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Thermal phase transitions
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» At critical point, thermal fluctuations: E
. . . 04
divergent length scale leads to singularity
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» Quantum mechanics is largely irrelevant o
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3D Ising FM-Paramagnetic transition (MC simulation)
» The coarse grained continuum field description:

Landau-Ginzburg-Wilson Hamiltonian

H(®) = /dr((v«:b)2 +5®% +u(®%)?); Z= /Dd) e 1(®)
® is the order parameter, s is a function of 7.
> Meanfield: ®* = —s/2uforT < T. (s~ s'(T —T.)).
» well understood within Wilson’s RG framework;

e longrange order (@) # 0: spontaneous symmetry breaking
e universality class: symmetry and dimensions




Quantum phase transitions

» happens at zero temperature, when adapt g in H = Hy + gHp;

[Ho, H;] # 0, continueous transition
> at g., the correlation length diverges, due to quantum fluctuations

» path integral maps D-dim quantum systems onto classical field theories
in (D + 1)-dim

S(®) = /drdT((afrp)z + (V@)% 4 5@ + u(®*)?)

7= /D<I> e S(®)

» many of these transitions can be understood in the conventional
Landau-Ginzburg-Wilson framework



» for example: AF Néel-Paramagnetic transition
H, is AF Heisenberg Hamiltonian, g = J,/J;

g=laldy -

Ji Ji

0x0) 0-1-1

e 3D classical Heisenberg universality class:
confirmed by QMC
e Experimental realized

g
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However, many strongly-correlated quantum materials seem to defy such a
description and call for new ideas

for example, continuous transition from Néel to VBS state



Deconfined quantum criticality

describes the direct continuous transition from Néel to VBS in 2D

Senthil, Vishwanath, Balents, Sachdev, Fisher; Science (2004)

o e violates the "Landau rule™:
E
% > Néel-param should be in the
é E g 3D O(3) universality class;
=]
"~ vas > away from VBS should be
g in the 3D O(2) universality
class.
(Z4 anisotropy is dangerously
Néel order parameter VBS order parameter (Dy, Dy) irrelevant)
m, — =1 Z ( )x, +y, D, = % Zf\/:] (fl)XfS,- . Si+5c7 Léonard and Delamotte, PRL 2015
Dy, = % Zil(_l)yisi “Sity
New physics

e Order parameters of the Néel state and the VBS state are NOT the fundamental

objects, they are composites of fractional quasiparticles carrying S = 1/2



Physical picture from VBS side

Levin and Senthil, PRB 70, 2004

VBS: 4 symmetry broken ground states
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g - =(5-5;)
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AF VBS

similar to classical 4-state clock model

H=-J)» cos(0;—0;), 6;=nn/2, n=0,1,2,3 D,
(i)



Physical picture from VBS side

Levin and Senthil, PRB 70, 2004

o Blue-shaded regions are domain walls

o At the core of the Z4 vortex, there is a e The thickness ¢ diverges faster than &

inon: ired spi
SpInon: unpairec spin e emergent U(1) symmetry; same as 4-state clock

e different from 4-state clock model model (Zsanisotropy is dangerously irrelevant)
e Spinons bind together in the VBS state (confinement) and condensate

the Néel state, deconfine at the critical point leading to a continuous
phase transition

e New universality: neither O(2) nor O(3)



Deconfined quantum criticality

Field-theory description with spinor field z

e Order parameters of the Néel state are composites of spinons
® =70z

z: spinor field (2-component complex vector); o: Pauli

e Non-compact CP! action

e Only SU(N) generalization can be sloved when N — oo,

nonperturbative numerical simulations are required to study small N

o The most natural physical realization of the Néel-VBS transition for
SU(2) spins is in frustrated quantum magnets
however, notoriously difficult to study numerically:
sign problem in QMC



Designer Hamiltonian: J-Q model

Sandvik designs the J-Q model (2007)

