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Thermal phase transitions

I At critical point, thermal fluctuations:
divergent length scale leads to singularity

I Quantum mechanics is largely irrelevant
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3D Ising FM-Paramagnetic transition (MC simulation)

I The coarse grained continuum field description:
Landau-Ginzburg-Wilson Hamiltonian

H(Φ) =

∫
dr((∇Φ)2 + sΦ2 + u(Φ2)2); Z =

∫
DΦ e−H(Φ)

Φ is the order parameter, s is a function of T .
I Meanfield: Φ2 = −s/2u for T < Tc (s ∼ s′(T − Tc)).
I well understood within Wilson’s RG framework;

• longrange order 〈Φ〉 6= 0: spontaneous symmetry breaking
• universality class: symmetry and dimensions



Quantum phase transitions

I happens at zero temperature, when adapt g in H = H0 + gHI ;
[H0,HI ] 6= 0, continueous transition

I at gc, the correlation length diverges, due to quantum fluctuations

I path integral maps D-dim quantum systems onto classical field theories
in (D + 1)-dim

S(Φ) =

∫
drdτ((∂τΦ)2 + v2(∇xΦ)2 + sΦ2 + u(Φ2)2)

Z =

∫
DΦ e−S(Φ)

I many of these transitions can be understood in the conventional
Landau-Ginzburg-Wilson framework



I for example: AF Néel-Paramagnetic transition
H0 is AF Heisenberg Hamiltonian, g = J2/J1

• 3D classical Heisenberg universality class:
confirmed by QMC

• Experimental realized



However, many strongly-correlated quantum materials seem to defy such a
description and call for new ideas

for example, continuous transition from Néel to VBS state



Deconfined quantum criticality
describes the direct continuous transition from Néel to VBS in 2D
Senthil, Vishwanath, Balents, Sachdev, Fisher; Science (2004)

Néel order parameter
ms = 1

N

∑
i(−1)xi+yi Si

VBS order parameter (Dx,Dy)

Dx = 1
N

∑N
i=1(−1)xi Si ·Si+x̂,

Dy = 1
N

∑N
i=1(−1)yi Si · Si+ŷ

• violates the ”Landau rule”:

I Néel-param should be in the
3D O(3) universality class;

I away from VBS should be
in the 3D O(2) universality
class.
(Z4 anisotropy is dangerously
irrelevant)
Léonard and Delamotte, PRL 2015

New physics

• Order parameters of the Néel state and the VBS state are NOT the fundamental
objects, they are composites of fractional quasiparticles carrying S = 1/2



Physical picture from VBS side

Levin and Senthil, PRB 70, 2004

VBS: 4 symmetry broken ground states

similar to classical 4-state clock model

H = −J
∑
〈ij〉

cos(θi − θj), θi = nπ/2, n = 0, 1, 2, 3



Physical picture from VBS side
Levin and Senthil, PRB 70, 2004

• At the core of the Z4 vortex, there is a
spinon: unpaired spin

• different from 4-state clock model

• Blue-shaded regions are domain walls

• The thickness ξ′ diverges faster than ξ

• emergent U(1) symmetry; same as 4-state clock
model (Z4anisotropy is dangerously irrelevant)

• Spinons bind together in the VBS state (confinement) and condensate
the Néel state, deconfine at the critical point leading to a continuous
phase transition

• New universality: neither O(2) nor O(3)



Deconfined quantum criticality

Field-theory description with spinor field z

• Order parameters of the Néel state are composites of spinons

Φ = z†σz

z: spinor field (2-component complex vector); σ: Pauli

• Non-compact CP1 action

• Only SU(N) generalization can be sloved when N →∞,
nonperturbative numerical simulations are required to study small N

• The most natural physical realization of the Néel-VBS transition for
SU(2) spins is in frustrated quantum magnets
however, notoriously difficult to study numerically:
sign problem in QMC



Designer Hamiltonian: J-Q model

Sandvik designs the J-Q model (2007)

H = −J
∑
〈ij〉

Cij − Q
∑
〈ijkl〉

CijCkl, Cij = (
1
4
− Si · Sj)

Lattice symmetries are kept (J − Q2 version similar)

• large Q, columnar VBS

• small Q, Néel

• No sign problem

• ideal for QMC study of the DQC
physics

Sandvik, PRL 98, 227202(2007)



Finite-size scaling
• Correlation length divergent for T → Tc: ξ ∝ |δ|−ν , δ = T − Tc(or g− gc)

