Physics Seminar, IAS of Tsinghua Univ, Sep 12, 2012 **Two examples of one-dimensional cold gases in new many-body regimes**

W. Vincent Liu (刘文胜) University of Pittsburgh, Pennsylvania, USA

[View of Pittsburgh---source: PittsburghSkyline.com]

Advertisement

One to Two postdoc openings in Pittsburgh

Area: Theoretical Condensed Matter and Cold Atom Physics

More information: http://liu.phyast.pitt.edu/

New many-body regimes: unique to cold atoms

Features of interest, no prior analogue from solids:

- A. Strong interaction. "High temperature physics" for ultracold atoms.
- B. Large spin population and mass imbalance. Effective Zeeman splitting comparable with Fermi energy ${\rm E}_{\rm F}$
- C. Quantum particles (especially bosons) in the excited "higher orbital" bands of optical lattices. Beyond the s: p, d, ...
- D. "Slow" quantum dynamics learn the details from a slow motion of the physical process
- E. ...
- This Talk —

Outline – two examples

- 1. Spin imbalanced Fermi gases
 - A. Heuristic introduction to exotic pairing (FFLO, breached pair)
 - B. The 1D problem A heuristic model. Exact thermodynamic Bethe ansatz. Effective field theory and Phase diagram of FFLO. Effect of polarization: spin-charge mixing. Experimental progress.
- 2. Topological orbital ladder in optical lattices
 - A. The p-band, Hamburg experimental system, etc.
 - B. The sp-orbital ladder from Hamburg = Topological Insulator (indexing group Z class) -- Due to hybridization of opposite parity s and p orbitals. Fermion zero modes (edge states). Staggered sp tunneling → equivalent of Rashba-like spin-orbit coupling. Topological phase transition to Mott insulator.

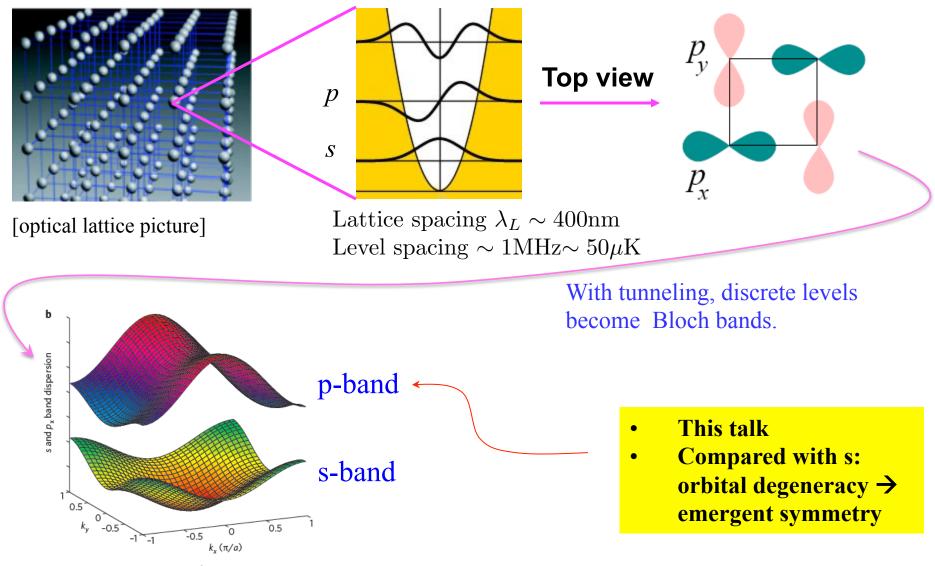
Summary of Our Main Results – 1D Fermi gas part

