ

;

f2ω2 ¼ ðeτÞ2EaEb∂abf0
2ð1þ iωτÞð1þ 2iωτÞ

: ð6Þ

Writing the current as ja ¼ Refj0a þ j2ωa e2iωtg, one obtains

j0a ¼
e2

2

Z

k
εabcΩbE%

cfω1 − e
Z

k
f02∂aϵðkÞ;

j2ωa ¼ e2

2

Z

k
εabcΩbEcfω1 − e

Z

k
f2ω2 ∂aϵðkÞ: ð7Þ

The term j0a describes a rectified current while the term
j2ωa describes the second harmonic. The second terms that
appear in Eq. (7) are completely semiclassical and do not
require the presence of Berry curvature. However, within
the approximation of a constant τ, one finds that these
nonlinear terms are proportional to the integral of a three-
index tensor, ∂aϵðkÞ∂bcf0ðkÞ, which is odd under time
reversal and, hence, they are forced to vanish. Therefore,
the only surviving terms are those associated with the Berry
curvature. By writing j0a ¼ χabcEbE%

c, j2ωa ¼ χabcEbEc, one
has [5]

χabc ¼ εadc
e3τ

2ð1þ iωτÞ

Z

k
ð∂bf0ÞΩd: ð8Þ

The presence of the factor ∂bf0 will guarantee that only
states close to the Fermi surface will contribute to the
integral in the low temperature limit, so that this response is
a Fermi liquid property [6]. Equation (8) can be rewritten as
follows:

χabc ¼ −εadc
e3τ

2ð1þ iωτÞ

Z

k
f0ð∂bΩdÞ: ð9Þ

This expression [Eq. (9)] for the nonlinear conductivity
tensor, χabc, is the first main result of this work. It shows
that χabc is proportional to the dipole moment of the Berry
curvature over the occupied states, defined as

Dab ¼
Z

k
f0ð∂aΩbÞ: ð10Þ

It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ ≫ 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of the
scattering time, so that χabc directly measures the quantum
geometry of the Bloch states. In the dc limit or for linearly
polarized electric fields, the Berry curvature dipole term
always produces a current that is orthogonal to the electric
field jaEa ¼ 0 [7].
To close this section, we wish to remark that there exist

additional second-order corrections to the current arising
from modifications to Eq. (2) that are intrinsic to the band
structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
ant systems. Other type of rectifications might arise in
systems with an inversion asymmetric scattering rate,
namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
ratchet effect [9]. These semiclassical Berry-phase indepen-
dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us

explore the constraints imposed by crystal point sym-
metries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Because
the Berry curvature is a pseudovector, the Berry curvature
dipole transforms as a pseudotensor. Hence, crystal sym-
metries impose constraints of the form

D ¼ detðSÞSDST: ð11Þ

To determine which components of this tensor are nonzero,
it is convenient to decompose it into symmetric and
antisymmetric parts, D& ¼ ðD&DTÞ=2, which transform
independently under symmetry operations. The antisym-
metric part of a pseudotensor transforms as a vector, as can
be verified from Eq. (11). The components of this vector
can be taken to be da ≡ ϵabcD−

bc=2. Therefore, for it to be
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Ωa ≡ εabc∂bAc; Ac ≡ −ihukj∂cjuki: ð3Þ

Within the Boltzmann picture of transport, the canonical
momentum of electrons changes in time in response to the
external electromagnetic fields. In the absence of external
magnetic fields, the change of momentum is

_kc ¼ −eEcðtÞ; ð4Þ

where EcðtÞ ¼ RefEceiωtg, with Ec ∈ C the driving
electric field which oscillates harmonically in time but
is uniform in space. In the relaxation time approximation,
the Boltzmann equation for the distribution of electrons
is [4]

−eτEa∂af þ τ∂tf ¼ f0 − f; ð5Þ

where f0 is the equilibrium distribution in the absence of
external fields. We are interested in computing the response
to second order in the electric field; hence, we expand the
distribution up to second order: f ¼ Reff0 þ f1 þ f2g,
where the term fn is understood to vanish as En. One finds a
recursive structure:

f1 ¼ fω1 e
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The term j0a describes a rectified current while the term
j2ωa describes the second harmonic. The second terms that
appear in Eq. (7) are completely semiclassical and do not
require the presence of Berry curvature. However, within
the approximation of a constant τ, one finds that these
nonlinear terms are proportional to the integral of a three-
index tensor, ∂aϵðkÞ∂bcf0ðkÞ, which is odd under time
reversal and, hence, they are forced to vanish. Therefore,
the only surviving terms are those associated with the Berry
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c, j2ωa ¼ χabcEbEc, one
has [5]
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e3τ
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The presence of the factor ∂bf0 will guarantee that only
states close to the Fermi surface will contribute to the
integral in the low temperature limit, so that this response is
a Fermi liquid property [6]. Equation (8) can be rewritten as
follows:

χabc ¼ −εadc
e3τ

2ð1þ iωτÞ
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This expression [Eq. (9)] for the nonlinear conductivity
tensor, χabc, is the first main result of this work. It shows
that χabc is proportional to the dipole moment of the Berry
curvature over the occupied states, defined as

