Berry curvature dipole in Weyl materials

Binghai Yan

Weizmann Institute of Science, Israel

www.weizmann.ac.il/condmat/Yan/

arXiv:1708.08589.

Topological insulators and topological metals

Figure from Annu. Rev. Condens. Matter Phys. 8, 337-354 (2017)

Wey points in *bcc* Fe <u>Vanderbilt 15'</u>

More commonly existing in materials than thought.

Weyl SemiMetal (WSM)

 $H = \pm \sigma p$

Hermann Weyl 1929'

S. Murakami, New Journal of Physics 10, 029802 (2008).

G. E. Volovik, The Universe in A Helium Droplet (Clarendon Press, Oxford, 2003).

Quantum Hall effect or Chern insulator

Topological Insulator

WSM materials

Pyrochclore Y₂Ir₂O₇ (noncollinear AFM) X. Wan, et al. PRB **83**, 205101 (2011).

Super lattice: TI + FM

A. Burkov and L. Balents, PRL **107**, 127205 (2011).

 $HgCr_2Se_4$ (FM)

G. Xu et al. *PRL* **107,** 186806 (2011).

Physically interesting, Chemically more interesting!

WSM materials

A family photo of four compounds

Y. Sun, S.-C. Wu, B. Yan, PRB 92, 115428 (2015)

Z. K. Liu, et al Nature Mater.15,27 (2016)

Magneto-transport of WSMs

-45 25 K Thermopower (µV/K) -40 -35 -30 -3 3 6 -9 -6 0 9 Magnetic field (B)

Large MR and high mobility in NbP

Chiral anomaly, **Negative LMR in TaP, NbP** **Axial-gravitational anomaly** in NbP

(MPI Dresden)

Shekhar et al. Nature Physics 11, 645 (2015) Arnold, F et al, Nature Comm. 7, 11615 (2016). Arnold, F et al, PRL 117, 146401, (2016). Niemann, A. C. et al. Sci. Rep. 7, 43394 (2017). Gooth J. et al. Nature 547, 324 (2017).

Spin Hall Conductivity

$$\int Js_{y}^{z} = \sigma_{xy}^{z} J_{x}$$

$$\sigma_{ij}^{k} = e\hbar \int_{BZ} \frac{d\vec{k}}{(2\pi)^{3}} \sum_{n} f_{n\vec{k}} \Omega_{n,ij}^{k}(\vec{k}),$$

$$\Omega_{n,ij}^{s,k}(\vec{k}) = -2Im \sum_{n' \neq n} \frac{\langle n\vec{k} | \hat{J}_{i}^{k} | n'\vec{k} \rangle \langle n'\vec{k} | \hat{v}_{j} | n\vec{k} \rangle}{(E_{n\vec{k}} - E_{n'\vec{k}})^{2}}$$

Anisotropic $\sigma^{z}_{xy} \approx 800 \text{ (TaAs)}$ $\approx 2000 \text{ (Pt)}$

Spin Hall Angle $\sigma^{Spin}/\sigma^{charge}$

Two types of Weyl points

Stacking 2D TI layers into a WSM

A. A. Soluyanov et al. Nature **527**, 495 (2015). (WTe2)

- MoTe₂ -

Y. Sun, S.-C. Wu, M. N. Ali, C. Felser, and B. Yan, PRB **92**, 161107 (2015).

MoTe₂ ARPES

ARPES:

- Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nature Physics 12, 1105–1110 (2016).
- Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nature Materials 15, 1155–1160 (2016).
- Jiang, J. et al. Signature of type-II Weyl semimetal phase in MoTe2. Nature Commun. 8, 13973 (2017).
- Tamai, A. et al. Fermi Arcs and Their Topological Character in the Candidate Type-II Weyl Semimetal MoTe2. Phys. Rev. X 6, 031021 (2016).
- Liang, A. et al. Electronic Evidence for Type II Weyl Semimetal State in MoTe2. arXiv:1604.01706 (2016).
- Sakano, M. et al. Observation of spin-polarized bands and domain-dependent Fermi arcs in polar Weyl semimetal MoTe2. Phys. Rev. B 95, 121101 (2017).

AFM WSMs from AHE materials

Room-temperature non-collinear AFM in the Kagome lattice

Observation of strong **AHE**: Mn₃Sn (Tokyo) Nature 527, 212 (2015) Mn₃Ge (MPI) Sci. Adv. 2, e1501870 (2016)

Observation of strong **SHE** Mn₃Ir (MPI) Sci. Adv. **2**, e1600759 (2016) All spins align in-plane.