1
H=-J]Y C;j—0> CjCu, Cyj= (7-8i°8))
(i) (ijk])

Lattice symmetries are kept (J — Q5 version similar)

large Q, columnar VBS

small Q, Néel

e No sign problem

order parameter

ideal for QMC study of the DQC
physics

AF VB

Sandvik, PRL 98, 227202(2007)



Finite-size scaling

e Correlation length divergent for T — T,.: § o< [6|7%,6 =T — T.(or g — g.)

e Other singular quantity: A(T,L — co) o |§]" oc €75/

e For L-dependence at T, just let £ — L: A(T ~ T,,L) oc L™%/¥

e Close to critical point: A(7T,L) = L™ "/Vg(L/&) = L~"/Vf(5L'/")

For example
X(T,L — o0) x 67
data collapse
X(T, L)LY = f(5L'Y)

2D Ising model, use v = 7/4,v = 1
T, =2/In(1 +v/2) ~2.2692
When these are not known, treat as fitting

parameters

o—e [ =]28
— L=16,32064

35



Finite-size scaling
e Correlation length divergent for T — T,.: § o< [6|7%,6 =T — T.(or g — g.)

e Other singular quantity: A(T,L — co) o |§]" oc €75/
e For L-dependence at T, just let £ — L: A(T ~ T,,L) oc L™%/¥

e Close to critical point: A(7T,L) = L™ "/Vg(L/&) = L~"/Vf(5L'/")

For example

0.05f ’ 1
T,L—o00)oxd /H;
X( ) ) 0.04
data collapse > 003
=

X(T, L)L~ = f(6L") 002

2D Ising model, use v = 7/4,v = 1 0.01
T, =2/In(1 +v/2) ~2.2692
When these are not known, treat as fitting

parameters



systematic critical-point analysis

e include corrections to scaling are included (RG theory); u; are irrelevant
fields
ALFY = f(SLMY u L™ up L™ .. )
<m4

Binder cumulant U = %(3 — (TZ;Z)* dimensionless K = 0

U=f(L"Y u L= L=, .. .)

e (almost) size-independent at 7, leads to crosssings at 7T,
2D Ising model; MC results
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Drift in (L, 2L) crossing points
e scaling corrections in crossings
T*(L) = T, + aL™(/v+%)
U*(L)=U,+bL™™

w: unkown correction to scaling, free
exponent in fits
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e correlation-length exponent v

can be extracted from the slope of U: s(T,L) = %
s(T*,2L) 1 _
In(———)/In2 = — L™ + ...
(s(T*,L) )/ VJra +
0922 ] Lo1f
0920k i 1.00
0.99F
o \\ =0.98F
™ 097
o L=64
o : Ii:ﬁ \ 096
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numerical study of the J-Q model



Many numerical results support DQC scenario

FSS of squared order parameter(A)

A(g,L) = L~ "TfsL],

e J-0, model; g, = 0.961(1)
ns = 0.35(2); na = 0.20(2);
v =10.67(1)
e J-03 model; g, = 0.600(3)
ns = 0.33(2); na = 0.20(2);
V= 069(2) Lou,Sandvik and Kawashima, PRB 2009
e Comparable results for honeycomb J-Q
model

Alet and Damle, PRB 2013 Kaul et al., PRL 2014

§=q—qc,(q=0/(J+Q))

Data “collapse”: M* and D* simutaneously — single continuous transition!
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However, scaling violation
Spin stiffness py o< ¥(@+2=2) and susceptibility y oc §(@—I¥

Conventional FSS

ps(0,L) = L™V p (L),

At critical point: ‘ ps oc L~W@H=2) — =2y o [ 7479 ‘

z = 1 for J-Q model, p;L and xL should be constants at ¢,

X(8,L) = L~/ p(sLY)

0.55

0s0F ]
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S 04sf 1 Foa4sp —
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a, 1" +a L' +a L

— aLal’

0.150

02, 0, 055, 105
a,l " ra L va " va L

02, 50
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e z # 1 does not work

pL/AN(L/L,)