Dab ¼
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It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ ≫ 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of the
scattering time, so that χabc directly measures the quantum
geometry of the Bloch states. In the dc limit or for linearly
polarized electric fields, the Berry curvature dipole term
always produces a current that is orthogonal to the electric
field jaEa ¼ 0 [7].
To close this section, we wish to remark that there exist

additional second-order corrections to the current arising
from modifications to Eq. (2) that are intrinsic to the band
structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
ant systems. Other type of rectifications might arise in
systems with an inversion asymmetric scattering rate,
namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
ratchet effect [9]. These semiclassical Berry-phase indepen-
dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us

explore the constraints imposed by crystal point sym-
metries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Because
the Berry curvature is a pseudovector, the Berry curvature
dipole transforms as a pseudotensor. Hence, crystal sym-
metries impose constraints of the form

D ¼ detðSÞSDST: ð11Þ

To determine which components of this tensor are nonzero,
it is convenient to decompose it into symmetric and
antisymmetric parts, D& ¼ ðD&DTÞ=2, which transform
independently under symmetry operations. The antisym-
metric part of a pseudotensor transforms as a vector, as can
be verified from Eq. (11). The components of this vector
can be taken to be da ≡ ϵabcD−

bc=2. Therefore, for it to be
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Ab	initio calculations

Current work on intraband contributions
in	th Berry	curvature	dipole	formalism	

1. DFT	(GGA)	band	structure	and	Bloch	wave	functions	
two	representative	familys:	Tpe-I	TaAs,	type-II	MoTe2

2. Highly	symmetricWannier functions	for	a	single-particle	Hamiltonian
3. Berry	curvature	Ω

4. Berry	curvature	dipole	D,	a	tensor

2

dimensions. We define the BCD density in the k-space,
d
bd

⌘ f0
@⌦d
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. For d
bd

is odd to the space inversion,
D

bd

vanishes when inversion symmetry appears. While
they were obtained in the semiclassical theory, Eqs. 1
and 2 can also be derived by fully quantum theoretical
treatment with the Floquet formalism [4].

Ab initio calculation methods – We perform ab initio
density-functional theory (DFT) calculations for the bulk
materials and project Bloch wavefunctions to atomic-like
local Wannier functions. For a material, we obtain a
tight-binding Hamiltonians Ĥ. It should be pointed out
that Ĥ inherits exactly all symmetries of the system,
which is crucial for the accurate evaluation of BCD from
the Berry curvature ⌦ in a di↵erential way. The Berry
curvature of the nth band can be calculated based on Ĥ,
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kbĤ|m >< m|@
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where ✏
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and |n > are eigen values and eigen wave
functions of Ĥ at the momentum k, respectively. ⌦n
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runs over occupied bands in Eq. 2 where ⌦
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.

(a) Type-I (b) Type-I (titled) (c) Type-II 

(d) (e) (f) 2

0

-2

(× 108)
dxy

FIG. 1. The Weyl cones and the dipole moment distribution
of the Berry curvature. (a) A standard type-I Weyl
cone without tilting. The Fermi energy is indicated by
the horizontal plane and the Fermi surface is a circle.
Corresponding dipole moment of the Berry curvature is shown
in (d) near the Weyl point. (b) A type-I Weyl cone with a
slight tilting and corresponding dipole moment in (e). (c) A
type-II Weyl cone with a strong tilting and corresponding
dipole moment in (f). Near the Weyl point, the dipole
moment exhibits a symmetric k

x

k

y

-type distribution when
the Fermi energy crosses a type-I Weyl point and thus, it
is summed to be zero as integrating over the k-space. In
(d) and (e), the circle with a shadow region indicates the
unoccupied bands that do not contribute to the integral of the
dipole moment. The blue and red colors show negative and
positive values of the dipole moment. In (f), the shadowed
regions stand for the unoccupied hole pocket and the occupied
electron band, both of which are deducted from the integral
of the dipole moment.

A simple e↵ective model of Weyl points – Before
visiting specific WSM materials, we investigate the BCD
for a simple Weyl Hamiltonian for a qualitative but

inspiring understanding,

H
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(q) = ~v
t

q
t

�0 + ~v
F

q · �, (4)

where q is the momentum with respect to the Weyl point,
� is the Pauli matrix vector, v

F

is the Fermi velocity
of an isotropic Weyl cone without tilt, v

t

represents the
tilting velocity and q

t

is the tilting momentum along the
t̂ direction. The tilt of the Weyl cone is characterized
by the ration |v
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/v
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|, where |v
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| < 1 stands for a
type-I Weyl cone and |v
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/v
F

| > 1 for a type-II one. Since
the Berry curvature is ⌦(q) = q

2q3 for the lower cone,
we obtain analytically for example d

xy

without loss of
generality,

d
xy

=
@⌦

y

@q
x

=
3q

x

q
y

2q5
. (5)