AFM Weyl, AHE and SHE

- Mn₃Sn AFM WSMs
- Mn₃Ge Anomalous Hall and Nernst effects (AHE & ANE) at room temperature
 - Intrinsic spin Hall effect due to spin texture (without SOC)

Nayak, A. K. *et al. Science Advances* **2**, e1501870–e1501870 (2016). Zhang, W. *et al. Science Advances* **2**, e1600759–e1600759 (2016). Yang, H. *et al. New Journal of Physics* **19**, 015008 (2017). Zhang, Y. *et al. Physical Review B* **95**, 075128 (2017). Železný, J., Zhang, Y., Felser, C. & Yan, B. arXiv:1702.00295 Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. arXiv:1706.00670

Weyl materials

Linear response to a *dc* electric field field

SHE & AHE

- Both Weyl and ordinary bands contribute to AHC.
- Conventional materials work well.

Are there some properties for which a WSM is unique or better than ordinary materials?

Yes, possibly the nonlinear optical response.

Nonlinear optical response

Second-order nonlinear response to the oscillating E-field of light

- Circular photogalvanic effect (CPGE) •
- Second harmonic generation (SHE) •

$$E_c(t) = Re\{\mathcal{E}_c e^{i\omega t}\}\$$
$$i_a = \operatorname{Re}\{j_a^0 + j_a^{2\omega} e^{2i\omega t}\}\$$

ſ

 $j_a^{(0)} = \chi_{abc} \mathcal{E}_b \mathcal{E}_c^*$ $j_a^{(2\omega)} = \chi_{abc} \mathcal{E}_b \mathcal{E}_c$ Scanning mirror 2ω CO₂ lase Polarizer **TMMPs** eam splitter Photodetecto $\lambda/4$ -wave plate

Experiment on WSM TaAs: Orenstein 17', Gedik 17', Wang 17' **Theory**: Qi 15', Pesin 15', Burkov 15', Ran 16', Fu 15', Moore 16' 17', Polini 17', Nagaosa 16', Tanaka 16', Lee 17'...

Nonlinear optical response

At dc limit comes a nonlinear Hall effect.

[1] J. E. Moore and J. Orenstein, Phys. Rev. Lett. 105, 026805 (2010).

[2] E. Deyo, L. E. Golub, E. L. Ivchenko, and B. Spivak, (2009), arxiv:0904.1917.

[3] I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 (2015).

Semiclassical theory

CurrentAnomalous velocityLight field $j_a = -e \int_k f(k) v_a$ $v_a = \partial_a \epsilon(k) + \epsilon_{abc} \Omega_b \dot{k}_c$, $\dot{k}_c = -eE_c(t)$, $E_c(t) = \text{Re}\{\mathcal{E}_c e^{i\omega t}\}$

Solve the Boltzmann equation to the second order $-e\tau E_a\partial_a f + \tau\partial_t f = f_0 - f_0$

[1] J. E. Moore and J. Orenstein, Phys. Rev. Lett. 105, 026805 (2010).

[2] E. Deyo, L. E. Golub, E. L. Ivchenko, and B. Spivak, (2009), arxiv:0904.1917.

[3] I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 (2015).

Semiclassical theory

Current Anomalous velocity Light field $j_a = -e \int_k f(k)v_a$ $v_a = \partial_a \epsilon(k) + \epsilon_{abc} \Omega_b \dot{k}_c$, $\dot{k}_c = -eE_c(t)$, $E_c(t) = \text{Re}\{\mathcal{E}_c e^{i\omega t}\}$

Solve the Boltzmann equation to the second order $-e\tau E_a\partial_a f + \tau\partial_t f = f_0 - f_0$

 $j_a = \operatorname{Re}\{j_a^0 + j_a^{2\omega}e^{2i\omega t}\} \qquad j_a^{(0)} = \chi_{abc}\mathcal{E}_b\mathcal{E}_c^* \quad j_a^{(2\omega)} = \chi_{abc}\mathcal{E}_b\mathcal{E}_c$

$$\chi_{abc} = \varepsilon_{adc} \frac{e^{3}\tau}{2(1+i\omega\tau)} \int_{k} (\partial_{b}f_{0})\Omega_{d} = -\varepsilon_{adc} \frac{e^{3}\tau}{2(1+i\omega\tau)} \int_{k} f_{0}(\partial_{b}\Omega_{d})$$

Berry curvature dipole
$$D_{ab} = \int_k f_0(\partial_a \Omega_b)$$

- Intrinsic to the band structure
- Inversion symmetry breaking
- A Fermi surface property

I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 (2015).