• Other singular quantity: A(T,L→∞) ∝ |δ|κ ∝ ξ−κ/ν

• For L-dependence at Tc just let ξ → L: A(T ≈ Tc,L) ∝ L−k/ν

• Close to critical point: A(T,L) = L−κ/νg(L/ξ) = L−κ/ν f (δL1/ν)

For example

χ(T,L→∞) ∝ δ−γ

data collapse

χ(T,L)L−γ/ν = f (δL1/ν)

2D Ising model, use γ = 7/4, ν = 1
Tc = 2/ ln(1 +

√
2) ∼ 2.2692

When these are not known, treat as fitting
parameters
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FIGURE 14. Monte Carlo results for the susceptibility (55) of the Ising model on several different L×L
lattices. (a) shows the temperature dependence, with the vertical line indicating Tc. Note the vertical log
scale. In (b) the data has been scaled using the exact values of the Ising exponents, γ = 7/4 and ν = 1,
and the exact value of Tc in t = (T −Tc)/Tc.

which, using ξ ∼ |t|−1/ν , we can also write as

Q(t,L) = Lσg(tL1/ν). (65)

This scaling law should hold both above (t > 0) and below (t < 0) the critical point.
Exactly at Tc, we recover the size-scaling Q(0,L) ∼ Lσ . To relate σ to the standard
critical exponents, we can use the fact that, for fixed t close to 0, as the system grows the
behavior for any t $= 0 eventually has to be given by Eq. (59);Q(t,L→∞)∼ |t|−κ (where
κ is negative for a singular non-divergent quantity, e.g., the for the order parameter we
have κ =−β ). To obtain this form, the scaling function g(x) in (65) must asymptotically
behave as g(x)∼ x−κ for x→ ∞. In order for the size-dependence in (65) to cancel out,
we therefore conclude that σ = κ/ν , i.e.,

Q(t,L) = Lκ/νg(tL1/ν). (66)

To extract the scaling function g(x) using numerical data, one can define

yL = Q(t,L)L−κ/ν , xL = tL1/ν , (67)

and plot yL versus xL for different system sizes. If the scaling hypothesis is correct,
data for different (large) system sizes should fall onto the same curve, which then is
the scaling function (this is referred to as curves collapsing onto each other); g(x) =
yL→∞(x). Fig. 14 illustrates this using Monte Carlo data for the magnetic susceptibility
of the 2D Ising model. The peak location in panel (a) clearly moves toward the known
Tc with increasing L. After scaling the data according to the above procedures, as shown
in panel (b), the curves indeed collapse almost onto each other close to t = 0, but further
away from the critical point deviations are seen for the smaller systems. These are due to
corrections to scaling, which in principle can be described with subleading exponents.
We can apply the scaling form (66) to the correlation length itself, for which κ = ν and

the L-scaling is independent of model-specific exponents. In cases where the universality
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systematic critical-point analysis
• include corrections to scaling are included (RG theory); ui are irrelevant

fields
ALκ/ν = f (δL1/ν , u1L−ω1 , u2L−ω2 , . . . )

Binder cumulant U = 1
2 (3− 〈m4〉

〈m2〉2 ), dimensionless κ = 0

U = f (δL1/ν , u1L−ω1 , u2L−ω2 , . . . )

• (almost) size-independent at Tc leads to crosssings at Tc

2D Ising model; MC results
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Figure 3: Binder cumulant for the 2D Ising model with L = 16, 32, 64 in the neighborhood of
the points at which the curves cross each other. The vertical and horizontal dashed lines indicate
the critical temperature Tc and the value of the cumulant at Tc, respectively. The solid curves
are cubic polynomial fits to the data sets. Error bars are much smaller than the plot symbols.

Fig. 3 shows examples of data for three different system sizes, where cubic polynomials
have been fitted to the data. The crossing points are extracted numerically to machine precision
using bisection. In order to analyze Tc and Uc in the thermodynamic limit, it suffices to consider
a small number of points very close to each crossing point to be analyzed. To obtain ⌫ from the
slopes according to Eq. (17), where the derivative in Eq. (13) is taken of the fitted polynomials,
it is better to have a more extended range of points. However, for a very large range a high order
of the polynomial has to be used in order to obtain a good fit, and it is then better in practice
to adapt the window size so that a relatively low order polynomial can be used. In the tests
reported here, cubic polynomials were used and all fits were statistically sound.

