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Conventional Phases and Phase Transitions

more phases by varying an external parameter. The parame-
ter could be the pressure applied to the solid, the strength of
an external magnetic field, or the density of electrons in the
solid (which can be controlled, for example, by the concen-
tration of dopant ions). Temperature isn’t in this list of exter-
nal parameters: We are considering changes in the ground
state of the electrons and are not yet interested in the thermal
excitations above it. In this article we will generically refer to
the tuning parameter as g. As g is varied, there is the possi-
bility at some critical point g = gc of a quantum phase transi-
tion: a qualitative change in the ground-state wavefunction
of a large many-body system on smoothly changing one or
more coupling constants in its Hamiltonian.

Sometimes, the transition between the two phases can
involve sudden jumps in physical properties; such a first-
order quantum transition is analogous to a first-order ther-
mally driven phase transition, like water boiling to steam.
More interesting and quite common, however, is the contin-
uous transition, in which the change is more gradual.

A key feature of a  second- order quantum phase transi-
tion is the special nature of the ground state precisely at g = gc.
Far away from the quantum critical point, the system is usu-
ally in one of the states mentioned above, such as a metallic
antiferromagnet, for which one can write down a straightfor-
ward wavefunction involving a product of simple configura-
tions of all the electrons. For a first- order transition, those
simple states are found on both sides of the transition all the

way to g = gc , and the quantum state just jumps from one to
the other upon crossing the transition. For a continuous tran-
sition, in contrast, the wavefunction at g = gc is very different
from a product state: It is a complex quantum superposition
of an exponentially large set of configurations fluctuating at
all length scales. In modern parlance, the critical-point wave-
function has long-range quantum entanglement. Albert Ein-
stein, Boris Podolsky, and Nathan Rosen emphasized the
 peculiar nonlocal nature of quantum entanglement in their
famous 1935 thought experiment on a single pair of electrons;
a similar entanglement appears here in a system of a very
large number of electrons and between electrons separated
at all length scales.

Quantum-critical states are among the most complicated
quantum states ever studied, and describing them efficiently
is an important goal of theoretical studies of quantum criti-
cality. In almost all cases, one cannot even explicitly write
down the critical wavefunction; instead, one must usually re-
sort to tools from quantum field theory or from numerical
simulations to extract the subtle quantum correlations be-
tween the electrons.

The quantum-critical state at g = gc is defined by the
ground-state wavefunction, so, strictly speaking, it is present
only when the temperature T is at absolute zero. Thus, from
an experimental perspective, it may seem that a continuous
quantum phase transition, and its exotic entangled critical
point, is an abstract theoretical idea of little practical interest.
However, as described below, the influence of the critical
point extends over a wide regime in the T > 0 phase diagram.
That regime of quantum criticality is the key to explaining a
wide variety of experiments.

The quantum Ising chain
Two paradigmatic examples from recent experiments illus-
trate quantum phase transitions and quantum criticality.
Both examples are in insulators, so the electron charge is
 localized and we can focus attention solely on the orientation
of the electron spins on different sites in the crystal lattice.

In cobalt niobate, CoNb2O6, only the total electronic spin
on the Co2+ ion is able to choose its orientation. Because of
spin– orbit effects, the Co2+ spins have a lower energy when
their spins are either parallel or antiparallel to a preferred
crystalline axis; such spins are referred to as Ising spins. We
denote the two possible electronic spin states on the Co2+ ion
at site j by ∣↑〉j and ∣↓〉j. In quantum computing terminology,
each Co2+ ion realizes a qubit. The spin Hamiltonian of
CoNb2O6 has a coupling between neighboring spins along
one-dimensional zigzag chains in the crystal, shown in
 figure 1, so that the spins prefer to be parallel to each other.
Consequently, in its ground state, CoNb2O6 is a ferromagnet,
with all spins parallel (figure 1, left). There are two possible
ferromagnetic ground states:

(1)

where N is the total number of spins in the chain. The ground
states are simple product states, as expected far from a quan-
tum critical point. The crystal chooses one of the two states
depending on small external perturbations. That choice be-
tween the states breaks the reflection symmetry across the
xy-plane, under which ∣↑〉j is interchanged with ∣↓〉j.

