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Main Questions

Novel physics in condensed matter?

How do we discover / measure it?



Main Questions

Novel physics in condensed matter?

How do we discover / measure it?

“exotic quantum criticalities”
(“exotic quantum phase transitions”)
to answer the questions.



(Quantum) Phases

Various phases with tuning parameters
in strongly correlated systems.
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Colorfulll!



Conventional Phases and Phase Transitions

Symmetry broken phases Symmetric phases :
. magnetism, etc. (trivial) band insulator, etc



Conventional Phases and Phase Transitions

2. Theoretically well-understood

3.

Symmetry broken phases
. magnetism, etc.

1. Easy to detect

Spin wave, vortex, etc..

Symmetric phases :
(trivial) band insulator, etc

1. Not difficult to detect
2. Theoretically well-understood

3. Ground state is fully gapped
(for insulators)



Conventional Phases and Phase Transitions
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Conventional Phases and Phase Transitions
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( def : conventional quantum criticalities in this talk)



Conventional Phases and Phase Transitions
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Conventional Phases and Phase Transitions
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Symmetric phases in LGW :

Trivial product ground state
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single-site physics
(trivial many-body ground state)



Conventional Phases and Phase Transitions

Symmetry rules!

Sym. Broken : SSB + Goldstone modes

Sym. : trivial product state + Gapped excitations

Sym. broken QC Sym.

-~




Search for Novel Physics

Difficulties :

1. Most materials : conventional ordered phases

2. Hard to find signals of exotic physics



Exotic Phases and Phase Transitions

Strategy

1. Entangled symmetric ground states

2. Quantum phase transitions near the entangled states

Beyond LGW criticalities : exotic physics!
(Physical properties near criticalities are characteristics!)



QPTs

Conventional LGW paradigm,

Broken sym. QC Sym.
—_— < ‘ > > ' <

Trivial product state

Exotic criticality

Broken sym. QC Sym.
— = o = = O =

Something new




Search for Novel Physics

Entangled symmetric ground states ?

1. non-Fermi liquids

2. Topological phases

3. Phases with quantum anomalies
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Non Fermi liquids

Resistivity does not show Fermi-liquid behaviors
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Matsuda Group



T (K)

Non Fermi liquids

Resistivity does not show Fermi-liquid behaviors
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Strange behaviors
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Non Fermi liquids

: anomalous Hall, strange resistivity, etc...
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Fermi liquids VS non-Fermi liquids
Kinetic energy VS Coulomb energy

Erin > Ecouiomb Good metal : Fermi-liquid (perturbation works)

Ein ~ Ecoulomb Something new happens!



Energy (eV)

Fermi liquids VS non-Fermi liquids

Ekin > ECoulomb

Ekin ~ ECoulomb
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Kinetic energy VS Coulomb energy

Good metal : Fermi-liquid (perturbation works)

Something new happens!
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Energy (eV)

Fermi liquids VS non-Fermi liquids

Kinetic energy VS Coulomb energy

Erin > Ecouiomb Good metal : Fermi-liquid (perturbation works)

Ein ~ Ecoulomb Something new happens!
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Exotic quantum critical phase!

eek ending
PRL 111, 206401 (2013) PHYSICAL REVIEW LETTERS 15 NOVEMBER 2013

Non-Fermi-Liquid and Topological States with Strong Spin-Orbit Coupling

Eun-Gook Moon,' Cenke Xu,' Yong Baek Kim,” and Leon Balents®

Physical quantities show exotic critical behaviors



Scaling analysis

= RG setup

S, — / drdia {w* [aT _iep+ ﬁo}w T %0(@-90)2}

Scaling analysis in the spatial d dimension (z=2) :

k— bk w—biw 1 —b2Tp o—bip

(No Fermi surface : Wilsonian scaling is well-defined.)

[62] =4 —d  The electric charge is relevant below four spatial
dimensions.