In order to compute error bars of the crossing points T ⇤(L) and the corresponding values
U⇤(L), a bootstrap method is used, i.e., with a large number of random samples of the binned
MC data, with each sample computed using B(L, T ) randomly chosen bins for each system
size and temperature, where B(L, T ) is the total number of data bins available for (L, T ). The
standard deviations of the values computed for these bootstrap samples correspond to the error
bars of the crossing points and values. Note that in the evaluation of the cumulant (19), for
the full data set or a bootstrap sample, the individual expectation values hm2

i i and hm4
i i are

computed first based on all the bins, after which the ratio is evaluated. If one instead uses ratios
computed for each bin separately, a statistically significant systematical error can be introduced
due to the nonlinear contributions to the statistical error propagated from the denominator.
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Drift in (L, 2L) crossing points

• scaling corrections in crossings

T∗(L) = Tc + aL−(1/ν+ω)

U∗(L) = Uc + bL−ω

ω: unkown correction to scaling, free
exponent in fits
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Figure 4: (a) Crossing temperature of the Binder cumulant for system-size pairs (L, 2L) versus
the inverse of the smaller size, along with a fit to the form (10) to the data points with L � 12.
(b) The value of the cumulant at the crossing points, along with a fit to the form (11) for L � 14.
In both (a) and (b), error bars are much too small to be visible. The insets shows the data minus
the fitted functions including the error bars.

Clearly this criterion is sensitive to the quality of the data—if the elements of the covariance ma-
trix are very small, even fits including only relatively large system sizes can detect the presence
of higher-order corrections and not pass our test, while with noisy data also small system sizes
can be included. If a fit satisfies the �2 criterion it can still not be completely guaranteed that no
effects of the higher-order corrections are present in the final result, but in general one would
expect any remaining systematical errors to be small relative to the statistical error. In principle
one can estimate the magnitude of the systematical error using the parameters obtained from the
fit and some knowledge or estimate of the nature of the higher-order corrections. We will not
attempt to do that here because in general such knowledge will be very limited. To minimize
any remaining systematical errors one can continue to exclude more system sizes even after
the soundness criterion (23) is satisfied, at the price of increasing the statistical errors of the
parameters extracted from the fits.
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• correlation-length exponent ν
can be extracted from the slope of U: s(T,L) = dU(T,L)

dT

ln(
s(T∗, 2L)

s(T∗,L)
)/ ln 2 =

1
ν

+ aL−ω + · · ·
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Figure 5: Estimate of the inverse of the correlation-length exponent ⌫ of the 2D Ising model
based on the slope expression (17) applied to the Binder cumulant. The curve is a fit to the form
(10) including all points (L � 6).

along with a fit including all the system sizes (L � 6). Remarkably, the fit is statistically perfect,
with h�2/Ndofi < 1, already at this small minimum size and the inverse exponent extrapolates
to 1/⌫ = 1.0001(7), in excellent agreement with the exact result 1. The slope data are much
more noisy than the underlying U values and the error bars grow very rapidly with L for the
largest sizes. The fit is therefore dominated by the smaller sizes. Naturally, the large error bars
mask the effects of higher-order corrections, as discussed above. It is nevertheless remarkable
that the extracted exponent 1/⌫ does not show any effects of the neglected corrections at all,
even though, again, the leading correction exponent, which comes out to ! = 1.57(7), is not
very close to the correct value 1.75 and its error bar is large. Again, the flexibility of the leading
finite-size term allows it to mimic the effects of the correction terms without significant effects
in the extrapolation of the fit.

These results demonstrate the unbiased nature of the crossing-point analysis when it is car-
ried out properly. We advocate this systematic way to determine the critical temperature (or
critical coupling of a quantum phase transition) and study the critical exponents, instead of of-
ten used [also in DQC studies (14,19,21)] data-collapse techniques where many choices have to
be made of the range of data included, use of corrections, etc. Although trends when increasing
the system size can also be studied with data collapse [as done in ref. (19))], the solid grounding
of the present scheme directly to the finite-size scaling form (7) makes it the preferred method.
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numerical study of the J-Q model



Many numerical results support DQC scenario
FSS of squared order parameter(A)

A(q, L) = L−(1+η)f [δL1/ν ], δ = q− qc, (q = Q/(J + Q))

Data ”collapse”: M2 and D2 simutaneously→ single continuous transition!