We note that ⌦ and d
xy

are independent of tilt and
reverse sign for the upper cone. However, the shape of
the Fermi surface depends sensitively on the tilt.
One can find that d

xy

exhibits a xy-type symmetry
near the Weyl point, which resembles a “d

xy

-type”
atomic wave function in real space. For a type-I WSM,
D

xy

diminishes when E
F

crosses the Weyl point, because
the integral of d

xy

leads to zero due to the xy-type
symmetry. It is fully consistent with the fact that D

xy

vanishes as the Fermi surface shrinks to a point at the
Weyl point. When E

F

lies either below or above the Weyl
point, the Fermi surface region is e↵ectively subtracted
from the sum over the lower cone. If the type-I Weyl cone
has no tilt (see Fig. 1a), the Fermi surface is centered
to the Weyl point. Thus, d

xy

outside the Fermi surface
region is still highly symmetric and summed up to be
zero. If the type-I Weyl cone has a tilt along some generic
direction (see Fig. 1b), the Fermi surface center is shifted
away from the Weyl point. Consequently, d

xy

outside the
Fermi surface region becomes asymmetric to M

x

and
M

y

, leading to nonzero net D
xy

. For a type-II Weyl
cone (see Fig. 1c), the Fermi surface naturally breaks the
M

x

and M
y

symmetries of d
xy

, thus presenting nonzero
D

xy

. We can simply summarize these optimal conditions
for a large D

xy

near a single Weyl point. (i) For a type-I
Weyl point, a tilt is necessary, which is common for WSM
materials. Since d

xy

is highly concentrated near the Weyl
point, E

F

should stay close enough to the Weyl point. (ii)
The type-II Weyl point may exhibit largeD

xy

, even when
E

F

crosses it. Although the large tilt of Weyl points was
also predicted to generate photocurrents in Ref. [5], it
refers to the resonant transition between occupied and
empty bands of the Weyl cone, di↵erent from current
finding in the low-freqency intraband transition.

Further, we point out that a pair of Weyl points being
the M

x

/M
y

(TRS) partners contribute the same D
xy

,
for d

xy

is even to M
x

/M
y

(TRS). Therefore, multiple
Weyl points related to TRS and mirror symmetries
multiply their contributions to the BCD, instead of
compensating each other.
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Recently noncentrosymmetric metals were anticipated to exhibit a nonlinear Hall-like current and
as well as a dc current caused by the dipole moment of the Berry curvature in momentum space.
Weyl semimetals (WSMs) are expected to be excellent candidates to observe these nonlinear e↵ects,
for they carry large Berry curvature concentrating in small regions, i.e. near the Weyl points. We
combined ab inito calculations and the semiclassical approach to investigate the Berry curvature
dipole for two representative groups of materials, the TaAs-family type-I WSMs and MoTe2-family
type-II WSMs. Both types WSMs exhibit a large dipole moment of the Berry curvature, which
is in orders of magnitude larger than that of common metals or doped semiconductors, promising
remarkable nonlinear electric and optical properties. We revealed the optimal materials parameters
for these e↵ects, where the type-II WSM is usually superior to the type-I because of strongly tilted
Weyl cones.

Introduction – The Weyl semimetal (WSM) is a
topological state characterized by the linear band
crossing points called Weyl points near the Fermi energy.
WSM materials have recently been discovered primarily
by observing the unique Fermi arcs of the surface
states by angle-resolved photoemission spectroscopy,
such as the TaAs-family pnitictides and MoTe2. For
the Weyl points are monopole sources or drains of
the Berry curvature of of Bloch wave functions in the
momentum space, a WSM can exhibit an anomalous
Hall e↵ect as breaking the time-reversal symmetry (TRS)
and as well the intrinsic spin Hall e↵ect, as linear
responses to an external electric field. Recent theoretical
and experiment studies revealed giant nonlinear optical
responses in WSMs, e.g. the photocurrent from the
circular photogalvanic e↵ect (CPGE), second harmonic
generation (SHG) and nonlinear Hall e↵ect. These
nonlinear e↵ects are much stronger in WSMs than
traditional electro-optic materials, also owing to the large
Berry curvature.

Very recently, the intraband contributions to CPGE
and SHG are described as a Berry phase e↵ect by
a geometrical quantity, the Berry curvature dipole
(BCD), in the semiclassical approach. In the dc
limit, the photocurrent remains finite as a transverse
Hall-like current, i.e. a nonlinear Hall e↵ect. These
nonlinear e↵ects originate from the intraband resonant
transitions at a low frequency in a noncentrosymmetric
metal. Although they have played an important role
in predicting topological materials and estimate their
linear-response properties, ab initio studies on the
nonlinear optical e↵ects of WSMs are still missing [cite
Orenstein], to reveal quantitatively the role of the Weyl
points in realistic materials. Then the nonlinear response
was usually computed with mixed interband and intrand
transitions for conventional semiconductors, while it
requires an a ab initio scheme with the Berry phase
formalism to understand WSMs.