Two methods :
£(=4-d) expansion, Large N;expansion (d=3)



Renormalization group : & expansion

= RG setup

Sp = / drdz {0, <Ge Yoy + L0:9)°}
J

Quantum correction & expansion ):




Renormalization group : & expansion

= RG setup

S, — / drdia {w* [aT e+ Holw + %(@@2}

Quantum correction (& expansion ):

For general dimension (d) and fermion flavor number (Ny),
The RG equation is

d

30Ny +8
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= RG setup

St = / drd®x {W [(% —iep+ Ho | + %0(&-90)2} L

Renormalization group : & expansion

Quantum correction (& expansion ):

For general dimension (d) and fermion flavor number (Ny),
The RG equation is

d
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Quantum correction :
Screening effect from virtual particle-hole excitation




Renormalization group : & expansion

» RG setup
St = / drd®x {WL {(97 —jep+ Hol + %0(82-@0)2} 52 me

Quantum correction (& expansion ):
For general dimension (d) and fermion flavor number (N;),
The RG equation is

d ~9 ~9 BONf _|_ 8 ~4 ~6
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New stable fixed point :
LAB (Luttinger-Abrikosov-Beneslaevski)

Anomalous dimension in all physical

guantities
m —1 (e—1, Ny = 00)




Fermi liquids VS non-Fermi liquids
Kinetic energy VS Coulomb energy

Erin > Ecouiomb Good metal : Fermi-liquid (perturbation works)

Ein ~ Ecoulomb Something new happens!

Some Lessons :
Smaller Fermi volumes are useful (ex: semi-metal).

Symmetry protection (ex : cubic & TRS) is useful

Questions :

Thermal properties??



Take-home Message 1

Non-Fermi liquids are interesting.

Strong interaction / correlation are necessary!



Topological Phases

Beyond symmetry!

2D topological insulator

N3 _EW Yy Yv Vv VYV VY

From google images with the key words “Topological matters”



Topology

Two objects are topologically different.

: Continuous deformation cannot transform one to the other.

: Something happens between topologically different states.

Insulator n=0
(a)

Quantum Hall
State n=1




Topology in condensed matter

Topological nature in insulators and gapped SC
. Well-understood!

REVIEWS OF MODERN PHYSICS, VOLUME 82, OCTOBER-DECEMBER 2010

Colloquium: Topological insulators

M. Z. Hasan*

Joseph Henry Laboratories, Department of Physics, Princeton University, Princeton, New
Jersey 08544, USA

C. L. Kane'!

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia,
Pennsylvania 19104, USA

REVIEWS OF MODERN PHYSICS, VOLUME 83, OCTOBER-DECEMBER 2011
Topological insulators and superconductors

Xiao-Liang Qi

Microsoft Research, Station Q, Elings Hall, University of California,
Santa Barbara, California 93106, USA
and Department of Physics, Stanford University, Stanford, California 94305, USA

Shou-Cheng Zhang
Department of Physics, Stanford University, Stanford, California 94305, USA



Topology in condensed matter

Topological nature in semi-metals and gapless SC

Spatial dimension : d=2

- point, line

Spatial dimension : d=3

- point, line, surface

-

S e




Topology in condensed matter

Topological nature in semi-metals and gapless SC

Spatial dimension : d=2

- point, line

Spatial dimension : d=3

- point, line, surface

-

S e

Topological invariants (ex : Chern number)




Topology in condensed matter

Topological nature in semi-metals and gapless SC

Spatial dimension : d=2 /
(

- point, line

Spatial dimension : d=3 .

- point, line, surface _/ >

Most topological materials : weakly interacting (s and p orbitals)

How to observe strong correlation effects in topological matter?




Topology in condensed matter

Conventional phases : symmetry!

