Star-Disk-Binary Interactions & Primordial Spin-Orbit Misalignment

Dong Lai Cornell University

Tsinghua 5/15/2014

Orbital period puzzle

Disk-Driven Migration

Eccentricity Puzzle

Semi-Major Axis [Astronomical Units (AU)]

Spin-Orbit Misalignment Puzzle

Slide from Josh Winn

S*-L_p misalignment in Exoplanetary Systems → The Importance of few-body interactions

- 1. Kozai + Tide migration by a distant companion star/planet (e.g., Wu & Murray 03; Fabrycky & Tremaine 07; Naoz et al.12, Katz et al.12)
- 2. Planet-planet Interactions
 - -- Strong scatterings (e.g., Rasio & Ford 96; Chatterjee et al. 08; Juric & Tremaine 08)
 - -- Secular interactions ("Internal Kozai", chaos)
 - (e.g Nagasawa et al. 08; Wu & Lithwick 11)

- s) i /M' Mo m (planet)
- -- Chaotic stellar spin evolution during Kozai (Storch, Anderson & DL 2014)

Chaotic Dynamics of Stellar Spin during Kozai cycle

Storch, Anderson & DL 2014

S*-L_p misalignment in Exoplanetary Systems → The Importance of few-body interactions

"High-Eccentricty Migration"

- -- Planet forms at a few AUs
- -- Interaction with another body pumps it into high-e/inclined orbit
- -- Tidal dissipation on planet circularizes the orbit

Likely NO.

-- Companion? Initial conditions? (e.g., Knutson et al. 2014)

- -- Companion? Initial conditions? (e.g., Knutson et al. 2014)
- -- Can produce distribution of period, ecc, misalignment? (Naoz+12,Petrovich+14)

- -- Companion? Initial conditions? (e.g., Knutson et al. 2014)
- -- Can produce distribution of period, ecc, misalignment? (Naoz+12,Petrovich+14)
- -- Paucity of high-e proto-hot Jupiters (Socrates et al.2012; Dawson et al.2012)

- -- Companion? Initial conditions? (e.g., Knutson et al. 2014)
- -- Can produce distribution of period, ecc, misalignment? (Naoz+12,Petrovich+14)
- -- Paucity of high-e proto-hot Jupiters (Socrates et al.2012; Dawson et al.2012)
- -- Stellar metallicity trend of hot Jupiters → Two mechanisms of migrations (Dawson & Murray-Clay 2013)

- -- Companion? Initial conditions? (e.g., Knutson et al. 2014)
- -- Can produce distribution of period, ecc, misalignment? (Naoz+12,Petrovich+14)
- -- Paucity of high-e proto-hot Jupiters (Socrates et al.2012; Dawson et al.2012)
- -- Stellar metallicity trend of hot Jupiters → Two mechanisms of migrations (Dawson & Murray-Clay 2013)
- -- Misaligned multiplanet systems:
 - Kepler-55 (2 planets 10.5 & 21 days →40-55 deg from seismology; Huber et al 2013) Kepler-9 (3-planets; Walkowicz & Basri 2013) ? Other Candidates: Hirano et al. 2014

Hints of "Primordial" Misalignments (before dynamical few-body interactions)

Hints of "Primordial" Misalignments (before dynamical few-body interactions)

- -- Solar system: 7 degree
- -- Stellar spin axes in a>40 AU binaries: Misaligned (Hale 1994)
- -- PMS/YSO binaries: Misaligned protostellar disks measured from jets or disks

Haro 6-10:

Two disks: one edge-on, one face-on (Roccatagliata et al. 2011)

-- Misaligned multiplanet systems (Huber et al. 2013; etc)

between Stellar Spin and Protoplanetary Disk

between Stellar Spin and Protoplanetary Disk

-- Chaotic star formation (Bate et al. 2010)