- A. A new effective field theory of 1D crystalline superfluid (FFLO) phase [Zhao, WVL, PRA 2008]
 - 1) Baned on both Bethe ansatz and conformal field theory
 - 2) Constructed to match the exact Bethe ansatz spectrum (low energy part)
- B. Zero Temperature (T=0) phase diagram for a system of weakly coupled tubes by Renormalization Group (RG) analysis
 - 1) Based on our effective field theory (EFT)
 - 2) New unpublished results: Finite T phase diagram derived by applying RPA to the above EFT
- **C. Breakthrough in exact solvable models:** Analytic, exact thermodynamic Bethe ansatz (TBA) solution of 1D imbalanced fermions at finite T and strong interaction by a simple set of 4 algebraic equations (pressures and chemical potentials). [Zhao, Guan, WVL, et al, PRL 2009]
- D. Proof of a new two-component Tomonaga-Luttinger liquid (TLL) with spincharge mixing, outside the paradigm of standard spin-charge separation. [This is for understanding crystalline superfluidity-FFLO.]
 - 1) By both EFT and analytical solution of TBA
- E. Application: two-stage scheme to achieve accurate thermometry

Topic 2: Topological orbital ladder in optical lattices

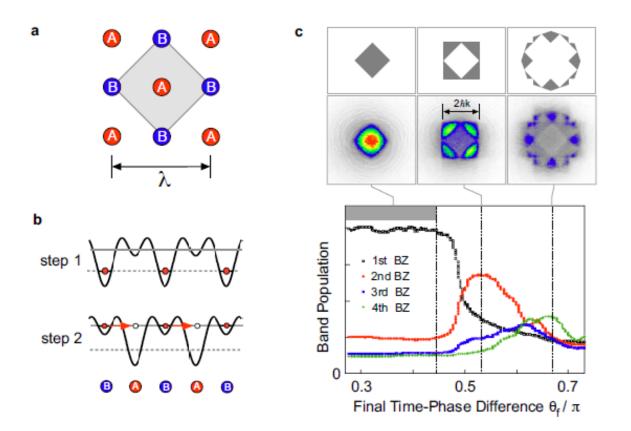
Work done (in collaboration) with:

Sankar Das Sarma, Andreas Hemmerich, Xiaopeng Li, Kai Sun, Erhai Zhao.


References:

- Background and perspective (news & views): Nature Physics 7, 101 (2011) [with M. Lewenstein]
- Nature Physics 8, 67 (2012)
- arXiv:1205.0254

Outline – two examples

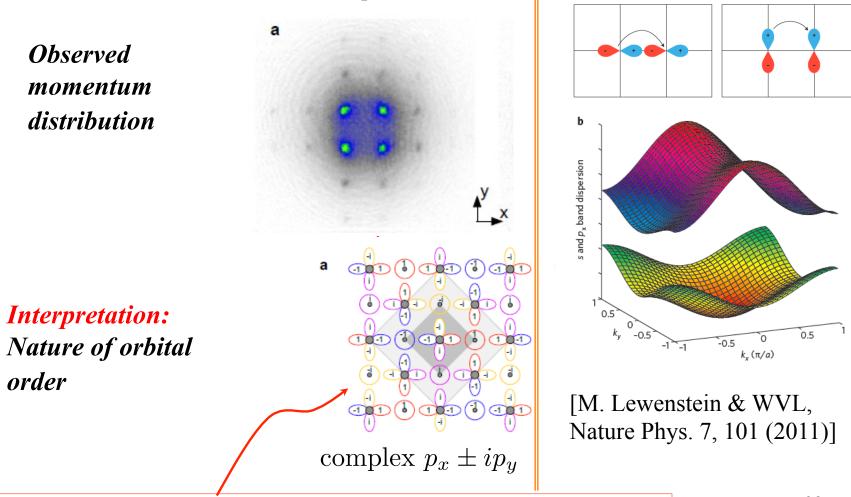

- 1. Spin imbalanced Fermi gases
 - A. Heuristic introduction to exotic pairing (FFLO, breached pair)
 - B. The 1D problem A heuristic model. Exact thermodynamic Bethe ansatz. Effective field theory and Phase diagram of FFLO. Effect of polarization: spin-charge mixing. Experimental progress.
- 2. Topological orbital ladder in optical lattices
 - A. The p-band, Hamburg experimental system, etc.
 - B. The sp-orbital ladder from Hamburg = Topological Insulator (group Z class) -- Due to hybridization of opposite parity s and p orbitals. Fermion zero modes (edge states). Staggered sp tunneling → equivalent of Rashba-like spin-orbit coupling. Topological phase transition to Mott insulator.