• J-Q2 model; qc = 0.961(1)

ηs = 0.35(2); ηd = 0.20(2);

ν = 0.67(1)

• J-Q3 model; qc = 0.600(3)

ηs = 0.33(2); ηd = 0.20(2);

ν = 0.69(2) Lou,Sandvik and Kawashima, PRB 2009

• Comparable results for honeycomb J-Q
model

Alet and Damle, PRB 2013 Kaul et al., PRL 2014



However, scaling violation
Spin stiffness ρs ∝ δν(d+z−2) and susceptibility χ ∝ δ(d−z)ν

Conventional FSS

ρs(δ, L) = L−ν(d+z−2)/ν f (δL1/ν), χ(δ, L) = L−ν(d−z)/ν f (δL1/ν)

At critical point: ρs ∝ L−(d+z−2) = L−z, χ ∝ L−(d−z)

z = 1 for J-Q model, ρsL and χL should be constants at qc
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• z 6= 1 does not work
• large scaling corrections? Sandvik PRL 2010, Bartosch PRB 2013

• weak first-order transition? Chen et al PRL 2013

The enigmatic current state is well summed up in Nahum PRX, 2015



In this talk, we will try to resolve this puzzle by

• introducing a new scaling form with two-length scales

• showing numerical evidences

• direct simulations of the deconfinement of spions

• critical scaling of VBS domain wall energy, spin stiffness and
susceptibility

• anomalous critical scaling at finite temperature



Unconventional scaling form with two lengths



Unconventional scaling form with two lengths
Two divergent lengths tuned by one parameter:

ξ ∝ δ−ν , ξ′ ∝ δ−ν′

Consider FSS of a quantity A ∝ δκ

• Conventional scenario

A(δ, L) = L−κ/ν f (δL1/ν , δL1/ν′
), A(δ = 0,L) ∝ L−κ/ν

L→∞, f (δL1/ν , δL1/ν′
)→ (δL1/ν)κ, recovers A ∝ δκ

• We propose

A(δ, L) = L−κ/ν
′
f (δL1/ν , δL1/ν′

), A(δ = 0,L) ∝ L−κ/ν
′

when L→∞, f (δL1/ν , δL1/ν′
)→ (δL1/ν′

)κ leads to A ∝ δκ

For example: spin stiffness ρs ∝ δν(d+z−2), κ = ν(d + z− 2). At qc

NOT ρs ∝ L−(d+z−2), BUT ρs ∝ L−(d+z−2)ν/ν′



phenomenological explanation of our scaling form



General scaling theory for ρs, single length scale

Fisher et al PRB,40,546(1989)

Free energy density scales

fs(δ, L, β) ∼ ξ−(d+z)Y(
ξ

L
,
ξz

β
), ξ ∼ δ−ν

• ρs
∆2φ

L2 is the excess energy due to a twist along apace:

∆f (δ, L, β) ∼ ξ−(d+z)Ỹ(
ξ

L
,
ξz

β
) ∼ ρs

π2

L2

• Ỹ has to behave like (ξ/L)2, thus

ρs ∼ ξ2−(d+z)

• replacing ξ to L, we have ρs ∼ L−(d+z−2)



Two length scales scenario
Free energy density scales

fs(δ, L, β) ∼ ξ−(d+z)Y(
ξ

L
,
ξz

β
,
ξ′

L
,
ξ′z

β
)

• the excess energy due to a twist along apace:

ρs(
∆φ

L
)2 ∼ ∆f (δ, L, β) ∼ ξ−(d+z)Ỹs(

ξ

L
,
ξz

β
,
ξ′

L
,
ξ′z

β
)

which means

Ỹs ∼ (
ξ

L
)a(
ξ′

L
)2−a

• The larger correlation length ξ′ reaches L first, so L = ξ′

we have a = 2, and
ρs ∼ ξ−(d+z−2)

but, since L = ξ′, ξ saturates at ξ = Lν/ν
′
,

ρs ∼ L−(d+z−2)ν/ν′



Projector Quantum Monte Carlo method: ground state
S = 0

Apply the imaginary time evolution operator to an initial state

U(τ →∞)|Ψ0〉 → |0〉

where U(τ) = (−H)τ or U(τ) = exp (−Hτ)

〈A〉 =
〈Ψ0|U(τ)AU(τ)|Ψ0〉
〈Ψ0|U(τ)U(τ)|Ψ0〉

→
∑

c AcWc∑
c Wc

Ac is the estimator of A.