Topological phases : topology
(mostly, s and p orbitals)

Next step : interplay between symmetry and topology
(d and f orbitals)

(see Pesin and Balents 2009)



Topological Phase Transitions

Strong correlation driven topological phase transitions

interplay between symmetry and topology

Topological phase Non-topological phase

@ >
Beyond LGW criticalities

Physical quantities show exotic behaviors!
(ex: density fluctuations are highly anisotropic)



Topological Phase Transitions

Strong correlation driven topological phase transitions

nodal points (Weyl semi-metals)
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PHYSICAL REVIEW X 4, 041027 (2014)

Beyond LGW criticalities

New Type of Quantum Criticality in the Pyrochlore Iridates

Lucile Savary,” Eun-Gook Moon,' and Leon Balents®



Topological Phase Transitions

Weakly interacting topological phase transitions

nodal points (Weyl semi-metals) insulators

(b) Kz Insulating State (b) \
| / Cop (o (83 ¢ Eq
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Beyond LGW criticalities

ARTICLES e | SCIENTIFIC REPLIRTS

Quantum criticality of topological phase PEN - Novel Quantum Criticality in Two
transitions in three-dimensional interacting Dimensional Topological Phase
electronic systems transitions

GilYoung Cho & Eun-Gook Moon

Bohm-Jung Yang'*, Eun-Gook Moon?, Hiroki Isobe® and Naoto Nagaosa"** Received: 02 September 2015



Topological Phase Transitions

Strong correlation driven topological phase transitions

nodal points (Weyl semi-metals) insulators
b) ke Insulating State (b) \
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Beyond LGW criticalities

Chiral Symmetry Breaking with Long-range Coulomb Interaction
in Topological Semi-metals

SangEun Han and Eun-Gook Moon
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea

In preparation
(Dated: May 15, 2017)



Topological Phase Transitions

Strong correlation driven topological phase transitions

nodal point SC Nodal line SC
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PHYSICAL REVIEW B 95, 094502 (2017)

Topological phase transitions in line-nodal superconductors

SangEun Han, Gil Young Cho, and Eun-Gook Moon
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea



Topological phase transitions in SCs

ARTICLE

Received 27 Apr 2015 | Accepted 12 Oct 2015 | Published 9 Nov 2015

Direct evidence for a pressure-induced nodal
superconducting gap in the Bag ¢sRbg 3sFesAs,
superconductor
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Topological phase transitions in SCs

week ending

PRL 114, 027003 (2015) PHYSICAL REVIEW LETTERS 16 JANUARY 2015

Nodal to Nodeless Superconducting Energy-Gap Structure Change Concomitant
with Fermi-Surface Reconstruction in the Heavy-Fermion Compound CeColn;
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PRL 94, 197002 (2005)

Line-nodal Superconductors

week ending

PHYSICAL REVIEW LETTERS 20 MAY 2005

Line Nodes in the Superconducting Gap Function of Noncentrosymmetric CePt;Si

K. Izawa.,' Y. Kasahara,] Y. Mats,uda,l‘2 K. Behnia,]‘3 T. Yasuda,* R. Settai,4 and Y. Onuki*

e LETTERS
p ySICS PUBLISHED ONLINE: 4 MARCH 2012 | DOI: 10.1038/NPHYS2248

Nodal superconducting-gap structure in
ferropnictide superconductor BaFe,(Asg 7Po.3)-

BaFe,(Asq 5Py 5);
Y. Zhang, Z. R. Ye, Q. Q. Ge, F. Chen, Juan Jiang, M. Xu, B. P. Xie and D. L. Feng 7 A
—
G =
o\ 1l U1l
PRL 115, 165304 (2015) PHYSICAL REVIEW LETTERS 1
Polar Phase of Superfluid *He in Anisotropic Aerogel r M

V. V. Dmitriev,"” A. A. Senin," A.A. Soldatov,"” and A.N. Yudin'
'P.L. Kapitza Institute for Physical Problems of RAS, 119334 Moscow, Russia
*Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
(Received 10 July 2015; published 16 October 2015)

(Aow) degy



Unconventional Superconductors

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER
1. Phys.: Condens. Matter 18 (2006) R7T05-R752 doi: 10.1088/0953-8984/1 8/44/R01
TOPICAL REVIEW

Nodal structure of unconventional superconductors
probed by angle resolved thermal transport
measurements