Supersonic turbulence --> clumps --> stars Clumps can accrete gas with different rotation axes at different times

between Stellar Spin and Protoplanetary Disk

- -- Chaotic star formation (Bate et al. 2010)
- -- Magnetic Star -- Disk Interaction (Lai, Foucart & Lin 2011)

between Stellar Spin and Protoplanetary Disk

- -- Chaotic star formation (Bate et al. 2010)
- -- Magnetic Star Disk Interaction (Lai, Foucart & Lin 2011)
- -- Perturbation of Binary on Disk (Batygin 2012; Batygin & Adams 2013; Lai 2014)

Star-Disk-Binary Interactions

Star-Disk-Binary Interactions

First no accretion, just gravitational interactions...

Companion makes disk precess

Disk behaves like a rigid body (bending waves, viscous stress, self-gravity)

$$\Omega_{\rm pd} \simeq -5 \times 10^{-6} \left(\frac{M_b}{M_\star}\right) \left(\frac{r_{\rm out}}{50 \,\text{AU}}\right)^{3/2} \left(\frac{a_b}{300 \,\text{AU}}\right)^{-3} \times \cos \theta_{\rm db} \left(\frac{2\pi}{\rm yr}\right)$$

Two limiting cases:

- (1) $|\Omega_{\rm ps}| \gg |\Omega_{\rm pd}|: \implies \theta_{\rm sd} \simeq {\rm constant}$
- (2) $|\Omega_{\rm ps}| \ll |\Omega_{\rm pd}|: \implies \theta_{\rm sb} \simeq {\rm constant}$

$$\begin{split} \Omega_{\rm pd} &\simeq -5 \times 10^{-6} \left(\frac{M_b}{M_\star}\right) \left(\frac{r_{\rm out}}{50 \,{\rm AU}}\right)^{3/2} \left(\frac{a_b}{300 \,{\rm AU}}\right)^{-3} \\ &\times \cos \theta_{\rm db} \left(\frac{2\pi}{{\rm yr}}\right) \\ \Omega_{\rm ps} &\simeq -5 \times 10^{-5} \left(\frac{M_d}{0.1M_\star}\right) \left(\frac{\bar{\Omega}_\star}{0.1}\right) \left(\frac{r_{\rm in}}{4R_\star}\right)^{-2} \left(\frac{r_{\rm out}}{50 \,{\rm AU}}\right)^{-1} \\ &\times \cos \theta_{\rm sd} \left(\frac{2\pi}{{\rm yr}}\right) \end{split}$$

Simple model:

$$M_d = \frac{0.1 M_{\odot}}{1 + (t/0.5 \text{ Myrs})}$$

Resonance
$$\Omega_{\rm ps}=\Omega_{\rm pd}$$

$$\frac{d\hat{\boldsymbol{S}}}{dt} \simeq \Omega_{\mathrm{ps}}\,\hat{\boldsymbol{L}}_{\mathrm{d}} imes \hat{\boldsymbol{S}}$$

In the frame rotating at rate $\Omega_{pd} \hat{\mathbf{L}}_{b}$

Now consider Isolated Star-Disk Systems: Accretion and Magnetic Interaction

Magnetic Star - Disk Interaction: Basic Picture

 $\left({{} } \right)^{1/7}$ 5-1

Hot spot (out of sight) เพลงเเอเเบ ฮเลเ

Magnetic Star - Disk Interaction: Physical Processes

Magnetic field reconnects and penetrates the inner region of disk Field lines linking star and disk are twisted --> toroidal field --> field inflation Reconnection of inflated fields restore linkage

Romanova, Long, et al. 2010

Key Results:

In general, there are magnetic torques which tend to make the inner disk (before disruption)

- -- warp
- -- precess

on timescale >> dynamical time (rotation/orbital period)

Key Results:

In general, there are magnetic torques which tend to make the inner disk (before disruption)

- -- warp
- -- precess

on timescale >> dynamical time (rotation/orbital period)

Consider two limiting cases in general geometry...