p-band of an optical lattice (illustration)

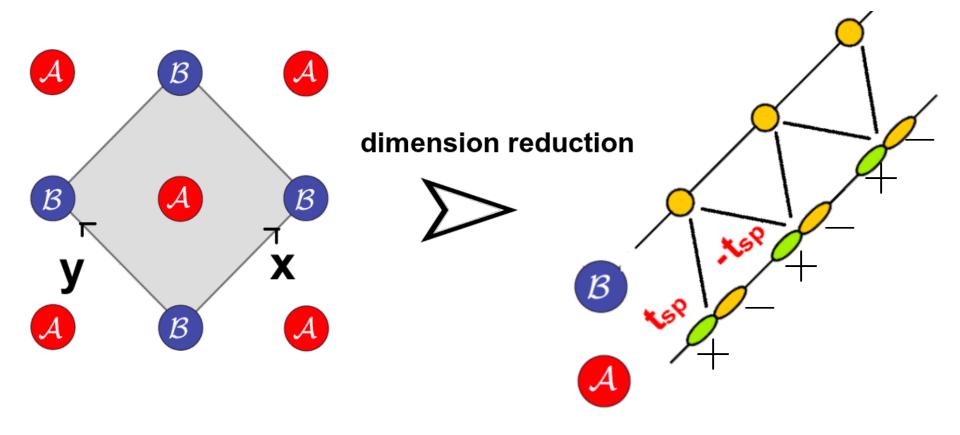
[M. Lewenstein & WVL, Nature Phys. 7, 101 (2011)]

New p- and f-band experiments – double well lattices

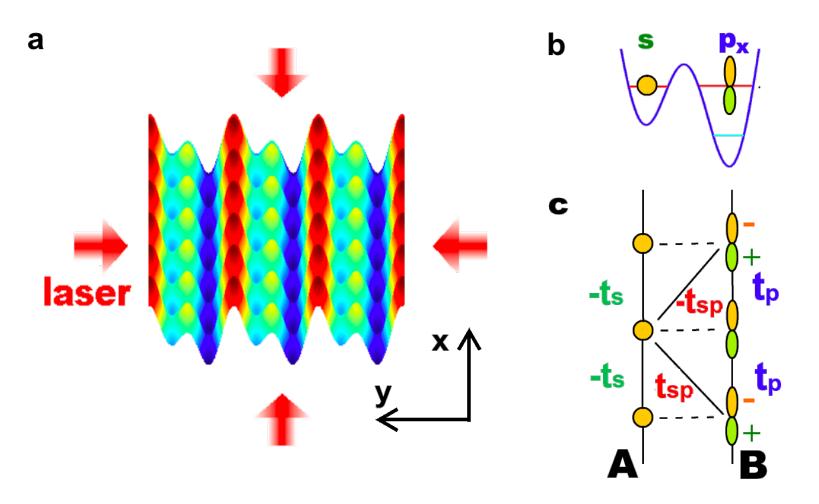
Hamburg/ A. Hemmerich group


- P-band superfluidity+orbital order in chequerboard (double well) lattice", long life time [G. Wirth. M. Olschlager, A. Hemmerich, *Nature Physics* 2011]
- ➤ "F-band" [M. Olschlager, G. Wirth, A. Hemmerich, PRL 2011]