Y Matsuda'?, K Izawa>® and I Vekhter*

excitations. The temperature dependence of the London penetration depth A(T), electronic
part of the specific heat C(7'). thermal conductivity «(7), and nuclear magnetic resonance
(NMR) spin-lattice relaxation rate Tl_] all reflect the changes in the quasiparticle occupation
numbers. In the fully gapped (s wave) superconductors the quasiparticle density of states



Unconventional Superconductors

Table 1. Superconducting gap symmetry of unconventional superconductors, TRS, AFMO and
FMO represent time reversal symmetry, antiferromagnetic ordering and ferromagnetic ordering.

respectively.
Node Parily TRS Proposed gap function  Comments
High T, cuprates  Line (vertical) Even [T] iz 2 [7]
SryCayzCugy Oy Full gap [25] Odd [25] Spin ladder system
w-(ET)CuiSCN), Line Even [148] dyy [66]
(vertical) [66)]
(TMTSF):PFs Odd [23] Superconductivity
under pressurne
(TMTSF)Cl0y Line [173]
Full gag [181]
SryRully Limne Odd [24] Broken [32] (ky + iky )=
{horizontaly [65] (cos koo =+ ) [65]
{vertical ) (sink, +isinky)
173] 1731
Na,Co0y-yHa0O  Line [174] Even
1175, 176].
Odd [26, 27]
(Y. Lu)Ni; B, C Point-like [67]  Even [BE] 11— !-'inI'F'{'i>.‘-I-1-\I'I1 Wery anisolropic s wave
[87,177]
Li;Pi: B Line [35] Even + odd No imversion centre
CeCuySiy Line [178] Even [178] Two superconducting
phases [183)
Celm Line [179] Coexistence with AFMO
CeColng Lime (vertical)  Even [61] ez FFLO phase
|53, 61, 136],
ey [69]
CeRhlns Linec [ 150] Ewven [180] Coexistence with AFMO
CePaSi Line [34] Even + odd No inversion eenire
1182)
UPd: Aly Line (horizontal) Even [109] cos k.o [62] Coexisience with AFMO
UNiz Alz Line [19] Odd [19] Coexistence with SDW
LURu25i; Line [184] Odd [20] Coexistence with
hiddden order
UPia Line: 4+ point Odd [ 18] Broken [21] Multiple superconducting
[185] phases
UBes3 Linc [189] Odd [22
UGes Line [186] Odd [28] Coexistence with FMO
URhGe Odd [29] Coexisience with FMO
Ulr Even + odd Coexistence with FMO
[30] and no inversion centre
PuCoGas Line [187] Even [123]
PuRhiGas Line [188]
PriiayShyy Point [68] Odd [22] Rroken [33] Multiple superconducting Matsuda et_ al . 2006

phases




Nodal line SC

Topological phase transition

<€ ® >

Topological
QPT

We focus on a special class

. symmetry protected topological line node.

(b)

yd

Nodal point SC




Topological phase transition

(b) Kz
/ _ 4
< ® > % J
e(
Topological Pan L
QPT '
Nodal line SC Nodal point SC

We focus on a special class
. symmetry protected topological line node.

If protecting symmetry is broken, line nodal structure is modified.

Symmetry breaking and topological change are concomitant!



Line-nodal Superconductors

Toy model : p-wave pairing gap

-y (h(kw + A(k)frm)\lfk
k

ki + k; — k3 TR R
?‘[0 — = 2m F’TT + ’Uzk T° :|:\/ (ks +‘i€ﬂ12h + ’ngg
A kz

One line node exists in kz=0 plane.




Topological phase transition

(b) kz
Symmetry breaking /
< ® > % J
e(
Topological ,,'“_' L Z
QPT : |
Nodal line SC Nodal point SC

Symmetry breaking and topological change are intrinsically tied.
(ex : time reversal symmetry(TRS))

Hy=Y o (h(k)Tz + A(kw)\yk + 0y Flk)VLTV,
k k



Topological phase transition

(b) _ tkz

Symmetry breaking

//' - //
L
<€ ® > ¢ J
o0
]
L L -

Topological S
QPT '

Nodal line SC Nodal point SC

Symmetry breaking and topological change are intrinsically tied.
(ex : time reversal symmetry(TRS))

Hy=Y o (h(kw + A(kw)\yk + 0y Flk)VLTV,
k k

An order parameter exists.