Projector Quantum Monte Carlo method

• using VB basis

|Ψ〉 =
∑

v

fv|v〉, |v〉 = |(a1, b1) · · · (aN/2, bN/2)〉

| ↑i↓j〉 − | ↓i↑j〉/
√

2 ∑
• take U(τ) = exp (−τH), SSE

representation→ Z =
∑

c Wc

• loop update algorithm are used

expectation values: transition graphs

〈Si · Sj〉 = { 0, (i)L(j)L
3
4φij, (i, j)L,



study spinons

extend valence-bond basis to total spin S = 1 states
Tang and Sandvik PRL 2011, Banerjee and Damle JSTAT 2010

2S upaired ”up” spins

• two spinons are two strings in a background of valence bond loops

• study spinon bound states and unbinding



Numerical results



The two-spinon distance in the J-Q2 model
size of spinon bound state Λ ≡ root-mean-square string distance
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• suppose Λ ∝ ξ′ ∝ δ−ν′
, according to our new FSS,

Λ(qc,L) ∝ L, Λ(qc,L)/L = constant

• (L, 2L) crossing points converge monotonically

g∗ − qc ∝ L−(1/ν′+ω), Λ∗(L)/L− R ∝ L−ω

1/ν′ can be extracted from slopes at the crossing point

I qc = 0.04463(4), ν′ = 0.58(2)

Transition is associated
with spinon

deconfinement



The Binder ratio in the J-Q2 model

Similar crossing-point analysis of the
Binder ratio

R1 = 〈m2
sz〉/〈|msz|〉2

• correlation length exponent
ν = 0.446, diffrent from ν′

• what is ν′ obtained from confinement length Λ?
I DQC theory: VBS domain wall thickness

ξ ∝ (q− qc)
−ν , ξ′ ∝ (q− qc)

−ν′ , ν′ > ν

I ν/ν′ = 0.77(3) agrees with the result obtained from the VBS
domain-Wall energy calculations
suggesting ν′ is the domain wall thickness exponent



VBS domain-wall scaling in the critical J-Q model

• VBS domain walls are imposed in
open-boundary systems

• π wall splits into two π/2 walls

• calculate domain-wall energy

δF = Fwall − Funiform

κ = δF/Ld+z−1

φ = π/2 φ = π

〈Si · Sj〉



Scaling of κ at deconfined critical point

• domain-wall energy can be expressed as κ = ρs/Λ

ρs is a stiffness: energy cost of a twist of the VB order
Λ is the width of the region over which the twist distributes.

• According to DQC theory,
ρs ∝ 1/ξ, Λ ∝ ξ′,
κ ∝ 1

ξξ′ ∝ δν+ν′

• translate to finite size at qc:
When ξ′ reaches L, ξ saturates at
ξ′
ν/ν′

= Lν/ν
′

κ(qc) ∝ L−(1+ν/ν′)

we have ν/ν′ = 0.72(2)

• predicted by our scaling form:
A(δ, L) = L−κ/ν

′
f (δL1/ν , δL1/ν′

), A(δ = 0,L) ∝ L−κ/ν
′



Compare to domain wall scaling in classical model
3D q-state clock model(q > 3):

H = −J
∑
〈ij〉

cos(θi − θj)

I θ restriction:

domain wall energy in L→∞

κ ∼ 1
ξξ′

But, finite-size scaling at Tc shows

κ ∼ L−2 6= L−(1+ν/ν′)

ξ ∼ ξ′ν/ν′
, ν/ν′ ≈ 0.47, ν′ is universal

Léonard and Delamotte, PRL 2015

The dangerously irrelevant perturbation in the J-Q model is more serious



Further evidence for unconventional scaling
according to our scaling form

ρs ∼ L−(z+d−2)ν/ν′ ∼ L−ν/ν
′
, instead of ρs ∼ L−(z+d−2) ∼ L−1

χ ∼ L−(d−z)ν/ν′ ∼ L−ν/ν
′
, instead of χ ∼ L−(d−z) ∼ L−1
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(a) domain wall energy (b) spin stiffness (c) susceptibility

• This explains drifts in Lρs and χL in J-Q and other models
(z = 1, d = 2)



Anomalous critical scaling at finite Temperature

Quantum critical point at T = 0 governs the behavior in a T > 0 region
which expands out from (gc,T = 0): ξ > ΛT ∼ 1/T , ΛT de Broglie wave
length
experimentally important



Anomalous critical scaling at finite Temperature

• β = 1/T is also a ’finite-size’: L→ β1/z

• conventional scaling (z = 1 for J-Q)
I ξ ∼ L leads to ξT ∝ β1/z = T−1,
I χ ∼ L−(d−z) leads to χT ∝ β−(d−z)/z = T

• new scaling with ν/ν′:

ξT ∝ T−ν
′/ν ; χ ∼ L−ν/ν

′
leads to χT ∝ Tν/ν

′
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conclusions

• Two length scales observed explicitly in the J-Q model

• Simple two-length scaling hypothesis explains scaling violation of spin
stiffness and susceptibility

• we obtained the spinon deconfinement exponent ν′

• For T > 0 we find scaling laws from finite-size scaling forms
experimentally important

Thank you !
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