Quantum criticality with two length scales 两尺度量子临界性

Wen-An Guo (郭文安)

Beijing Normal University

Institute of Advanced Study, Tsinghua, May 18, 2016

May 18, 2016

Collaborators

• Hui Shao (邵慧), Beijing Normal University (current: CSRC and BU PostDoc)

• Anders W. Sandvik, Boston University

References:

- 1. Science 354, 213 (2016).
- 2. PRB 91, 094426 (2015).

outline

Background

Unconventional scaling form with two-length scales

Quantum Monte Carlo methods

Numerical results

Anomalous critical scaling at finite temperature

Conclusions

Thermal phase transitions

- At critical point, thermal fluctuations: divergent length scale leads to singularity
- Quantum mechanics is largely irrelevant

3D Ising FM-Paramagnetic transition (MC simulation)

The coarse grained continuum field description:

Landau-Ginzburg-Wilson Hamiltonian

$$H(\mathbf{\Phi}) = \int d\mathbf{r} ((\nabla \mathbf{\Phi})^2 + s \mathbf{\Phi}^2 + u(\mathbf{\Phi}^2)^2); \quad \mathcal{Z} = \int \mathcal{D} \mathbf{\Phi} \ e^{-H(\mathbf{\Phi})}$$

 Φ is the order parameter, s is a function of T.

- Meanfield: $\Phi^2 = -s/2u$ for $T < T_c$ $(s \sim s'(T T_c))$.
- well understood within Wilson's RG framework;
 - longrange order $\langle \mathbf{\Phi} \rangle \neq 0$: spontaneous symmetry breaking
 - universality class: symmetry and dimensions

Quantum phase transitions

- ▶ happens at zero temperature, when adapt *g* in $H = H_0 + gH_I$; [H_0, H_I] ≠ 0, continueous transition
- \blacktriangleright at g_c , the correlation length diverges, due to quantum fluctuations
- ▶ path integral maps *D*-dim quantum systems onto classical field theories in (*D* + 1)-dim

$$S(\Phi) = \int d\mathbf{r} d\tau ((\partial_{\tau} \Phi)^2 + v^2 (\nabla_x \Phi)^2 + s \Phi^2 + u(\Phi^2)^2)$$
$$Z = \int \mathcal{D}\Phi \ e^{-S(\Phi)}$$

 many of these transitions can be understood in the conventional Landau-Ginzburg-Wilson framework ► for example: AF Néel-Paramagnetic transition

 H_0 is AF Heisenberg Hamiltonian, $g = J_2/J_1$

- 3D classical Heisenberg universality class: confirmed by QMC
- Experimental realized

However, many strongly-correlated quantum materials seem to defy such a description and call for new ideas

for example, continuous transition from Néel to VBS state

Deconfined quantum criticality

describes the direct continuous transition from Néel to VBS in 2D

Senthil, Vishwanath, Balents, Sachdev, Fisher; Science (2004)

• violates the "Landau rule":

- Néel-param should be in the 3D O(3) universality class;
- away from VBS should be in the 3D O(2) universality class.

(Z₄ anisotropy is dangerously irrelevant)

Léonard and Delamotte, PRL 2015

Néel order parameter $\mathbf{m}_s = \frac{1}{N} \sum_i (-1)^{x_i + y_i} \mathbf{S}_i$ VBS order parameter (D_x, D_y) $D_x = \frac{1}{N} \sum_{i=1}^{N} (-1)^{x_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{x}},$ $D_y = \frac{1}{N} \sum_{i=1}^{N} (-1)^{y_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{y}}$

New physics

• Order parameters of the Néel state and the VBS state are NOT the fundamental objects, they are composites of fractional quasiparticles carrying S = 1/2

Physical picture from VBS side

Levin and Senthil, PRB 70, 2004

VBS: 4 symmetry broken ground states

similar to classical 4-state clock model

$$H = -J \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j), \quad \theta_i = n\pi/2, \ n = 0, 1, 2, 3$$

Physical picture from VBS side

Levin and Senthil, PRB 70, 2004

- At the core of the Z₄ vortex, there is a spinon: unpaired spin
- different from 4-state clock model