One can drive a quantum phase transition in CoNb2O6
by applying a magnetic field transverse to the preferred crys-
talline axis, as was done recently by Radu Coldea and col-
leagues.1 The strength of the transverse field is the tuning
 parameter g. As g → ∞, a ground state very different from
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Figure 2. Thallium copper chloride (TlCuCl3) exemplifies an-
other quantum phase transition.2 The Cu2+ ions boast active
spin-1⁄2 states. At ambient pressure, the spins pair into dimers
and form singlet bonds (∣↑↓〉 − ∣↓↑〉)/√2�, as indicated by the
 ellipsis (top). The behavior is similar to that of a so-called dimer
 antiferromagnet on a square lattice. The solid red lines repre-
sent strong spin interaction with a positive exchange coupling
J > 0, while the dashed green lines have a weaker exchange
coupling J/g, with g ≥ 1. The ground state of TlCuCl3 is similar
to the dimerized, large-g ground state of the dimer antiferro-
magnet, which behaves like a quantum paramagnet (right).
For TlCuCl3, g is inverse pressure. As the pressure increases and
g decreases, TlCuCl3 undergoes a quantum phase transition to
Néel antiferromagnetic order, in which neighboring spins are
antiparallel. In the dimer antiferromagnet model, the transition
to Néel order occurs at a quantum critical point g= gc.
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more phases by varying an external parameter. The parame-
ter could be the pressure applied to the solid, the strength of
an external magnetic field, or the density of electrons in the
solid (which can be controlled, for example, by the concen-
tration of dopant ions). Temperature isn’t in this list of exter-
nal parameters: We are considering changes in the ground
state of the electrons and are not yet interested in the thermal
excitations above it. In this article we will generically refer to
the tuning parameter as g. As g is varied, there is the possi-
bility at some critical point g = gc of a quantum phase transi-
tion: a qualitative change in the ground-state wavefunction
of a large many-body system on smoothly changing one or
more coupling constants in its Hamiltonian.

Sometimes, the transition between the two phases can
involve sudden jumps in physical properties; such a first-
order quantum transition is analogous to a first-order ther-
mally driven phase transition, like water boiling to steam.
More interesting and quite common, however, is the contin-
uous transition, in which the change is more gradual.

A key feature of a  second- order quantum phase transi-
tion is the special nature of the ground state precisely at g = gc.
Far away from the quantum critical point, the system is usu-
ally in one of the states mentioned above, such as a metallic
antiferromagnet, for which one can write down a straightfor-
ward wavefunction involving a product of simple configura-
tions of all the electrons. For a first- order transition, those
simple states are found on both sides of the transition all the

way to g = gc , and the quantum state just jumps from one to
the other upon crossing the transition. For a continuous tran-
sition, in contrast, the wavefunction at g = gc is very different
from a product state: It is a complex quantum superposition
of an exponentially large set of configurations fluctuating at
all length scales. In modern parlance, the critical-point wave-
function has long-range quantum entanglement. Albert Ein-
stein, Boris Podolsky, and Nathan Rosen emphasized the
 peculiar nonlocal nature of quantum entanglement in their
famous 1935 thought experiment on a single pair of electrons;
a similar entanglement appears here in a system of a very
large number of electrons and between electrons separated
at all length scales.

Quantum-critical states are among the most complicated
quantum states ever studied, and describing them efficiently
is an important goal of theoretical studies of quantum criti-
cality. In almost all cases, one cannot even explicitly write
down the critical wavefunction; instead, one must usually re-
sort to tools from quantum field theory or from numerical
simulations to extract the subtle quantum correlations be-
tween the electrons.

The quantum-critical state at g = gc is defined by the
ground-state wavefunction, so, strictly speaking, it is present
only when the temperature T is at absolute zero. Thus, from
an experimental perspective, it may seem that a continuous
quantum phase transition, and its exotic entangled critical
point, is an abstract theoretical idea of little practical interest.
However, as described below, the influence of the critical
point extends over a wide regime in the T > 0 phase diagram.
That regime of quantum criticality is the key to explaining a
wide variety of experiments.

The quantum Ising chain
Two paradigmatic examples from recent experiments illus-
trate quantum phase transitions and quantum criticality.
Both examples are in insulators, so the electron charge is
 localized and we can focus attention solely on the orientation
of the electron spins on different sites in the crystal lattice.

In cobalt niobate, CoNb2O6, only the total electronic spin
on the Co2+ ion is able to choose its orientation. Because of
spin– orbit effects, the Co2+ spins have a lower energy when
their spins are either parallel or antiparallel to a preferred
crystalline axis; such spins are referred to as Ising spins. We
denote the two possible electronic spin states on the Co2+ ion
at site j by ∣↑〉j and ∣↓〉j. In quantum computing terminology,
each Co2+ ion realizes a qubit. The spin Hamiltonian of
CoNb2O6 has a coupling between neighboring spins along
one-dimensional zigzag chains in the crystal, shown in
 figure 1, so that the spins prefer to be parallel to each other.
Consequently, in its ground state, CoNb2O6 is a ferromagnet,
with all spins parallel (figure 1, left). There are two possible
ferromagnetic ground states:

(1)

where N is the total number of spins in the chain. The ground
states are simple product states, as expected far from a quan-
tum critical point. The crystal chooses one of the two states
depending on small external perturbations. That choice be-
tween the states breaks the reflection symmetry across the
xy-plane, under which ∣↑〉j is interchanged with ∣↓〉j.