Ab initio calculations

Interband transitions are extensively studied for insulators, e.g. Rappe 12', Sipe and Shkrebtii 00'

Current work on intraband contributions in th Berry curvature dipole formalism

- 1. DFT (GGA) band structure and Bloch wave functions two representative familys: Tpe-I TaAs, type-II MoTe2
- 2. Highly symmetric Wannier functions for a single-particle Hamiltonian
- 3. Berry curvature $\mathbf{\Omega}$

$$\Omega_a^n(\mathbf{k}) = 2i \sum_{m \neq n} \frac{\langle n | \partial_{k_b} \hat{H} | m \rangle \langle m | \partial_{k_c} \hat{H} | n \rangle}{(\epsilon_n - \epsilon_m)^2} \quad \underline{Xiao \ 10^{\frac{N}{2}}}$$

4. Berry curvature dipole **D**, a tensor $D_{bd} = \int_k f_0 \frac{\partial \Omega_d}{\partial k_b}$ <u>Fu 15'</u>

Start with toy models

Berry curvature dipole for TaAs

Berry curvature dipole for MoTe₂ and WTe₂

• Point group C2v

Finally we have two independent element D_{xy} and D_{yx}

Berry curvatı

Material	D_{xy}	Material	D_{xy}	I
TaAs	0.39	MoTe ₂	0.849	-0.'
TaP	0.029	WTe_2	0.048	-0.(
NbAs	-9.88			
NbP	20.06			

- WSM is better than non-WSM
- Type–II is generally better than type–I
- D_{xy} is not scaled by SOC, different from SHE
- A pair of Weyl points related by $M_{x,y}$ or TRS contribute the same D_{xy}

Y. Zhang, Y. Sun, B. Yan, arXiv:1708.08589.

Estimation for the r

Material	D_{xy}	Material	D_{xy}	I
TaAs	0.39	MoTe ₂	0.849	-0.'
TaP	0.029	WTe_2	0.048	-0.(
NbAs	-9.88			
NbP	20.06			

$$\chi_{abc} = -\varepsilon_{adc} \frac{e^3 \tau}{2\hbar^2 (1+i\omega\tau)} D_{bd}$$

 D_{xy} corresponds to χ_{zxx} and χ_{xxz}

 $d_{xy} = \partial \Omega_y / \partial k_x$ x: the current direction y: berry curvature (B field) z: Hall current

AHE systems $\gamma \sim 10^{-3}$

 $\tau \sim 10 \text{ ps and } \sigma_{xx} \sim 10^6 \ \Omega^{-1} \text{m}^{-1}$ $\mathcal{E}_x \sim 10^2 \text{ V/m}$

 $j_z = 2\chi_{zxx}\mathcal{E}_x^2 \qquad j_x = \sigma_{xx}\mathcal{E}_x$

a Hall angle as $\gamma = j_z/j_x = 2(\chi_{zxx}/\sigma_{xx})\mathcal{E}_x$

$$\chi_{zxx} \sim 10^{-1} D_{xy}$$

For TaAs, NbPAs, NbP, MoTe2 γ

$$\sim 10^{-5} - 10^{-4}$$

Y. Zhang, Y. Sun, B. Yan, arXiv:1708.08589.

Fermi surface is tunable by gating, doping or strain.

Estimation for the r

Material	D_{xy}	Material	D_{xy}	I
TaAs	0.39	MoTe ₂	0.849	-0.'
TaP	0.029	WTe_2	0.048	-0.(
NbAs	-9.88			
NbP	20.06			

$$j_z = 2\chi_{zxx}\mathcal{E}_x^2 \qquad j_x = \sigma_{xx}\mathcal{E}_x$$

Signatures in earlier experiments

Valley magnetoelectricity in single-layer MoS2

Lee, J., Wang, Z., Xie, H., Mak, K. F. & Shan, *Nature Materials* **16**, 887–891 (2017).

Kerr rotation image of a single-layer MoS2 device

WTe2 ? Inversion breaking Weyl, QSH Superconductor

NMR, Spin current

Summary

- Topological materials
- Experiments

- Berry phase induced electric and optical properties
- Develop ab initio tools

Acknowledgement

Collaborators (MPI Dresden):

- Claudia Felser
- Yan Sun , Yang Zhang, Yang Hao ٠
- Ady Stern (Weizmann) •
- Haim Beidenkopf (Weizmann) ٠
- Yu-Lin Chen (Oxford) ٠
- Liang Fu (MIT) ٠
- Kin Fai Mak (Penn State U) ٠
- Di Xiao (Carnegie Mellon U) ٠
- Stuart Parkin (MPI Halle) ٠

MAX-PLANCK-GESELLSCHAFT

Thanks for your attention!