- Blue-shaded regions are domain walls
- The thickness ξ' diverges faster than ξ
- emergent U(1) symmetry; same as 4-state clock model (Z₄anisotropy is dangerously irrelevant)
- Spinons bind together in the VBS state (confinement) and condensate the Néel state, deconfine at the critical point leading to a continuous phase transition
- New universality: neither O(2) nor O(3)

Deconfined quantum criticality

Field-theory description with spinor field \mathbf{z}

• Order parameters of the Néel state are composites of spinons

$$\Phi = z^{\dagger} \sigma z$$

z: spinor field (2-component complex vector); σ : Pauli

- Non-compact *CP*¹ action
- Only SU(N) generalization can be sloved when N → ∞, nonperturbative numerical simulations are required to study small N
- The most natural physical realization of the Néel-VBS transition for SU(2) spins is in **frustrated quantum magnets** however, notoriously difficult to study numerically: sign problem in QMC

Designer Hamiltonian: J-Q model

Sandvik designs the J-Q model (2007)

Lattice symmetries are kept $(J - Q_2 \text{ version similar})$

- large Q, columnar VBS
- small Q, Néel
- No sign problem
- ideal for QMC study of the DQC physics

Finite-size scaling

- Correlation length divergent for $T \to T_c$: $\xi \propto |\delta|^{-\nu}$, $\delta = T T_c$ (or $g g_c$)
- Other singular quantity: $A(T, L \to \infty) \propto |\delta|^{\kappa} \propto \xi^{-\kappa/\nu}$
- For L-dependence at T_c just let $\xi \to L$: $A(T \approx T_c, L) \propto L^{-k/\nu}$
- Close to critical point: $A(T,L) = L^{-\kappa/\nu}g(L/\xi) = L^{-\kappa/\nu}f(\delta L^{1/\nu})$

For example

$$\chi(T, L \to \infty) \propto \delta^{-\gamma}$$

data collapse

$$\chi(T,L)L^{-\gamma/\nu} = f(\delta L^{1/\nu})$$

2D Ising model, use $\gamma = 7/4, \nu = 1$ $T_c = 2/\ln(1 + \sqrt{2}) \sim 2.2692$

When these are not known, treat as fitting parameters

Finite-size scaling

- Correlation length divergent for $T \to T_c$: $\xi \propto |\delta|^{-\nu}$, $\delta = T T_c$ (or $g g_c$)
- Other singular quantity: $A(T, L \to \infty) \propto |\delta|^{\kappa} \propto \xi^{-\kappa/\nu}$
- For L-dependence at T_c just let $\xi \to L$: $A(T \approx T_c, L) \propto L^{-k/\nu}$
- Close to critical point: $A(T,L) = L^{-\kappa/\nu}g(L/\xi) = L^{-\kappa/\nu}f(\delta L^{1/\nu})$

For example

$$\chi(T,L\to\infty)\propto\delta^{-2}$$

data collapse

$$\chi(T,L)L^{-\gamma/\nu} = f(\delta L^{1/\nu})$$

2D Ising model, use $\gamma = 7/4, \nu = 1$ $T_c = 2/\ln(1 + \sqrt{2}) \sim 2.2692$

When these are not known, treat as fitting parameters

systematic critical-point analysis

• include corrections to scaling are included (RG theory); *u_i* are irrelevant fields

$$AL^{\kappa/\nu} = f(\delta L^{1/\nu}, u_1 L^{-\omega_1}, u_2 L^{-\omega_2}, \dots)$$

Binder cumulant $U = \frac{1}{2}(3 - \frac{\langle m^4 \rangle}{\langle m^2 \rangle^2})$, dimensionless $\kappa = 0$

$$U = f(\delta L^{1/\nu}, u_1 L^{-\omega_1}, u_2 L^{-\omega_2}, \dots)$$

• (almost) size-independent at T_c leads to crosssings at T_c 2D Ising model; MC results

Drift in (L, 2L) crossing points

scaling corrections in crossings

 $T^*(L) = T_c + aL^{-(1/\nu + \omega)}$

 $U^*(L) = U_c + bL^{-\omega}$

 ω : unkown correction to scaling, free exponent in fits

• correlation-length exponent ν

can be extracted from the slope of U: $s(T,L) = \frac{dU(T,L)}{dT}$

$$\ln(\frac{s(T^*, 2L)}{s(T^*, L)}) / \ln 2 = \frac{1}{\nu} + aL^{-\omega} + \cdots$$

numerical study of the J-Q model

Many numerical results support DQC scenario

FSS of squared order parameter(A)

$$A(q,L) = L^{-(1+\eta)} f[\delta L^{1/\nu}], \quad \delta = q - q_c, (q = Q/(J+Q))$$

Data "collapse": M^2 and D^2 simutaneously \rightarrow single continuous transition!