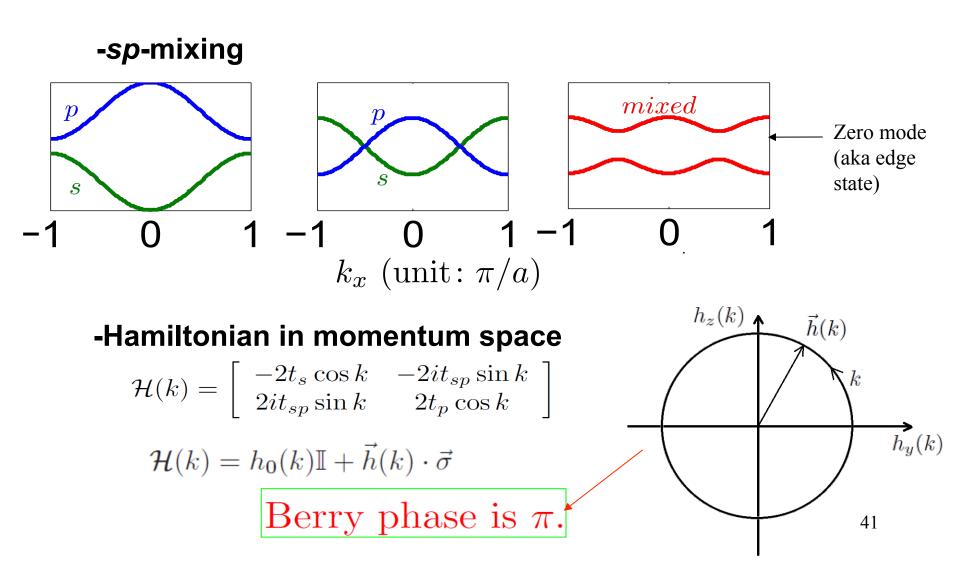
Observation- Boson : complex p-orbital superfluids

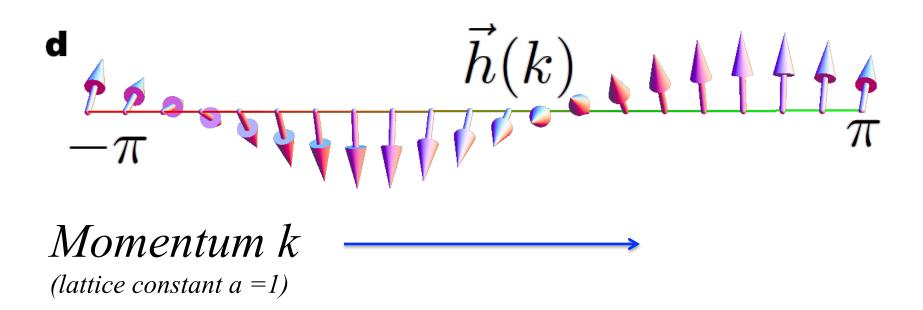

Isotropic lattice

Theoretical understanding



Experimental finding consistent with prediction by [WVL, C. Wu, PRA 2006]


Hamburg 2D double-well lattice \rightarrow sp-orbital Ladder



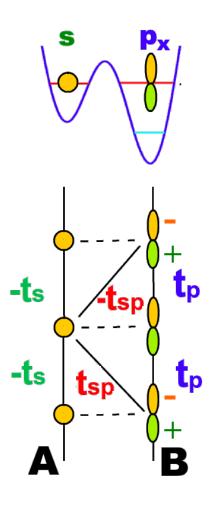
Topological orbital ladders

sp-mixing and topological nature

Edge states

-flat band limit (easy to show)

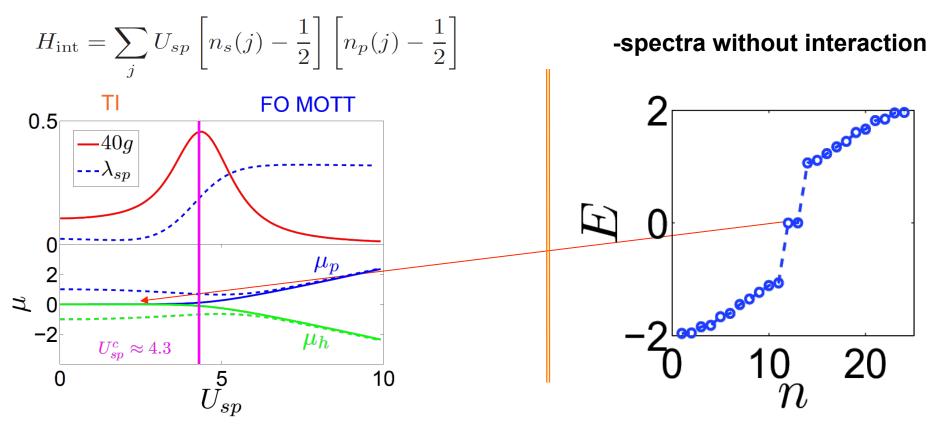
$$\begin{aligned} \mathbf{t}_{s} &= \mathbf{t}_{p} = \mathbf{t}_{sp} = \mathbf{t} \qquad E(k) = \pm 2t \\ H_{0} &\to 2t \sum_{j} \phi_{-}^{\dagger}(j) \phi_{+}(j+1) + h.c. \end{aligned} \qquad \phi_{\pm} = \left[a_{p} \pm a_{s}\right] / \sqrt{2} \end{aligned}$$