Perfect conducting disk:

Torque on disk (per unit area): Averaging over stellar rotation: $\mathbf{N} \propto \hat{\mu} \times \hat{\mathbf{l}}$ $\mathbf{N} \propto \hat{\omega}_s \times \hat{\mathbf{l}}$ Precessional Torque

Poorly-conducting disk:

Torque on disk (per unit area): Averaging over stellar rotation:

$$egin{aligned} \mathbf{N} \propto - \hat{\mathbf{l}} imes (\hat{\mu} imes \hat{\mathbf{l}}) \ \mathbf{N} \propto - \hat{\mathbf{l}} imes (\hat{\omega}_s imes \hat{\mathbf{l}}) \end{aligned}$$

Warping torque

A Laboratory Experiment

A Laboratory Experiment

Recap:

Magnetic toques from the star **want** to make the inner disk warp and precess...

But disk will **want** to resist it by internal stresses (viscosity, bending waves) or self-gravity

$$\frac{\partial}{\partial t} \left(\Sigma r^2 \Omega \hat{\boldsymbol{l}} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(\Sigma V_R r^3 \Omega \hat{\boldsymbol{l}} \right) = \frac{1}{r} \frac{\partial}{\partial r} \left(Q_1 I r^2 \Omega^2 \hat{\boldsymbol{l}} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(Q_2 I r^3 \Omega^2 \frac{\partial \hat{\boldsymbol{l}}}{\partial r} + Q_3 I r^3 \Omega^2 \hat{\boldsymbol{l}} \times \frac{\partial \hat{\boldsymbol{l}}}{\partial r} \right) + \mathbf{N}_m$$

Steady-state Disk Warp:

For most disk/star parameters, the disk warp is small

What is happening to the stellar spin direction? (Is there secular change to the spin direction?)

Need to consider: Back-reaction torque on the stellar spin... (for small warps --> flat disk) What does magnetic warping torque do?

What does magnetic warping torque do?

Accretion tends to align S & L:

Accretion torque $N_{\rm acc} \simeq \dot{M} \sqrt{G M_{\star} r_{\rm in}}$

Magnetic misalignment torque: $\mathcal{N}_{
m mag} \sim \mu^2/r_{
m in}^3$

For
$$r_{\rm in} \sim \left(\frac{\mu^4}{GM_\star \dot{M}^2}\right)^{1/7}$$

 $\rightarrow \quad \mathcal{N}_{\rm acc} \sim \mathcal{N}_{\rm mag}$

Evolution of the stellar spin

$$\begin{split} \frac{d}{dt} \left(J_s \hat{\omega}_s \right) &= \mathcal{N} = \mathcal{N}_{\text{acc}} + \mathcal{N}_m + \mathcal{N}_{\text{sd}} \\ \mathcal{N}_{\text{acc}} &= \lambda \dot{M} \sqrt{GMr_{\text{in}}} \, \hat{l}_{\text{in}}, \quad \lambda \sim 1 \text{ (or less)} \\ \mathcal{N}_m = & \text{backreaction of magnetic (warping \& \text{ precessional) torques} \\ \mathcal{N}_{\text{sd}} &= -|\mathcal{N}_{\text{sd}}| \, \hat{\omega}_s \end{split}$$

(Each term is of order $\mathcal{N}_0 = \dot{M}\sqrt{GMr_{\rm in}}$)

$$\implies \frac{d\cos\theta_{\rm sd}}{dt} = \frac{\mathcal{N}_0}{J_s}\sin^2\theta_{\rm sd} \left(\lambda - \tilde{\xi}\cos^2\theta_{\rm sd}\right)$$
$$\bar{\zeta} = \frac{\zeta\cos^2\theta_{\star}}{6\eta^{7/2}} \ (\sim 1)$$

Spin evolution timescale:

$$t_{\rm spin} = (1.25\,{\rm Myr}) \left(\frac{M_{\star}}{1\,M_{\odot}}\right) \left(\frac{\dot{M}}{10^{-8}M_{\odot}{\rm yr}^{-1}}\right)^{-1} \left(\frac{r_{\rm in}}{4R_{\star}}\right)^{-2} \frac{\omega_s}{\Omega(r_{\rm in})}$$

Evolution of the stellar spin

Summary:

For Isolated star-disk systems:

Magnetic torque tends to produce spin-disk misalignment, But competes with accretion

➔May or may not produce small/modest misalignment (e.g., Solar system 7 degree?)