- $J-Q_2$ model; $q_c = 0.961(1)$ $\eta_s = 0.35(2); \eta_d = 0.20(2);$ $\nu = 0.67(1)$
- $J-Q_3$ model; $q_c = 0.600(3)$ $\eta_s = 0.33(2); \eta_d = 0.20(2);$ $\nu = 0.69(2)$ Lou,Sandvik and Kawashima, PRB 2009
- Comparable results for honeycomb J-Q model

Alet and Damle, PRB 2013 Kaul et al., PRL 2014

However, scaling violation

Spin stiffness $\rho_s \propto \delta^{\nu(d+z-2)}$ and susceptibility $\chi \propto \delta^{(d-z)\nu}$ Conventional FSS

$$\rho_{s}(\delta, L) = L^{-\nu(d+z-2)/\nu} f(\delta L^{1/\nu}), \qquad \chi(\delta, L) = L^{-\nu(d-z)/\nu} f(\delta L^{1/\nu})$$
At critical point: $\rho_{s} \propto L^{-(d+z-2)} = L^{-z}, \qquad \chi \propto L^{-(d-z)}$

$$z = 1 \text{ for } J \cdot Q \text{ model}, \rho_{s} L \text{ and } \chi L \text{ should be constants at } q_{c}$$

$$\int_{a_{d}}^{0.50} \int_{a_{d}}^{0.40} \int_{a_{d}}^{0.40} \int_{a_{d}}^{0.40} \int_{a_{d}}^{0.140} \int_{a_{d}}^{0.140} \int_{a_{d}}^{0.40} \int_{a_{d}}^{0.140} \int_{a_{$$

• $z \neq 1$ does not work

- large scaling corrections? Sandvik PRL 2010, Bartosch PRB 2013
- weak first-order transition? Chen et al PRL 2013

The enigmatic current state is well summed up in Nahum PRX, 2015

In this talk, we will try to resolve this puzzle by

- introducing a new scaling form with two-length scales
- showing numerical evidences
 - direct simulations of the deconfinement of spions
 - critical scaling of VBS domain wall energy, spin stiffness and susceptibility
- anomalous critical scaling at finite temperature

Unconventional scaling form with two lengths

Unconventional scaling form with two lengths

Two divergent lengths tuned by one parameter:

$$\xi \propto \delta^{-\nu}, \quad \xi' \propto \delta^{-\nu}$$

Consider FSS of a quantity $A \propto \delta^{\kappa}$

• Conventional scenario

$$A(\delta, L) = L^{-\kappa/\nu} f(\delta L^{1/\nu}, \delta L^{1/\nu'}), \quad A(\delta = 0, L) \propto L^{-\kappa/\nu}$$

 $L\to\infty, f(\delta L^{1/\nu}, \delta L^{1/\nu'})\to (\delta L^{1/\nu})^\kappa, \text{recovers } A\propto \delta^\kappa$

• We propose

$$A(\delta,L) = L^{-\kappa/\nu'} f(\delta L^{1/\nu}, \delta L^{1/\nu'}), \quad A(\delta = 0, L) \propto L^{-\kappa/\nu'}$$

when $L\to\infty, f(\delta L^{1/\nu}, \delta L^{1/\nu'})\to (\delta L^{1/\nu'})^\kappa$ leads to $A\propto \delta^\kappa$

For example: spin stiffness $\rho_s \propto \delta^{\nu(d+z-2)}$, $\kappa = \nu(d+z-2)$. At q_c

NOT $\rho_s \propto L^{-(d+z-2)}$, BUT $\rho_s \propto L^{-(d+z-2)\nu/\nu'}$

phenomenological explanation of our scaling form

General scaling theory for ρ_s , single length scale

Fisher et al PRB,40,546(1989)

Free energy density scales

$$f_s(\delta, L, eta) \sim \xi^{-(d+z)} Y(rac{\xi}{L}, rac{\xi^z}{eta}), \qquad \xi \sim \delta^{-
u}$$