In this article, we study the BCD of Weyl semimetal
materials, TaAs-family type-I and MoTe2-family type-II
WSMs, and estimate their nonlinear optical responses
by ab initio calculations combined with the semiclassical
approach. Both types WSMs exhibit a large BCD
near the Weyl point, which is in orders of magnitude
larger than that of conventional materials. As as Fermi
surface property, the BCD favors tilted Weyl cones.
Thus, the type-II WSM is usually superior to the type-I.
Further, we reveal that some small gap regions with
highly concentrated Berry curvature can also contribute
to a large dipole in the absence of Weyl points.
The semiclassical theory – We first overview previous

theoretical work on the nonlinear optical response
described by the Berry curvature. [1–4] In CPGE, the
oscillating electric field E

c

(t) = Re{E
c

ei!t} of circularly
polarized light induces a dc photocurrent j (0) as a
second-order nonlinear optical e↵ect, j

(0)
a

= �
abc

E
b

E⇤
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.
Similarly, the SHG is described by the second-harmonic
current response j (2!)e2i!t to a linearly polarized light,
where j

(2!)
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= �
abc

E
b

E
c

. In the dc limit of a linearly
polarized field, a nonlinear Hall e↵ect is characterized by
a transverse current j
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= 2j(0)
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|
!!0 = 2�

abb
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|2. In a
material with TRS, the nonlinear response tensor � were
obtained theoretically as a Berry phase e↵ect [1, 2] and
very recently further described by the BCD [3] as follows,
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where D
bd

is the BCD, ⌦
d

is the Berry curvature, f0
is the equilibrium Fermi-Dirac distribution, ⌧ refers to
the relaxation time approximation in the Boltzmann
equation, "

adc

stand for the third rank Levi-Civita
symbol, and ~ is the reduced Planck constant. One can
find that D

bd

is a Fermi surface e↵ect that is intrinsic to
the band structure, and becomes dimensionless in three
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dimensions. We define the BCD density in the k-space,
d
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⌘ f0
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. For d
bd

is odd to the space inversion,
D

bd

vanishes when inversion symmetry appears. While
they were obtained in the semiclassical theory, Eqs. 1
and 2 can also be derived by fully quantum theoretical
treatment with the Floquet formalism [4].

Ab initio calculation methods – We perform ab initio
density-functional theory (DFT) calculations for the bulk
materials and project Bloch wavefunctions to atomic-like
local Wannier functions. For a material, we obtain a
tight-binding Hamiltonians Ĥ. It should be pointed out
that Ĥ inherits exactly all symmetries of the system,
which is crucial for the accurate evaluation of BCD from
the Berry curvature ⌦ in a di↵erential way. The Berry
curvature of the nth band can be calculated based on Ĥ,

⌦n
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(✏
n

� ✏
m

)2
, (3)

where ✏
n

and |n > are eigen values and eigen wave
functions of Ĥ at the momentum k, respectively. ⌦n

a

runs over occupied bands in Eq. 2 where ⌦
d

=
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.
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FIG. 1. The Weyl cones and the dipole moment distribution
of the Berry curvature. (a) A standard type-I Weyl
cone without tilting. The Fermi energy is indicated by
the horizontal plane and the Fermi surface is a circle.
Corresponding dipole moment of the Berry curvature is shown
in (d) near the Weyl point. (b) A type-I Weyl cone with a
slight tilting and corresponding dipole moment in (e). (c) A
type-II Weyl cone with a strong tilting and corresponding
dipole moment in (f). Near the Weyl point, the dipole
moment exhibits a symmetric k

x

k

y

-type distribution when
the Fermi energy crosses a type-I Weyl point and thus, it
is summed to be zero as integrating over the k-space. In
(d) and (e), the circle with a shadow region indicates the
unoccupied bands that do not contribute to the integral of the
dipole moment. The blue and red colors show negative and
positive values of the dipole moment. In (f), the shadowed
regions stand for the unoccupied hole pocket and the occupied
electron band, both of which are deducted from the integral
of the dipole moment.

A simple e↵ective model of Weyl points – Before
visiting specific WSM materials, we investigate the BCD
for a simple Weyl Hamiltonian for a qualitative but

inspiring understanding,

H
Weyl

(q) = ~v
t

q
t

�0 + ~v
F

q · �, (4)

where q is the momentum with respect to the Weyl point,
� is the Pauli matrix vector, v

F

is the Fermi velocity
of an isotropic Weyl cone without tilt, v

t

represents the
tilting velocity and q

t

is the tilting momentum along the
t̂ direction. The tilt of the Weyl cone is characterized
by the ration |v

t

/v
F

|, where |v
t

/v
F

| < 1 stands for a
type-I Weyl cone and |v

t

/v
F

| > 1 for a type-II one. Since
the Berry curvature is ⌦(q) = q

2q3 for the lower cone,
we obtain analytically for example d

xy

without loss of
generality,
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We note that ⌦ and d
xy

are independent of tilt and
reverse sign for the upper cone. However, the shape of
the Fermi surface depends sensitively on the tilt.
One can find that d

xy

exhibits a xy-type symmetry
near the Weyl point, which resembles a “d

xy

-type”
atomic wave function in real space. For a type-I WSM,
D

xy

diminishes when E
F

crosses the Weyl point, because
the integral of d

xy

leads to zero due to the xy-type
symmetry. It is fully consistent with the fact that D

xy

vanishes as the Fermi surface shrinks to a point at the
Weyl point. When E

F

lies either below or above the Weyl
point, the Fermi surface region is e↵ectively subtracted
from the sum over the lower cone. If the type-I Weyl cone
has no tilt (see Fig. 1a), the Fermi surface is centered
to the Weyl point. Thus, d