Star-Disk-Binary Interactions

Now include Accretion and Magnetic Torques

Spin Evolution

$$egin{aligned} rac{dm{S}}{dt} &= \lambda \, \mathcal{N}_0 \, \hat{m{L}}_{
m d} - \mathcal{N}_{
m s} \hat{m{S}} + \, \mathcal{N}_0 \, ar{n}_w \cos heta_{
m sd} \, \hat{m{L}}_{
m d} imes (\hat{m{S}} imes \hat{m{L}}_{
m d}) \ &+ \, \mathcal{N}_0 \, ar{n}_p \cos heta_{
m sd} \hat{m{S}} imes \hat{m{L}}_{
m d} + \Omega_{
m ps} \hat{m{J}}_{
m sd} imes m{S} \end{aligned}$$

Spin Direction Evolution

$$\frac{d\hat{\boldsymbol{S}}}{dt} \simeq \omega_0 \left(\lambda - \bar{n}_w \cos^2 \theta_{\rm sd}\right) \left(\hat{\boldsymbol{L}}_{\rm d} - \cos \theta_{\rm sd} \hat{\boldsymbol{S}}\right) \\ + \left(\Omega_{\rm ps}^{(m)} + \Omega_{\rm ps}\right) \hat{\boldsymbol{L}}_{\rm d} \times \hat{\boldsymbol{S}},$$

$$t_{\rm spin} = \frac{1}{\omega_0} = (1.25 \,\mathrm{Myr}) \left(\frac{M_{\star}}{1 \,M_{\odot}}\right) \left(\frac{\dot{M}}{10^{-8} M_{\odot} \mathrm{yr}^{-1}}\right)^{-1} \left(\frac{r_{\rm in}}{4 R_{\star}}\right)^{-2} \frac{\omega_s}{\Omega(r_{\rm in})}$$

Recap the Key Findings:

With a binary companion, spin-disk misalignment is "easily" generated
Accretion/magnetic torques affect it, but not diminish the effect
The key is "resonance crossing"

$$|\Omega_{\rm ps}/\Omega_{\rm pd}| \gtrsim 1 \text{ at } t = 0$$

$$\Rightarrow \frac{a_{\rm b}}{r_{\rm out}} \gtrsim 2.8 \left(\frac{M_{\rm b}}{M_{\star}}\right)^{1/3} \left(\frac{r_{\rm out}}{50 \,\mathrm{AU}}\right)^{-1/6} \left(\frac{\bar{\Omega}_{\star}}{0.1}\right)^{-7/9} \left(\frac{M_{\rm di}}{0.1M_{\star}}\right)^{-1/3} \xrightarrow{\ell_{\rm d}}_{\theta_{\rm sd}} \theta_{\rm sd}$$

.

 $|\Omega_{\rm ps}/\Omega_{\rm pd}| \lesssim 1$ at t = 10 Myrs

$$\Rightarrow \ \frac{a_{\rm b}}{r_{\rm out}} \lesssim 7.6 \left(\frac{M_{\rm b}}{M_{\star}}\right)^{1/3} \left(\frac{r_{\rm out}}{50 \,{\rm AU}}\right)^{-1/6} \left(\frac{\bar{\Omega}_{\star}}{0.1}\right)^{-7/9} \left(\frac{M_{\rm df}}{0.005 M_{\star}}\right)^{-1/3}$$

Implications for Hot Jupiter formation

- -- If hot Jupiters are formed through Kozai induced by a companion, then primordial misalignment likely already present
- -- Even when Kozai is suppressed, misaligned planets can be produced
- -- Disk driven migration is quite viable...