Symmetric phase : line-node
Symmetry-broken phase : no line-node
(either point-node or fully gapped)



Topological phase transition

(b) kz
Symmetry breaking P Vs
< ® > % J
e(
Topological ,,'“_' L )
QPT '
Nodal line SC Nodal point SC

Symmetry breaking and topological change are intrinsically tied.
(ex : time reversal symmetry(TRS))

An order parameter exists.

Landau-Ginzburg theory?



Topological phase transition

(b) kz
Symmetry breaking yd
< ® > % J
e(
Topological Pan L
QPT '
Nodal line SC Nodal point SC

Symmetry breaking and topological change are intrinsically tied.
(ex : time reversal symmetry(TRS))

Can the Landau-Ginzburg theory describe the transition?

_ 1 o 1 2 I 2 14
So= [ 500+ 5(VoP + 56 + S0

bl



Topological phase transition

(a) tkz | ) ™
/ Symmetry breaking . ~
< o > L ° J
® 0 i
) Topological /._. L
' QPT
Nodal line SC Nodal point SC

Symmetry breaking and topological change are intrinsically tied.
(ex : time reversal symmetry(TRS))

Can the Landau-Ginzburg theory describe the transition?

_ 1 2 1 2 I 2 14
So= [ 500+ 5(VoP + 56 + S0

bl

NO! (no information about topological nature in the L-G theory)



Topological phase transition

(b) kz
Symmetry breaking P Vs
< ® > % J
e(
Topological ,,'“_' L )
QPT '
Nodal line SC Nodal point SC

Symmetry breaking and topological change are intrinsically tied.
(ex : time reversal symmetry(TRS))

How to incorporate the topological nature?



Topological phase transition

(b) kz
Symmetry breaking yd
< ® > % J
e(
Topological Pan L
QPT '
Nodal line SC Nodal point SC

Symmetry breaking and topological change are intrinsically tied.
(ex : time reversal symmetry(TRS))

How to incorporate the topological nature?

Fermions!
(Berry phase or curvature)



Topological phase transition

(a) *kz . (b) ke
% Symmetry breaking P /
- < . s “ e J
L 3} e(
Topological /,'“_' L
QPT :
Nodal line SC Nodal point SC

Symmetry breaking and topological change are intrinsically tied.
(ex : time reversal symmetry(TRS))

_ 1 2 1 2, T2 izl
So= | 3007+ 5(V0) 4 56 + o

Sc:Sqﬁ—l—Sw, Sw =/ \IJT(({)T—I—H())\I]—I—Q/HZD_@

Nodal line Hamiltonian ~ Ho = » U}, (h(k)'rz + A(k)'fx)\ljk
k



Topological phase transition

Example :

Hy = Z \IJL (h(k)’l’z + A(k)Tm)\Ifk Hd)—(b = (ﬁ)z \IJLT:U\IJR-

k

k2 + k2 — k%
%0 — r J F'Tm —I_ ’UZZCZTZ

2m
k2 + k2 — k32,)?
E(k) =+ (R + Ky — k) + v2k?2 + ¢?
4m?

One line node exists in the symmetric phase. —1

No line node exists in the symmetry-broken phase. " }



Topological phase transition

(@)  ‘kz _ (b) tkz
Symmetry breaking 4
 —— < . s e J
®0 e(
/ /C:-:’ Topological /'-'*—- §
QPT
Nodal line SC

Nodal point SC

Can be generalized to general symmetry groups.

g:CilfoTXP

Rep. Lattice (Fs(k)M*) Continuum | #
Aj T4 T 0
As |sin(k,)sin(k, ) (cos(k.) — cos(k,))TY| sin(40)7Y |16
B, (cos(ky) — cos(ky))TY cos(20)TY | &
Bs sin(kz ) sin(ky ) 7Y sin(26)1Y
E sin(ky ) sin(k. )17, cos(@)T¥p”,| 4

sin(ky ) sin(k. )Y sin(0)7Y p”