One can drive a quantum phase transition in CoNb2O6
by applying a magnetic field transverse to the preferred crys-
talline axis, as was done recently by Radu Coldea and col-
leagues.1 The strength of the transverse field is the tuning
 parameter g. As g → ∞, a ground state very different from
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Figure 2. Thallium copper chloride (TlCuCl3) exemplifies an-
other quantum phase transition.2 The Cu2+ ions boast active
spin-1⁄2 states. At ambient pressure, the spins pair into dimers
and form singlet bonds (∣↑↓〉 − ∣↓↑〉)/√2�, as indicated by the
 ellipsis (top). The behavior is similar to that of a so-called dimer
 antiferromagnet on a square lattice. The solid red lines repre-
sent strong spin interaction with a positive exchange coupling
J > 0, while the dashed green lines have a weaker exchange
coupling J/g, with g ≥ 1. The ground state of TlCuCl3 is similar
to the dimerized, large-g ground state of the dimer antiferro-
magnet, which behaves like a quantum paramagnet (right).
For TlCuCl3, g is inverse pressure. As the pressure increases and
g decreases, TlCuCl3 undergoes a quantum phase transition to
Néel antiferromagnetic order, in which neighboring spins are
antiparallel. In the dimer antiferromagnet model, the transition
to Néel order occurs at a quantum critical point g= gc.
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Conventional Phases and Phase Transitions

more phases by varying an external parameter. The parame-
ter could be the pressure applied to the solid, the strength of
an external magnetic field, or the density of electrons in the
solid (which can be controlled, for example, by the concen-
tration of dopant ions). Temperature isn’t in this list of exter-
nal parameters: We are considering changes in the ground
state of the electrons and are not yet interested in the thermal
excitations above it. In this article we will generically refer to
the tuning parameter as g. As g is varied, there is the possi-
bility at some critical point g = gc of a quantum phase transi-
tion: a qualitative change in the ground-state wavefunction
of a large many-body system on smoothly changing one or
more coupling constants in its Hamiltonian.

Sometimes, the transition between the two phases can
involve sudden jumps in physical properties; such a first-
order quantum transition is analogous to a first-order ther-
mally driven phase transition, like water boiling to steam.
More interesting and quite common, however, is the contin-
uous transition, in which the change is more gradual.

A key feature of a  second- order quantum phase transi-
tion is the special nature of the ground state precisely at g = gc.
Far away from the quantum critical point, the system is usu-
ally in one of the states mentioned above, such as a metallic
antiferromagnet, for which one can write down a straightfor-
ward wavefunction involving a product of simple configura-
tions of all the electrons. For a first- order transition, those
simple states are found on both sides of the transition all the

way to g = gc , and the quantum state just jumps from one to
the other upon crossing the transition. For a continuous tran-
sition, in contrast, the wavefunction at g = gc is very different
from a product state: It is a complex quantum superposition
of an exponentially large set of configurations fluctuating at
all length scales. In modern parlance, the critical-point wave-
function has long-range quantum entanglement. Albert Ein-
stein, Boris Podolsky, and Nathan Rosen emphasized the
 peculiar nonlocal nature of quantum entanglement in their
famous 1935 thought experiment on a single pair of electrons;
a similar entanglement appears here in a system of a very
large number of electrons and between electrons separated
at all length scales.

Quantum-critical states are among the most complicated
quantum states ever studied, and describing them efficiently
is an important goal of theoretical studies of quantum criti-
cality. In almost all cases, one cannot even explicitly write
down the critical wavefunction; instead, one must usually re-
sort to tools from quantum field theory or from numerical
simulations to extract the subtle quantum correlations be-
tween the electrons.

The quantum-critical state at g = gc is defined by the
ground-state wavefunction, so, strictly speaking, it is present
only when the temperature T is at absolute zero. Thus, from
an experimental perspective, it may seem that a continuous
quantum phase transition, and its exotic entangled critical
point, is an abstract theoretical idea of little practical interest.
However, as described below, the influence of the critical
point extends over a wide regime in the T > 0 phase diagram.
That regime of quantum criticality is the key to explaining a
wide variety of experiments.

The quantum Ising chain
Two paradigmatic examples from recent experiments illus-
trate quantum phase transitions and quantum criticality.
Both examples are in insulators, so the electron charge is
 localized and we can focus attention solely on the orientation
of the electron spins on different sites in the crystal lattice.