xy

outside the Fermi surface
region is still highly symmetric and summed up to be
zero. If the type-I Weyl cone has a tilt along some generic
direction (see Fig. 1b), the Fermi surface center is shifted
away from the Weyl point. Consequently, d

xy

outside the
Fermi surface region becomes asymmetric to M

x

and
M

y

, leading to nonzero net D
xy

. For a type-II Weyl
cone (see Fig. 1c), the Fermi surface naturally breaks the
M

x

and M
y

symmetries of d
xy

, thus presenting nonzero
D

xy

. We can simply summarize these optimal conditions
for a large D

xy

near a single Weyl point. (i) For a type-I
Weyl point, a tilt is necessary, which is common for WSM
materials. Since d

xy

is highly concentrated near the Weyl
point, E

F

should stay close enough to the Weyl point. (ii)
The type-II Weyl point may exhibit largeD

xy

, even when
E

F

crosses it. Although the large tilt of Weyl points was
also predicted to generate photocurrents in Ref. [5], it
refers to the resonant transition between occupied and
empty bands of the Weyl cone, di↵erent from current
finding in the low-freqency intraband transition.

Further, we point out that a pair of Weyl points being
the M

x

/M
y

(TRS) partners contribute the same D
xy

,
for d

xy

is even to M
x

/M
y

(TRS). Therefore, multiple
Weyl points related to TRS and mirror symmetries
multiply their contributions to the BCD, instead of
compensating each other.
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they were obtained in the semiclassical theory, Eqs. 1
and 2 can also be derived by fully quantum theoretical
treatment with the Floquet formalism [4].

Ab initio calculation methods – We perform ab initio
density-functional theory (DFT) calculations for the bulk
materials and project Bloch wavefunctions to atomic-like
local Wannier functions. For a material, we obtain a
tight-binding Hamiltonians Ĥ. It should be pointed out
that Ĥ inherits exactly all symmetries of the system,
which is crucial for the accurate evaluation of BCD from
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FIG. 1. The Weyl cones and the dipole moment distribution
of the Berry curvature. (a) A standard type-I Weyl
cone without tilting. The Fermi energy is indicated by
the horizontal plane and the Fermi surface is a circle.
Corresponding dipole moment of the Berry curvature is shown
in (d) near the Weyl point. (b) A type-I Weyl cone with a
slight tilting and corresponding dipole moment in (e). (c) A
type-II Weyl cone with a strong tilting and corresponding
dipole moment in (f). Near the Weyl point, the dipole
moment exhibits a symmetric k

x

k

y

-type distribution when
the Fermi energy crosses a type-I Weyl point and thus, it
is summed to be zero as integrating over the k-space. In
(d) and (e), the circle with a shadow region indicates the
unoccupied bands that do not contribute to the integral of the
dipole moment. The blue and red colors show negative and
positive values of the dipole moment. In (f), the shadowed
regions stand for the unoccupied hole pocket and the occupied
electron band, both of which are deducted from the integral
of the dipole moment.

A simple e↵ective model of Weyl points – Before
visiting specific WSM materials, we investigate the BCD
for a simple Weyl Hamiltonian for a qualitative but

inspiring understanding,
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where q is the momentum with respect to the Weyl point,
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is the Fermi velocity
of an isotropic Weyl cone without tilt, v
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tilting velocity and q
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is the tilting momentum along the
t̂ direction. The tilt of the Weyl cone is characterized
by the ration |v

t

/v
F

|, where |v
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| < 1 stands for a
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| > 1 for a type-II one. Since
the Berry curvature is ⌦(q) = q

2q3 for the lower cone,
we obtain analytically for example d
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without loss of
generality,
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We note that ⌦ and d
xy

are independent of tilt and
reverse sign for the upper cone. However, the shape of
the Fermi surface depends sensitively on the tilt.
One can find that d

xy

exhibits a xy-type symmetry
near the Weyl point, which resembles a “d

xy

-type”
atomic wave function in real space. For a type-I WSM,
D

xy

diminishes when E
F

crosses the Weyl point, because
the integral of d

xy

leads to zero due to the xy-type
symmetry. It is fully consistent with the fact that D

xy

vanishes as the Fermi surface shrinks to a point at the
Weyl point. When E

F

lies either below or above the Weyl
point, the Fermi surface region is e↵ectively subtracted
from the sum over the lower cone. If the type-I Weyl cone
has no tilt (see Fig. 1a), the Fermi surface is centered
to the Weyl point. Thus, d

xy

outside the Fermi surface
region is still highly symmetric and summed up to be
zero. If the type-I Weyl cone has a tilt along some generic
direction (see Fig. 1b), the Fermi surface center is shifted
away from the Weyl point. Consequently, d

xy

outside the
Fermi surface region becomes asymmetric to M

x

and
M

y

, leading to nonzero net D
xy

. For a type-II Weyl
cone (see Fig. 1c), the Fermi surface naturally breaks the
M

x

and M
y

symmetries of d
xy

, thus presenting nonzero
D

xy

. We can simply summarize these optimal conditions
for a large D

xy

near a single Weyl point. (i) For a type-I
Weyl point, a tilt is necessary, which is common for WSM
materials. Since d

xy

is highly concentrated near the Weyl
point, E

F

should stay close enough to the Weyl point. (ii)
The type-II Weyl point may exhibit largeD

xy

, even when
E

F

crosses it. Although the large tilt of Weyl points was
also predicted to generate photocurrents in Ref. [5], it
refers to the resonant transition between occupied and
empty bands of the Weyl cone, di↵erent from current
finding in the low-freqency intraband transition.