Topological phase transition

(a) tkz : (b) ke
Symmetry breaking ' /
 — < . s “ e J
L 3} e(
) —— Topological /'_' P
. QPT '
Nodal line SC Nodal point SC

Mean field theory with H = Z U H Uy — — Z U F(0r)7, V)

2
6= uw(VF(Ok)TyVk)  Hyp = zkj W, (Hye — 0F (01)7,) Vi + ;b—u

Fur (T, ¢) = — % In(tr(e PHury)

Faur(d) = (& — — + T)6? + ksl +

U U,



Topological phase transition

(b) kz

Symmetry breaking

< o > .D J
L_.

Topological S
QPT :

Nodal line SC Nodal point SC

Mean field Free energy

Fur(¢) = (l - i + T)gb2 + kf|¢5|3 4.

U Ue

The cubic term appears due to nodal line fermion excitation.

The MFT already shows the universality class is special!



Critical theory

Se =54+ Sy, Sy 2/ \IJT(87+H0)\IJ+9/H¢_¢

. 1 2 1 2 , I 2 i4
So= | 5000+ 50 + 56 + o

Quantum corrections

RO A




Conventional Phase Transitions
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Topological Phase Transitions

®,  Tkz (@) ke
i P
L ® [ ] C::j
0 ®0
St —
/ y p

Sexotic — / (\/QQ + q )‘¢(Q7 )‘2
£2,q

QCP in 3d z v 15 v n HS

¢" theory[27] 1 | 2| 2| 1]0]| O
Higgs-Yukawa[27,28]| 1 | 2 | £ | 1 | 0 | O
QBT-QCP[29,30] | 2 | 1|2 | 1| 1] O
Hertz-Millis[31, 32] [2or3| 5 | & | 1 | 0 | X
Nodal line QCP 1 1 1 1 1 X

(0~ g5, €70~ fr—rel”, Xo ~ [r—re] ™7, and [¢] = SE25250



Critical theory

(a) kz (b) kZ
y . P
®Q </| .< . >. L ..D ]
~— P Topological St
QPT

| (.q

1. Large anomalous dimension.
2. Emergent Lorentz inv.
3. Hyper-scaling violation.

QCP in 3d z v 15 v n HS

¢" theory[27] 1 | 2| 2| 1]0]| O
Higgs-Yukawa[27,28]| 1 | 2 | £ | 1 | 0 | O
QBT-QCP[29,30] | 2 | 1|2 | 1| 1] O
Hertz-Millis[31, 32] [2or3| 5 | & | 1 | 0 | X
Nodal line QCP 1 1 1 1 1 X

(0~ g5, €70~ fr—rel”, Xo ~ [r—re] ™7, and [¢] = SE25250




Comparison

In 3d,
1¢* theory and Higgs-Yukawa theory (upper-critical dimension)

1 1 r A
Se= [ =(0:0)°+ = (V) + z¢” + =¢*
) /M( 0) + 5 (Vo) + 56% + 50
Mean-field + logarithmic correction

2. Hertz-Millis Theorv
]

S = [ (e nlotkw) + [

T, T

u 4
S0(z,7)
z=2,3 + hyperscaling violation

3. Line-nodal critical theory

Siine = [ (2 + 022 + 0282 +1) ok,
k.w

z=1 + hyperscaling violation



Phase diagram

Usual phase diagrams

. CONTINUUM -
> HIGH T g

/
MAGNETIC / LOWT

LONG RANGE /
ORDER Quantum paramagnet
0 >
9¢ g
S. Sachdev, Quantum Phase Transitions
Basically, T? ~ |g-g.| T, ~ (ge — g)*/?