-general case

$$H_0 = \sum_j C_j^{\dagger} \left[\frac{t_p - t_s}{2} \mathbb{I} - \frac{t_p + t_s}{2} \sigma_z - i t_{sp} \sigma_y \right] C_{j+1} + h.c. \qquad C_j = \left[\begin{array}{c} a_s(j) \\ a_p(j) \end{array} \right]$$

Edge states decay with a width $\xi = 2/\log(|(\sqrt{t_s t_p} + t_{sp})/(\sqrt{t_s t_p} - t_{sp})|)$ 43

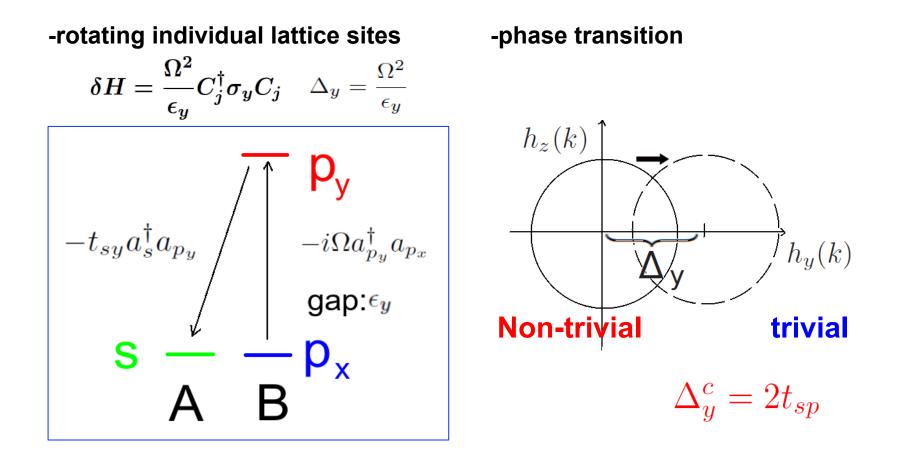
Summary: topological insulator from odd parity


- Topological insulator (index group Z class) at half filling.
- 2. Compare with spin-orbit coupling generated by artificial gauge field in cold atoms
 - A. Pioneer experiments: NIST (I. Spielman et al), ... MIT (M. Zwierlein)
 - B. First from China: USTC (S. Chen, Y. Deng, J. Pan, et al), Shanxi U (J. Zhang et al)
- 3. This model: No spin, but orbit. Resembles spin-orbit coupling if (s, p) space viewed pseudo-spin-1/2.
- 4. New result: topological phase not requiring any of previously known mechanisms: rotation, gauge field, p-wave pairing,...

Xiaopeng Li, Erhai Zhao and WVL, arXiv:1205.0254

Topological to Ferro-orbital Mott Insulator Transition

- With inter-orbital interaction

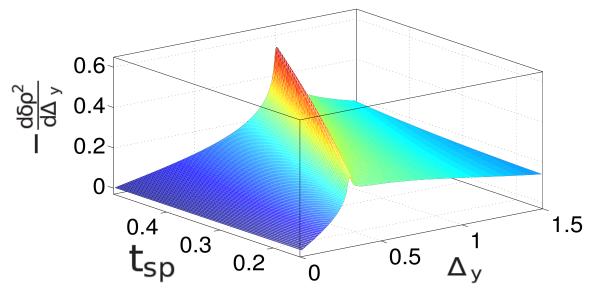


 $g \sim \frac{1 - |\langle \psi(U_{sp}) | \psi(U_{sp} + \delta U_{sp}) \rangle|}{(\delta U_{sp})^2}$ fidelity metric