Further, we point out that a pair of Weyl points being
the M

x
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y

(TRS) partners contribute the same D
xy

,
for d

xy

is even to M
x

/M
y

(TRS). Therefore, multiple
Weyl points related to TRS and mirror symmetries
multiply their contributions to the BCD, instead of
compensating each other.
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. For d
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is odd to the space inversion,
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vanishes when inversion symmetry appears. While
they were obtained in the semiclassical theory, Eqs. 1
and 2 can also be derived by fully quantum theoretical
treatment with the Floquet formalism [4].

Ab initio calculation methods – We perform ab initio
density-functional theory (DFT) calculations for the bulk
materials and project Bloch wavefunctions to atomic-like
local Wannier functions. For a material, we obtain a
tight-binding Hamiltonians Ĥ. It should be pointed out
that Ĥ inherits exactly all symmetries of the system,
which is crucial for the accurate evaluation of BCD from
the Berry curvature ⌦ in a di↵erential way. The Berry
curvature of the nth band can be calculated based on Ĥ,

⌦n

a

(k) = 2i
X

m 6=n

< n|@
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FIG. 1. The Weyl cones and the dipole moment distribution
of the Berry curvature. (a) A standard type-I Weyl
cone without tilting. The Fermi energy is indicated by
the horizontal plane and the Fermi surface is a circle.
Corresponding dipole moment of the Berry curvature is shown
in (d) near the Weyl point. (b) A type-I Weyl cone with a
slight tilting and corresponding dipole moment in (e). (c) A
type-II Weyl cone with a strong tilting and corresponding
dipole moment in (f). Near the Weyl point, the dipole
moment exhibits a symmetric k

x

k

y

-type distribution when
the Fermi energy crosses a type-I Weyl point and thus, it
is summed to be zero as integrating over the k-space. In
(d) and (e), the circle with a shadow region indicates the
unoccupied bands that do not contribute to the integral of the
dipole moment. The blue and red colors show negative and
positive values of the dipole moment. In (f), the shadowed
regions stand for the unoccupied hole pocket and the occupied
electron band, both of which are deducted from the integral
of the dipole moment.

A simple e↵ective model of Weyl points – Before
visiting specific WSM materials, we investigate the BCD
for a simple Weyl Hamiltonian for a qualitative but

inspiring understanding,
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(q) = ~v
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�0 + ~v
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q · �, (4)

where q is the momentum with respect to the Weyl point,
� is the Pauli matrix vector, v
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is the Fermi velocity
of an isotropic Weyl cone without tilt, v
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represents the
tilting velocity and q
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is the tilting momentum along the
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we obtain analytically for example d
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without loss of
generality,
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We note that ⌦ and d
xy

are independent of tilt and
reverse sign for the upper cone. However, the shape of
the Fermi surface depends sensitively on the tilt.
One can find that d
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exhibits a xy-type symmetry
near the Weyl point, which resembles a “d

xy

-type”
atomic wave function in real space. For a type-I WSM,
D

xy

diminishes when E
F

crosses the Weyl point, because
the integral of d

xy

leads to zero due to the xy-type
symmetry. It is fully consistent with the fact that D

xy

vanishes as the Fermi surface shrinks to a point at the
Weyl point. When E

F

lies either below or above the Weyl
point, the Fermi surface region is e↵ectively subtracted
from the sum over the lower cone. If the type-I Weyl cone
has no tilt (see Fig. 1a), the Fermi surface is centered
to the Weyl point. Thus, d

xy

outside the Fermi surface
region is still highly symmetric and summed up to be
zero. If the type-I Weyl cone has a tilt along some generic
direction (see Fig. 1b), the Fermi surface center is shifted
away from the Weyl point. Consequently, d

xy

outside the
Fermi surface region becomes asymmetric to M
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and
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, leading to nonzero net D
xy

. For a type-II Weyl
cone (see Fig. 1c), the Fermi surface naturally breaks the
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and M
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symmetries of d
xy

, thus presenting nonzero
D
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. We can simply summarize these optimal conditions
for a large D

xy

near a single Weyl point. (i) For a type-I
Weyl point, a tilt is necessary, which is common for WSM
materials. Since d
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is highly concentrated near the Weyl
point, E
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should stay close enough to the Weyl point. (ii)
The type-II Weyl point may exhibit largeD
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, even when
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crosses it. Although the large tilt of Weyl points was
also predicted to generate photocurrents in Ref. [5], it
refers to the resonant transition between occupied and
empty bands of the Weyl cone, di↵erent from current
finding in the low-freqency intraband transition.

Further, we point out that a pair of Weyl points being
the M
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(TRS) partners contribute the same D
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,
for d
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is even to M
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(TRS). Therefore, multiple
Weyl points related to TRS and mirror symmetries
multiply their contributions to the BCD, instead of
compensating each other.