• $\rho_s \frac{\Delta^2 \phi}{L^2}$ is the excess energy due to a twist along apace:

$$\Delta f(\delta, L, \beta) \sim \xi^{-(d+z)} \tilde{Y}(\frac{\xi}{L}, \frac{\xi^z}{\beta}) \sim \rho_s \frac{\pi^2}{L^2}$$

• \tilde{Y} has to behave like $(\xi/L)^2$, thus

$$\rho_s \sim \xi^{2-(d+z)}$$

• replacing ξ to *L*, we have $\rho_s \sim L^{-(d+z-2)}$

Two length scales scenario

Free energy density scales

$$f_s(\delta, L, \beta) \sim \xi^{-(d+z)} Y(\frac{\xi}{L}, \frac{\xi^z}{\beta}, \frac{\xi'}{L}, \frac{\xi'^z}{\beta})$$

• the excess energy due to a twist along apace:

$$\rho_s(\frac{\Delta\phi}{L})^2 \sim \Delta f(\delta, L, \beta) \sim \xi^{-(d+z)} \tilde{Y}_s(\frac{\xi}{L}, \frac{\xi^z}{\beta}, \frac{\xi'}{L}, \frac{\xi'^z}{\beta})$$

which means

$$\tilde{Y}_s \sim (\frac{\xi}{L})^a (\frac{\xi'}{L})^{2-a}$$

 The larger correlation length ξ' reaches L first, so L = ξ' we have a = 2, and

$$\rho_s \sim \xi^{-(d+z-2)}$$

but, since $L = \xi', \xi$ saturates at $\xi = L^{\nu/\nu'}$,

$$\rho_s \sim L^{-(d+z-2)\nu/\nu'}$$

Projector Quantum Monte Carlo method: ground state S = 0

Apply the imaginary time evolution operator to an initial state

$$U(au o \infty) |\Psi_0
angle o |0
angle$$

where $U(\tau) = (-H)^{\tau}$ or $U(\tau) = \exp(-H\tau)$

$$\left| \langle A \rangle = \frac{\langle \Psi_0 | U(\tau) A U(\tau) | \Psi_0 \rangle}{\langle \Psi_0 | U(\tau) U(\tau) | \Psi_0 \rangle} \to \frac{\sum_c A_c W_c}{\sum_c W_c} \right|$$

 A_c is the estimator of A.

Projector Quantum Monte Carlo method

using VB basis

$$|\Psi\rangle = \sum_{v} f_{v} |v\rangle, \qquad |v\rangle = |(a_{1}, b_{1}) \cdots (a_{N/2}, b_{N/2})\rangle$$

$$\bigstar |\uparrow_i \downarrow_j \rangle - |\downarrow_i \uparrow_j \rangle / \sqrt{2}$$

- take $U(\tau) = \exp(-\tau H)$, SSE representation $\rightarrow Z = \sum_{c} W_{c}$
- loop update algorithm are used

expectation values: transition graphs

 $\langle \mathbf{S}_i \cdot \mathbf{S}_j \rangle = \{ \begin{array}{cc} 0, & (i)_L(j)_L \\ \frac{3}{4}\phi_{ij}, & (i,j)_L, \end{array}$

study spinons

extend valence-bond basis to total spin S = 1 states

Tang and Sandvik PRL 2011, Banerjee and Damle JSTAT 2010

2S upaired "up" spins

• two spinons are two strings in a background of valence bond loops

study spinon bound states and unbinding

Numerical results

The two-spinon distance in the J- Q_2 model

size of spinon bound state $\Lambda \equiv$ root-mean-square string distance

- suppose $\Lambda \propto \xi' \propto \delta^{-\nu'}$, according to our new FSS, $\Lambda(q_c, L) \propto L, \Lambda(q_c, L)/L = \text{constant}$
- (L, 2L) crossing points converge monotonically

$$g^* - q_c \propto L^{-(1/\nu' + \omega)}, \quad \Lambda^*(L)/L - R \propto L^{-\omega}$$