 $\lambda_{sp} \sim |\langle C_j^{\dagger} \sigma_x C_j \rangle|^2$

Ferro-magnetic order (inter-orbital coherence) $_{45}$

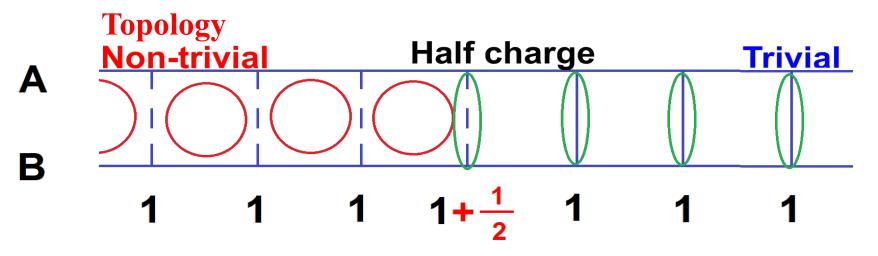
Topological phase transition – driven by rotation



Xiaopeng Li, Erhai Zhao and WVL, arXiv:1205.0254

Density fluctuations as a probe

$$\rho(j) = C_j^{\dagger} C_j - 1$$
 $\delta \rho \equiv \frac{1}{\text{system length}} \sum_j \sqrt{\langle \rho(j) \rho(j) \rangle}$


$$\delta \rho^2 = \frac{1}{2} \left[1 - \left(\oint \frac{dk}{2\pi} \sin(\theta(k)) \right)^2 \right] \qquad \sin(\theta) = \frac{h_y(k)}{\sqrt{h_y^2 + h_z^2}}$$

The peaks coincide with the critical line.

Domain Wall Fractional Charge

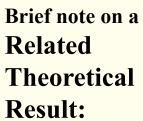
$$H_{\eta} = H + \frac{\Delta_y}{2} \sum_j \left[1 - \cos \eta(j)\right] C_j^{\dagger} \sigma_y C_j$$
$$\eta(j = -\infty) = 0 \qquad \eta(j = +\infty) = \pi$$

Firm Computation of Fractional Charge: Background (auxiliary) gauge field method

• Introduce background gauge field: $(A_{\tau}, A_x), \quad \tau = it$

$$D_{\tau} = \partial_{\tau} + iA_{\tau}(j,\tau),$$

$$\mathcal{T}_{j\,j+1} = e^{iA_{x}(j+1/2,\tau)}T_{j\,j+1},$$


$$T_{j\,j+1} = \begin{bmatrix} -t_{s} & -t_{sp} \\ t_{sp} & t_{p} \end{bmatrix},$$

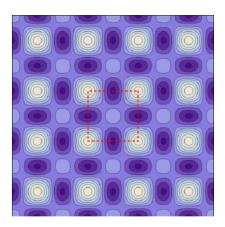
$$\mathcal{T}_{j\,j+1} = \mathcal{T}_{j+1\,j}^{\dagger}.$$
Berry phase

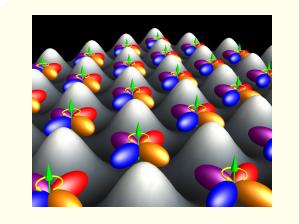
• Effective action
$$\tilde{S}_{\text{eff}}[A_{\mu}] = \int dx dt (A_x \partial_t \eta - A_t \partial_x \eta) \frac{1}{2\pi} \partial_\eta \gamma(\eta)$$

• Charge

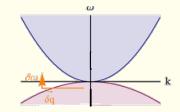
$$Q = \int \frac{\tilde{S}_{eff}}{\delta A_t} = -\frac{1}{2\pi} \int dx \partial_x \eta \partial_\eta \gamma(\eta) = -\int \frac{d\eta}{2\pi} \partial_\eta \gamma(\eta)$$