Note that dxy= ∂Ωy/∂kx is even to Mx, My or TRS.
So a pair of Weyl points contribute the same Dxy.
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Figure 2 Crystal structure, magnetoresistance and mobility. a, Orientation of the mea-

sured single crystal NbP with the respective X-ray diffraction patterns. b, Crystal structure

of NbP in a body-centered-tetragonal lattice. c, Temperature dependence of the resistiv-

ity measured at different transverse magnetic fields displayed next to the corresponding

curve. The inset of c shows the temperature dependence of resistance measured up to

0.1 K in zero field. d, Transverse magnetoresistance measured at different temperatures

with field up to 9 T. The inset shows the magnetoresistance at higher temperatures. e,

Temperature dependencies of the mobility (left ordinate) and carrier density (right ordi-

nate). The inset shows the evolution of the Hall coefficient with temperature. The tem-

perature regimes where electrons and holes act as main charge carriers are marked with
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E.g. Mx: kx → -kx , Ωx → Ωx so dxx → – dxx then Dxx = 0
Finally we have only one independent element Dxy = – Dyx
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Finally we have two independent element Dxy and Dyx
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FIG. 2. Calculated Berry curvature dipole D

xy

for TaAs.
(a) The Fermi energy (E

F

) dependence of D

xy

. E

F

= 0
corresponds to the charge neutral point. (b) The band
dispersions crossing a pair of Weyl points. Three types of
Weyl points, W1, W2 and W3, are shown. (c) The projection
of three types of Weyl points to the k

x

k

y

plane by integrating
d

xy

over k

z

. The distribution of d
xy

at (d) E

F

= 0 and (e)
E

F

= 75 meV crossing W3. Red and blue represent positive
and negative values of d

xy

, respectively, in the arbitrary unit.
As insets, d

xy

distributions near some Weyl points are shown
in the k

x

k

y

plane without integrating the k

z

direction.

Realistic materials – We investigated two
representative family of materials with inversion
symmetry breaking, (Ta, Nb)(As, P) as type-I WSMs
and (Mo, W)Te2 as type-II WSMs. For a given material,
the BCD tensor D

ab

shape can be analyzed considering
corresponding point group symmetry [3]. For instance,
the TaAs-type compounds belong to the C4v point
group, where M

x

and M
y

reflection symmetries exist.
Since ⌦

x

and k
x

are even and odd to M
x

, respectively,
d
xx

is odd to M
x

and thus D
xx

= 0. Similarly, one has
D

yy

= D
zz

= 0. For ⌦
z

and k
x

are odd and even to
M

y

, respectively, d
xz

is odd to M
y

and thus D
xz

= 0.
Likewise we obtain only two nonzero tensor elements
D

xy

and D
yx

, which follow D
xy

= �D
yx

by the C4

rotation. For (Mo, W)Te2 in the C2v point group, we
obtain two nonzero independent tenor elements, D

xy

and D
yx

.

TABLE I. The Berry curvature dipole calculated for Weyl
semimetal materials. The Fermi energy is set to the charge
neutral point. Only the nonzero tensor elements are listed for
a given material, which are dimensionless.

Material D

xy

Material D

xy

D

yx

TaAs 0.39 MoTe2 0.849 -0.703
TaP 0.029 WTe2 0.048 -0.066
NbAs -9.88
NbP 20.06

———-
Then we would study the realistic Berry curvature

dipole distribution in the momentum space for these
materials, for the comparison with e↵ective Weyl model.
In Fig ??(a), the hot zones in momentum space are
almost located around the Weyl points. There are 24
Weyl points in TaAs, which could be divided into two
type: W1 type at k

z

= 0 plane, W2 type out of k
z

= 0
plane. When we adjust the Fermi level to the in plane
Weyl point at -23.1 meV, the D

xy

distribution behaves
like dxy orbital. Shifting the Fermi energy to -20.1 meV,
a elliptical cut o↵ would appear, similar as the analytical
model. Counting all the contribution from Weyl points,
we get 10% of the total value.
In the type II WSM MoTe2, we find 4 Weyl points in

our tight-binding parameters, locating at k
z

= 0 plane
with energy=0.02 meV, nearly at Fermi level. When
zooming into the Weyl point, the open cut o↵ similar
as |C| > 1 appears, which is quite di↵erent from the
distribution around type II Weyl point. While in WTe2,
there is no Weyl points in our parameters.
We show energy dependent Berry curvature dipole in

Fig. 3 of the four type I WSMs. The energy dependent
dipole curve oscillates rapidly aound the Fermi energy,
where the bands are close or degenerate. Thus we only
show the digram in a small enengy range from -0.1 to
0.1, containing all the Weyl points. The peak value in
NbAs and NbP locate nearlly around the Fermi level.
To understand the orgin of the peak value in energy
dependent curve, we would analysis the Berry curvature
dipole distribution of TaAs at the peak energy, as four
bands aound Fermi level are very closed in NbAs and
TaAs due to small spin orbit coupling, which makes it
very hard to analysis the direct origin for the peak value.
There are two peaks in the TaAs curve, around Ef =