0.20 -

= L=256

o L=48 064,90, 128, 192

o L=32

L] large scaling corrections? sanavik PRL 2010, Bartosch PRB 2013

o weak first-order transition? cueneaipr 2013

The enigmatic current state is well summed up in Nahum PRX, 2015



In this talk, we will try to resolve this puzzle by

e introducing a new scaling form with two-length scales

e showing numerical evidences

e direct simulations of the deconfinement of spions

e critical scaling of VBS domain wall energy, spin stiffness and
susceptibility

e anomalous critical scaling at finite temperature



Unconventional scaling form with two lengths



Unconventional scaling form with two lengths

Two divergent lengths tuned by one parameter:
Ex o, & oxd

Consider FSS of a quantity A o §"

e Conventional scenario

A(S,L) = L=~/ f(6LM  sL/""), |A(6 =0,L) o< L™"/¥

L — oo, f(6LY" §L'/¥") — (8L'/¥)", recovers A o 0"
e We propose

A(8,L) = L~V f(sLY" 6L, |A(S =0,L) oc L

when L — oo, (6L, 6L'/*") — (§L'/*")* leads to A o "

For example: spin stiffness p; oc V(@2 = v(d +z — 2). At g,

NOT ps o< L=@+2=2) BUT  p, oc L~ (@+e=2)w/v!




phenomenological explanation of our scaling form



General scaling theory for p;, single length scale

Fisher et al PRB,40,546(1989)

Free energy density scales

R (NI

2
° ps% is the excess energy due to a twist along apace:

g

AF.L.B) ~ €IV 5 ~ 0T

e Y has to behave like (£/L)?, thus
Ps ~ 527(d+z)

e replacing ¢ to L, we have p; ~ L~ (@+2=2)



Two length scales scenario

Free energy density scales

 —(d+2) § g g g
f:v(57Laﬁ) 5 Y<L7 ﬂ’ L7 ﬂ)
o the excess energy due to a twist along apace:
Ads ~ —(d+)y § € ¢

which means

€ a 6/ 2—a
D)
e The larger correlation length &’ reaches L first, so L = &’

7y~ (

we have a = 2, and
Ps ™~ 5_(d+z_2)

but, since L = &', £ saturates at & = L/ v

s ~ L~ (d+z—2)v /v’




Projector Quantum Monte Carlo method: ground state
S=0

Apply the imaginary time evolution operator to an initial state
U(T — 00)|To) — |0)

where U(7) = (—H)" or U(7) = exp (—HT)

(WUAU()| Vo) | 3, AW

W= G Um U ey W

A, is the estimator of A.



Projector Quantum Monte Carlo method

e using VB basis

@) => A, [v) = |(a1,b1) -~ (an 2, by 2))

A | i) — | Li15)/V2
>

expectation values: transition graphs
o take U(r) = exp (—7H), SSE P grap

representation — Z = > W,

e loop update algorithm are used

¢ TH T e e e
LT
| )

.o 0 (0
Gl . S




study spinons

extend valence-bond basis to total spin S = 1 states
Tang and Sandvik PRL 2011, Banerjee and Damle JSTAT 2010

28 upaired “up” spins

e two spinons are two strings in a background of valence bond loops

o study spinon bound states and unbinding



Numerical results



The two-spinon distance in the J-Q, model

size of spinon bound state A = root-mean-square string distance

0411

041
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1L=32,48,64,96 ——
i Py R

0.403

0.402
0.03 0.035 0.04 0.045 0.05 0.055 0.06

JQ

e suppose A o< £’ 5, according to our new FSS,
A(ge,L) x L, A(q.,L)/L = constant
e (L,2L) crossing points converge monotonically

¢ —qeoc L-/VH) ALY JL—Roc L

1/v' can be extracted from slopes at the crossing point
> g, = 0.04463(4), v = 0.58(2)