<¢> ~ (Q - 90)1/2



Phase diagram

Teo &
(b) ke - (@) ke
‘. J L ———
L 30 = ®0
i) ’ S
lll,
r
Significantly larger quantum critical region due to fermion excitation
Te ~(ge —9) (@) ~ (9 —9¢)

The linear temperature phase boundary!




Take-home Message 11

Topological phase transitions are interesting.

Interplay between symmetry and topology!



Phases with Quantum Anomalies

Continuous Symmetry — Conservation law (Noether’s thm)

dQ)
O, JF=0 —2 =0
H dt

Anomalous Symmetry — Conservation law is “spoiled”

9, J" = A0

1 VA
EX) (9MJ§: WEMV/\PFM FAP



Phases with Quantum Anomalies

Example : Weyl / Dirac semi-metal

L = ippy"0,abr, + i py 0 R

Jh= vy + vry* bR
JY= vy, — vry R

8, Jh=0
1 WSM / DSM :
p_ Qv pAp
Ot 1672 “1AP FE almost non-interacting, very stable!
Yet, non-local transport!



Phases with Quantum Anomalies

Example : Weyl / Dirac semi-metal

L =iy + ivry 0t

Jh= )y + Yry R
JE= " — Yry R

9,J"=0

1 17 D\
(9MJ§: @EMVAPFM FAP

WSM / DSM :
almost non-interacting, very stable!
Yet, non-local transport!

More interests in anomalies!

PHYSICAL REVIEW B 94, 195150 (2016)

£

The “parity”’ anomaly on an unorientable manifold

Edward Witten
School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540, USA
(Received 24 June 2016; revised manuscript received 5 September 2016; published 28 November 2016)



‘t Hooft anomaly matching

Non-perturbative nature : tool for strong coupling physics.

't Hooft anomaly matching
- Anomalies at UV fixed point and IR fixed point should be matched.
- Local deformation of theories do not change anomaly. (topological)

Roughly speaking, anomaly is conserved.

Implication of continuous symmetry anomaly
- Existence of the massless degrees of freedom (Coleman and Grossman 1982)

Fum(Qu q2, %)5(4)(@1 + @+ q3) =
/ [ 'z T < 00, (1), (w2) T (25) |0 >, BT (1, 42, 43) = A€uapdi'ds.



‘t Hooft anomaly matching

Non-perturbative nature : tool for strong coupling physics.

't Hooft anomaly matching
- Anomalies at UV fixed point and IR fixed point should be matched.
- Local deformation of theories do not change anomaly. (topological)

Roughly speaking, anomaly is conserved.

Implication of continuous symmetry anomaly
- Existence of the massless degrees of freedom (Coleman and Grossman 1982)

1. Take a system with DSM
2. Introduce strong correlation
3. Phase diagrams??



Phases with Quantum Anomalies

Conventional LGW paradigm (without anomaly),

Broken sym. QC Sym.
—_— < ‘ > > ‘ <

Gapped spectrum

Exotic criticality (with anomaly)

Broken sym. QC Sym.
—_— = o = = O—(—

Gapless excitation




Phases with Quantum Anomalies

Ex) 1d spin-chain
Hasting-Oshikawa-Lieb-Schultz-Mattias theorem

Spin %2 systems with a translation symmetry : always gapless!
H=>Y"5;-8
¥,

The spin system is described by

1 =
5 — / s 5 (00)" +iSwzw

B ; ; ; is
Swzw = 62/ €ivigizis€ 2D 0, 020,030, @
X3

O(4) non-linear sigma model with Wess-Zumino-Witten model



Phases with Quantum Anomalies

Ex) 1d spin-chain

—

1 . .
S = /d2$2—g2(a¢)2 + ZSWZW ¢ = (nxynya’nz:¢VBS>

Competing order physics between Neel and valence-bond-solid



Phases with Quantum Anomalies

Ex) 1d spin-chain

—

1 . .
S = /d2$2—g2(a¢)2 + ZSWZW ¢ = (na;any7nza¢VBS)

Competing order physics between Neel and valence-bond-solid

The gapless excitation is protected by quantum anomalies!