�23 meV and Ef = 75 meV. It’s clear to see that the
first peak is caused by emergence of Weyl points.
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In this paper, we have systematically studied the
quantum nonlinear Hall e↵ect for both type I and type
II WSMs. Via symmetry analysis and microscopic
calculations, we have shown that a transverse current
would exist even in time-reversal symmetric materials,
in analogy to the anomalous Hall e↵ect.
We thank Inti Sodemann for helpful discussions. C.F.

acknowledges the funding support by ERC (Advanced• WSM	is	better	than	non-WSM
• Type–II	is	generally	better	than	type–I
• Dxy is	not	scaled	by	SOC,	different	from	SHE
• A	pair	of	Weyl	points	related	by	Mx,y or	TRS	contribute	the	same	Dxy

Y. Zhang, Y. Sun, B. Yan, arXiv:1708.08589.



Estimation	for	the	nonlinear	Hall	effect

3

0 50 100-100 -50
EF (meV)

W1

W2

W3

(a)

En
er
gy
(m
eV
)

0

50

100

-100

-50W1 W2

W3

–23 –14

+75

kx kxkx

(b)

W1

W2
W3

(c)

kx

ky

EF= 0(d)

W2

W1

-2

2

0

(× 105)
EF = 75 meV

(e)

dxy

W3

FIG. 2. Calculated Berry curvature dipole D

xy

for TaAs.
(a) The Fermi energy (E

F

) dependence of D

xy

. E

F

= 0
corresponds to the charge neutral point. (b) The band
dispersions crossing a pair of Weyl points. Three types of
Weyl points, W1, W2 and W3, are shown. (c) The projection
of three types of Weyl points to the k

x

k

y

plane by integrating
d

xy

over k

z

. The distribution of d
xy

at (d) E

F

= 0 and (e)
E

F

= 75 meV crossing W3. Red and blue represent positive
and negative values of d

xy

, respectively, in the arbitrary unit.
As insets, d

xy

distributions near some Weyl points are shown
in the k

x

k

y

plane without integrating the k

z

direction.

Realistic materials – We investigated two
representative family of materials with inversion
symmetry breaking, (Ta, Nb)(As, P) as type-I WSMs
and (Mo, W)Te2 as type-II WSMs. For a given material,
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rotation. For (Mo, W)Te2 in the C2v point group, we
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TABLE I. The Berry curvature dipole calculated for Weyl
semimetal materials. The Fermi energy is set to the charge
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a given material, which are dimensionless.
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TaAs 0.39 MoTe2 0.849 -0.703
TaP 0.029 WTe2 0.048 -0.066
NbAs -9.88
NbP 20.06
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Then we would study the realistic Berry curvature

dipole distribution in the momentum space for these
materials, for the comparison with e↵ective Weyl model.
In Fig ??(a), the hot zones in momentum space are
almost located around the Weyl points. There are 24
Weyl points in TaAs, which could be divided into two
type: W1 type at k
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= 0 plane, W2 type out of k
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plane. When we adjust the Fermi level to the in plane
Weyl point at -23.1 meV, the D
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distribution behaves
like dxy orbital. Shifting the Fermi energy to -20.1 meV,
a elliptical cut o↵ would appear, similar as the analytical
model. Counting all the contribution from Weyl points,
we get 10% of the total value.
In the type II WSM MoTe2, we find 4 Weyl points in

our tight-binding parameters, locating at k
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= 0 plane
with energy=0.02 meV, nearly at Fermi level. When
zooming into the Weyl point, the open cut o↵ similar
as |C| > 1 appears, which is quite di↵erent from the
distribution around type II Weyl point. While in WTe2,
there is no Weyl points in our parameters.
We show energy dependent Berry curvature dipole in

Fig. 3 of the four type I WSMs. The energy dependent
dipole curve oscillates rapidly aound the Fermi energy,
where the bands are close or degenerate. Thus we only
show the digram in a small enengy range from -0.1 to
0.1, containing all the Weyl points. The peak value in
NbAs and NbP locate nearlly around the Fermi level.
To understand the orgin of the peak value in energy
dependent curve, we would analysis the Berry curvature
dipole distribution of TaAs at the peak energy, as four
bands aound Fermi level are very closed in NbAs and
TaAs due to small spin orbit coupling, which makes it
very hard to analysis the direct origin for the peak value.
There are two peaks in the TaAs curve, around Ef =

�23 meV and Ef = 75 meV. It’s clear to see that the
first peak is caused by emergence of Weyl points.
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In this paper, we have systematically studied the
quantum nonlinear Hall e↵ect for both type I and type
II WSMs. Via symmetry analysis and microscopic
calculations, we have shown that a transverse current
would exist even in time-reversal symmetric materials,
in analogy to the anomalous Hall e↵ect.
We thank Inti Sodemann for helpful discussions. C.F.

acknowledges the funding support by ERC (AdvancedAHE	systems

For	TaAs,	NbPAs,		NbP,	MoTe2

Y. Zhang, Y. Sun, B. Yan, arXiv:1708.08589.
Fermi	surface	is	tunable	by		gating,	
doping	or	strain.	

dxy= ∂Ωy/∂kx
x: the current direction
y: berry curvature (B field)
z: Hall current
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