 $1/\nu'$ can be extracted from slopes at the crossing point

•
$$q_c = 0.04463(4), \nu' = 0.58(2)$$

Transition is associated with spinon deconfinement

The Binder ratio in the J- Q_2 model

Similar crossing-point analysis of the Binder ratio

$$R_1 = \langle m_{sz}^2 \rangle / \langle |m_{sz}| \rangle^2$$

- correlation length exponent $\nu = 0.446$, diffrent from ν'
- what is ν' obtained from confinement length Λ ?
 - DQC theory: VBS domain wall thickness

$$\xi \propto (q-q_c)^{-
u}, \qquad \xi' \propto (q-q_c)^{-
u'}, \qquad
u' >
u$$

ν/ν' = 0.77(3) agrees with the result obtained from the VBS domain-Wall energy calculations suggesting ν' is the domain wall thickness exponent

VBS domain-wall scaling in the critical J-Q model

• VBS domain walls are imposed in open-boundary systems

$$\phi = \pi/2 \qquad \qquad \phi = \pi$$

- π wall splits into two $\pi/2$ walls
- calculate domain-wall energy

$$\delta F = F_{wall} - F_{uniform}$$

$$\kappa = \delta F / L^{d+z-1}$$

Scaling of κ at deconfined critical point

- domain-wall energy can be expressed as $\kappa = \rho_s / \Lambda$ ρ_s is a stiffness: energy cost of a twist of the VB order Λ is the width of the region over which the twist distributes.
- According to DQC theory, $\rho_s \propto 1/\xi, \Lambda \propto \xi',$ $\kappa \propto \frac{1}{\xi\xi'} \propto \delta^{\nu+\nu'}$
- translate to finite size at q_c : When ξ' reaches L, ξ saturates at $\xi'^{\nu/\nu'} = L^{\nu/\nu'}$

$$\kappa(q_c) \propto L^{-(1+
u/
u')}$$

we have $\nu/\nu' = 0.72(2)$

• predicted by our scaling form: $A(\delta, L) = L^{-\kappa/\nu'} f(\delta L^{1/\nu}, \delta L^{1/\nu'}), \quad A(\delta = 0, L) \propto L^{-\kappa/\nu'}$

Compare to domain wall scaling in classical model 3D q-state clock model(q > 3):

$$H = -J \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j)$$

4

• θ restriction:

domain wall energy in $L \to \infty$

$$\kappa \sim \frac{1}{\xi\xi'}$$

But, finite-size scaling at T_c shows

$$\kappa \sim L^{-2} \neq L^{-(1+\nu/\nu')}$$

$$\xi \sim \xi'^{
u/
u'},
u/
u' pprox 0.47,
u'$$
 is universal

Léonard and Delamotte, PRL 2015

4

The dangerously irrelevant perturbation in the J-Q model is more serious

Further evidence for unconventional scaling

according to our scaling form

$$\rho_s \sim L^{-(z+d-2)\nu/\nu'} \sim L^{-\nu/\nu'}, \quad \text{instead of } \rho_s \sim L^{-(z+d-2)} \sim L^{-1}$$
$$\chi \sim L^{-(d-z)\nu/\nu'} \sim L^{-\nu/\nu'}, \quad \text{instead of } \chi \sim L^{-(d-z)} \sim L^{-1}$$

• This explains drifts in $L\rho_s$ and χL in J-Q and other models (z = 1, d = 2)

Anomalous critical scaling at finite Temperature

Quantum critical point at T = 0 governs the behavior in a T > 0 region which expands out from $(g_c, T = 0)$: $\xi > \Lambda_T \sim 1/T$, Λ_T de Broglie wave length

experimentally important

Anomalous critical scaling at finite Temperature

- $\beta = 1/T$ is also a 'finite-size': $L \rightarrow \beta^{1/z}$
- conventional scaling (z = 1 for J-Q)
 - $\xi \sim L$ leads to $\xi_\tau \propto \beta^{1/z} = T^{-1}$, • $\chi \sim L^{-(d-z)}$ leads to $\chi_T \propto \beta^{-(d-z)/z} = T$
- new scaling with ν/ν' :

 $\xi_{\tau} \propto T^{-\nu'/\nu}$; $\chi \sim L^{-\nu/\nu'}$ leads to $\chi_{\tau} \propto T^{\nu/\nu'}$

conclusions

- Two length scales observed explicitly in the J-Q model
- Simple two-length scaling hypothesis explains scaling violation of spin stiffness and susceptibility
- we obtained the spinon deconfinement exponent ν'
- For *T* > 0 we find scaling laws from finite-size scaling forms experimentally important

Thank you !