SCIENTIFIC REPQRTS

Competing Orders and Anomalies

Eun-Gook Moon??

3d spin systems can have similar quantum anomalies!



Phases with Quantum Anomalies

Ex) 1d spin-chain

1 . .
S = /d2$2—g2(a¢)2 + ZSWZW ¢ = (na;any7nza¢VBS)

Competing order physics between Neel and valence-bond-solid

The gapless excitation is protected by quantum anomalies!
SCIENTIFIC REPQRTS

Competing Orders and Anomalies

Eun-Gook Moon??

3d spin systems can have similar quantum anomalies!

Future Questions :
1) 3d version of HOLSM?

2) Relation with quantum spin liquids?
3) Experimental signals?
4)



Take-home Message 111

Quantum anomalies are interesting.

Gapless excitations are guaranteed!



Recipe???

1. Strong correlation physics (ex: d & f orbitals)

2. Tune parameters around QPT (pressure, doping,...)

3. Measure / calculate physical quantities (resistivity, susceptibility,...)

4. Find unusual behaviors (ex: NFL, top, anomaly)



Summary

Exotic quantum criticalities signal novel physics.

Non trivial symmetric ground states may realize exotic
guantum criticalities.

Non-Fermi liquids, topological phases, and quantum
anomalies are specific examples.

Collaboration between theory and experiment is necessary!



Thank you for your attention!



Appendix A: Massless excitation with anomalies

It is well understood that massless excitation is guaranteed by continuous symmetry
anomalies.*” 4 The presence of continuous group’s anomalies enforces singularities of ana-
lytical structures of currents correlation functions. To be self-contained, we introduce the
proof with slight modification following the notation in Coleman and Grossman.*’

In 4D, the anomalous Ward identity is in three currents correlation function,

F/_LV)\(Ql? q2, q3)5(4) (Q1 +q2 + q3> =
/Hd‘l:z:ieiqu < 0| J,(21)Jy(22) Ix(23)|0 >,

and the current conservation gives

Q?))\FMV)\(q17 q2, (]3) = AEuVaBQ?QQB' (Al)

All non-abelian Lie algebra indices are absorbed into the anomaly coefficient A.
The correlation function is symmetric under simlutaneous permutations of (g1, g2, ¢qs)
and (u, v, A). Now let us investigate analytic structure of the correlation function. Due to

permutation and covariance, the structure must be in the form

Ly = F (Q?)[ewaﬁq?qﬁ 3+ €rap s a5 Qi + EuvapdSd) qgu]

We omit possible tensors which cannot contribute to the anomalies. Note that the momen-

tums are off-shell, so one can access all available regions and we focus on the region

G=¢=qg=-0Q.



The correlation function contracted with ¢3) gives

QQF/WA(QD q2, Q3) = _F(Q2>Q2€,LWQBQ?QQB‘ (A2>

Then, the anomaly equation (A.1) gives

A

F(Q*) = N

The pole structure at zero mass nicely show the presence of massless excitation (also see’®

for dispersion analysis). The singularity even further enforces that UV and IR information
needs to be matched.

In the paper by Coleman and Grossman, they add more conditions such as non-
singularties from vertex corrections, and they conclude the helicity of massless degrees of
freedom is :I:%, which indicates the symmetric phase is massless fermions as in our minimal
model. The authors argue that the assumptions are not that strong, so it would be very
interesting the conditions are proved / disproved in future research.

The above discussion only relies on the anomaly properties and nothing more, thus it is
applied to everywhere in phase diagrams. But, it is only applied to anomalies of continuous
symmetries since the current conservation plays a crucial role. For the discrete gauge group,
which is especially important in SPT physics, the presence of anomalies does not guarantee
massless excitation.® !

We note that in 2D, the minimal symmetry for spin 1/2 chains to be massless is SU(2) X Z5
corresponding SU(2) X Z,'% which is smaller than SO(4) ~ SU(2) x SU(2), and it is manifest
some subgroups of the continuous group is enough on lattice systems, and it would be

interesting to find criteria to determine the subgroups in higher dimensions.