T T
From 2-spinon distance

0.055F
*
¢ 0.050}

0.045F

0.4090
04085}

<
04080+

0.4075E

0 0.02 0.04 0.06
/L

Transition is associated
with spinon

deconfinement



The Binder ratio in the J-Q, model

\ Similar crossing-point analysis of the
B * L=t Binder ratio
151+ o s =32 i
0 . L=64
\ ) 2
) \ Ry = (mg) /(Ims)
& A
1.50F \
\\ e correlation length exponent
‘ ‘ ‘ \ ‘ v = 0.446, diffrent from v/
0.03 0.035 0.04 7 0.045 0.05 0.055

e what is / obtained from confinement length A?
> DQC theory: VBS domain wall thickness

’

Ex(g—q)", Eoxlg—g)”, VvV >v

» v/v' = 0.77(3) agrees with the result obtained from the VBS
domain-Wall energy calculations
suggesting v/’ is the domain wall thickness exponent



VBS domain-wall scaling in the critical J-Q model

e VBS domain walls are imposed in
open-boundary systems ¢=m/2 p=m

e 7 wall splits into two 7/2 walls

e calculate domain-wall energy

OF = Fyyun — Fum_'form

k= OF /LT




Scaling of x at deconfined critical point

e domain-wall energy can be expressed as k = p;/A
ps 1s a stiffness: energy cost of a twist of the VB order
A is the width of the region over which the twist distributes.

o According to DQC theory,
ps x 1/&, A o &,

e translate to finite size at g.:
When ¢’ reaches L, € saturates at
E/V/’/ _ Ll//l/

1+v/v’

r(ge) oc LD

we have v/v" = 0.72(2)
e predicted by our scaling form:
A(,L) = L~~/"f(8LY” 6LV/Y"),  A(8 =0,L) oc L™/



Compare to domain wall scaling in classical model
3D g-state clock model(g > 3):

H= —JZ cos(6; — 6))
(&)

£~V v/v' =~ 0.47, 1 is universal

Léonard and Delamotte, PRL 2015

» 0 restriction: 10'F ]

domain wall energy in L — oo

~ L
33 -

But, finite-size scaling at T, shows

K

K Nsz #Lf(l*i’l//y’) - ‘ 7 o :
/L

The dangerously irrelevant perturbation in the J-Q model is more serious



Further evidence for unconventional scaling

according to our scaling form
ps ~ L=/ L_”/”/, instead of p; ~ L™H4=2) 7!

X ~ L@=av/v L_”/”/, instead of y ~ L™= ~ L~

(a) domain wall energy (b) spin stiffness (c) susceptibility
K e=1+VIV’ 0.16

0.15H7F xL
1.6
0.14
0.10F 150,
0,05k 0.12
0.00 ‘ 0.0 0'10 ‘ 0.65 ‘0‘1 /L 0.10
=0 01 02 1L 0 50 100 L

e This explains drifts in Lp, and xL in J-Q and other models
(z=1,d=2)



Anomalous critical scaling at finite Temperature

Quantum critical point at 7 = 0 governs the behavior ina 7 > 0 region
which expands out from (g., T = 0): £ > Ar ~ 1/T, Ar de Broglie wave
length

experimentally important

QcC




Anomalous critical scaling at finite Temperature

e 3= 1/Tis also a finite-size’: L — ('/*
e conventional scaling (z = 1 for J-Q)
> ¢~ Lleads to £, gl =11,
» x ~ L™ Jeads to Xy X g-@=alz—=r
e new scaling with v/v/':
& X T—v'/v, X ~ L=/ leads to Xy X v/

0.048

0.046

x/T

0.044

0.042




conclusions

e Two length scales observed explicitly in the J-Q model

e Simple two-length scaling hypothesis explains scaling violation of spin

stiffness and susceptibility
e we obtained the spinon deconfinement exponent v’

e For T > 0 we find scaling laws from finite-size scaling forms

experimentally important

Thank you !
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