Star-Debris Disk Systems: $i_{ m star} pprox i_{ m disk}$

Greaves et al. 2013

system names (UNS id)	notes	P (days)	$v \sin i_*$ (km/s)	R_* (R_{\odot})	<i>i</i> * (°)	$\stackrel{i_d}{(^{\circ})}$	$ \Delta i $ (°)
Vega, HD 172167 (A003)	planet?; 2 belts				3-6	10 ± 2	5.5 ± 2.5
HR 8799, HD 218396 (A—)	planets; 2 belts				$\gtrsim 40$	27 ± 10	$\gtrsim 3$
10 CVn, HD 110897 (F050)		13 [1]	3.4 ± 1.4	0.99	$63 (\geq 33)$	56 ± 10	$7^{+29}_{(-7)}$
γ Dor, HD 27290 (F085)	2 belts				63 - 80	69 ± 5	$3^{+10}_{(-3)}$
Sun $(G-)$	planets, 2 belts				7.3	1.7 ± 0.2	5.6 ± 0.2
61 Vir, HD 115617 (G008)	planets	29 [2]	1.6 ± 0.5	0.97	$68 (\geq 41)$	77 ± 4	$9^{+22}_{(-9)}$
58 Eri, HD 30495 (G029)		11.3 [2,3,4]	3.4 ± 0.3	0.97	51 ± 6	51 ± 10	$0^{+12'}_{(-0)}$
V439 And, HD 166 (G030)	2 belts?	5.7 [3,5]	4.8 ± 0.7	0.87	39 ± 6	50 ± 10	$11^{+12'}_{(-11)}$
ϵ Eri, HD 22049 (K001)	planet(s); 2 belts	11.6 [6]	2.3 ± 0.3	0.74	46 ± 8	38 ± 10	$8^{+13}_{(-8)}$
EP Eri, HD 17925 (K035)		6.9 [2, 6, 7]	5.8 ± 0.6	0.79	$88 (\geq 63)$	54 ± 10	34^{+16}_{-27}
DE Boo, HD 131511 (K053)		10.4 [8]	4.5 ± 0.4	0.91	$\geqslant 70$	84 ± 10	$4^{+12}_{(-4)}$
HO Lib, GJ 581 (M056)	planets	94 [9]	0.3 ± 0.3	0.30	≥ 0	50 ± 20	
AU Mic, HD 197481 (M—)		4.9 [10, 11]	8.5 ± 0.6	0.77	$\geqslant 81$	$\geqslant 80$	$1^{+7}_{(-1)}$

HD	i_* (°)	i_{disk} (°)	ref.
10647	49^{+17}_{-11}	$\geqslant 52$	(Liseau et al. 2008)
10700	$45^{+2\bar{4}}_{-15}$	60-90	(Greaves et al. 2004)
22049	31^{+5}_{-5}	25	(Greaves et al. 1998)
61005	90^{+0}_{-26}	80	(Maness et al. 2009)
92945	65^{+21}_{-10}	70	(Krist et al. 2005)
107146	21^{+8}_{-9}	25 ± 5	(Ardila et al. 2004)
197481	90^{+0}_{-20}	90	(Krist et al. 2005)
207129	$47^{+\bar{2}\bar{2}}_{-13}$	60 ± 3	(Krist et al. 2010)

Watson et al 2011

Greaves et al. 1998

Summary

-- Hints/Needs for primordial star-disk misalignments

-- Isolated star-disk systems:

Magnetic torque may produce small/modest misalignments; May explain the 7° misalignemt in solar system

-- Binary-disk-star interactions:

Easy to generate promordial misalignments "Secular resonance" Take place before few-body interactions (e.g. Kozai) Disk-driven migration can produce misaligned hot Jupiters

Thanks!