Find: $Q = \frac{1}{2} \mod 1$


Topological semimetal in a fermionic optical lattice


Kai Sun¹, W. Vincent Liu^{2,3,4}*, Andreas Hemmerich⁵ and S. Das Sarma¹

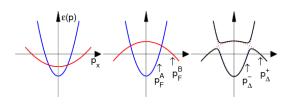
System: **<u>p-orbital</u>** fermions on Double-well lattice


nature

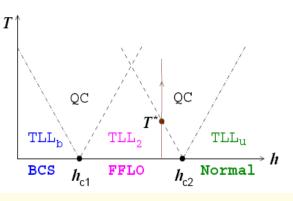
physics

Ordered (topological insulator)

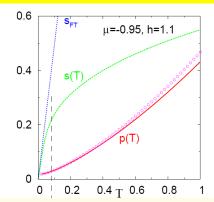
Normal(topological semimetal): winding number =2, quadratic dispersion, different than Graphene


Ordered phase

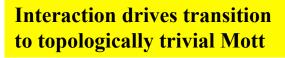
- Breaks Time-reversal symmetry
- Topological Insulator
- New mechanism interaction driven -- Differs from the previously known's: artificial gauge field, rotation, spin-orbit coupling, ...

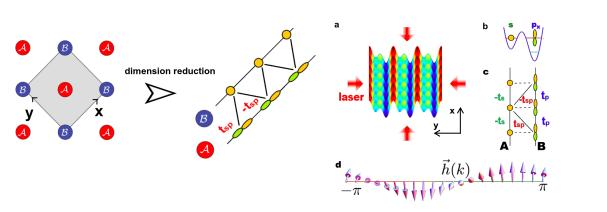

Conclusion

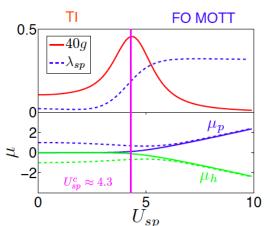
1. Spin imbalanced Fermi gas


Sarma/ Breached Pair (a homogeneous polarized superfluid)

Phase diagram of 1D polarized Fermi gas




Thermo Bethe Ansatz compared to Field Theory



2. Topological sp-orbital ladder

Prediction: Hamburg double-well lattice, when dimension reduced, is topological insulator with fermion zero modes

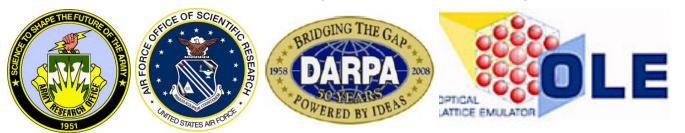
Acknowledgement

Collaborators Imbalanced fermions:

Frank Wilczek (MIT) Michael Forbes (MIT, now UW Seattle) Elena Gubankova Xi-Wen Guan (Australian NU) Yong-Baek Kim (Toronto) Masaki Oshikawa (Tokoyo) Peter Zoller (Innsbruck) M. T. Batchelor (Australian NU) *Experiment:* R. Hulet (Rice)

Student/Postoc:

Chungwei Lin (Columbia ->Pitt->UT Austin) Vladimir Stojanovic (student, Carnegie-Mellon, now Basel) EZ (also on the right)


P-orbital:

Sankar Das Sarma (Maryland) Ivan H Deutsch & Krittika Goyal (New Mexico) Philipp Hauke (ICFO Spain) Maciej Lewenstein (ICFO Spain) Joel Moore (Berkeley) Kai Sun (Maryland-> U Michigan) Congjun Wu (UCSD) *Exp:* A. Hemmerich (Hamburg)

Students & Postdocs

C. M. Ho (Pitt-> UC Berkeley) H. H. Hung (Pitt->UCSD->UIUC) Xiaopeng Li (Pittsburgh) Zixu Zhang (Pitt-> finance) Erhai Zhao (now faculty at George Mason U, USA)

Acknowledge Support by U.S. ARO, AFOSR, and DARPA-OLE And NSF of China Overseas Scholar Program (sponsor: Peking Univ/Prof. Biao Wu)

52