In cobalt niobate, CoNb2O6, only the total electronic spin
on the Co2+ ion is able to choose its orientation. Because of
spin– orbit effects, the Co2+ spins have a lower energy when
their spins are either parallel or antiparallel to a preferred
crystalline axis; such spins are referred to as Ising spins. We
denote the two possible electronic spin states on the Co2+ ion
at site j by ∣↑〉j and ∣↓〉j. In quantum computing terminology,
each Co2+ ion realizes a qubit. The spin Hamiltonian of
CoNb2O6 has a coupling between neighboring spins along
one-dimensional zigzag chains in the crystal, shown in
 figure 1, so that the spins prefer to be parallel to each other.
Consequently, in its ground state, CoNb2O6 is a ferromagnet,
with all spins parallel (figure 1, left). There are two possible
ferromagnetic ground states:

(1)

where N is the total number of spins in the chain. The ground
states are simple product states, as expected far from a quan-
tum critical point. The crystal chooses one of the two states
depending on small external perturbations. That choice be-
tween the states breaks the reflection symmetry across the
xy-plane, under which ∣↑〉j is interchanged with ∣↓〉j.

One can drive a quantum phase transition in CoNb2O6
by applying a magnetic field transverse to the preferred crys-
talline axis, as was done recently by Radu Coldea and col-
leagues.1 The strength of the transverse field is the tuning
 parameter g. As g → ∞, a ground state very different from
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Figure 2. Thallium copper chloride (TlCuCl3) exemplifies an-
other quantum phase transition.2 The Cu2+ ions boast active
spin-1⁄2 states. At ambient pressure, the spins pair into dimers
and form singlet bonds (∣↑↓〉 − ∣↓↑〉)/√2�, as indicated by the
 ellipsis (top). The behavior is similar to that of a so-called dimer
 antiferromagnet on a square lattice. The solid red lines repre-
sent strong spin interaction with a positive exchange coupling
J > 0, while the dashed green lines have a weaker exchange
coupling J/g, with g ≥ 1. The ground state of TlCuCl3 is similar
to the dimerized, large-g ground state of the dimer antiferro-
magnet, which behaves like a quantum paramagnet (right).
For TlCuCl3, g is inverse pressure. As the pressure increases and
g decreases, TlCuCl3 undergoes a quantum phase transition to
Néel antiferromagnetic order, in which neighboring spins are
antiparallel. In the dimer antiferromagnet model, the transition
to Néel order occurs at a quantum critical point g= gc.
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more phases by varying an external parameter. The parame-
ter could be the pressure applied to the solid, the strength of
an external magnetic field, or the density of electrons in the
solid (which can be controlled, for example, by the concen-
tration of dopant ions). Temperature isn’t in this list of exter-
nal parameters: We are considering changes in the ground
state of the electrons and are not yet interested in the thermal
excitations above it. In this article we will generically refer to
the tuning parameter as g. As g is varied, there is the possi-
bility at some critical point g = gc of a quantum phase transi-
tion: a qualitative change in the ground-state wavefunction
of a large many-body system on smoothly changing one or
more coupling constants in its Hamiltonian.

Sometimes, the transition between the two phases can
involve sudden jumps in physical properties; such a first-
order quantum transition is analogous to a first-order ther-
mally driven phase transition, like water boiling to steam.
More interesting and quite common, however, is the contin-
uous transition, in which the change is more gradual.

A key feature of a  second- order quantum phase transi-
tion is the special nature of the ground state precisely at g = gc.
Far away from the quantum critical point, the system is usu-
ally in one of the states mentioned above, such as a metallic
antiferromagnet, for which one can write down a straightfor-
ward wavefunction involving a product of simple configura-
tions of all the electrons. For a first- order transition, those
simple states are found on both sides of the transition all the

way to g = gc , and the quantum state just jumps from one to
the other upon crossing the transition. For a continuous tran-
sition, in contrast, the wavefunction at g = gc is very different
from a product state: It is a complex quantum superposition
of an exponentially large set of configurations fluctuating at
all length scales. In modern parlance, the critical-point wave-
function has long-range quantum entanglement. Albert Ein-
stein, Boris Podolsky, and Nathan Rosen emphasized the
 peculiar nonlocal nature of quantum entanglement in their
famous 1935 thought experiment on a single pair of electrons;
a similar entanglement appears here in a system of a very
large number of electrons and between electrons separated
at all length scales.

Quantum-critical states are among the most complicated
quantum states ever studied, and describing them efficiently
is an important goal of theoretical studies of quantum criti-
cality. In almost all cases, one cannot even explicitly write
down the critical wavefunction; instead, one must usually re-
sort to tools from quantum field theory or from numerical
simulations to extract the subtle quantum correlations be-
tween the electrons.

The quantum-critical state at g = gc is defined by the
ground-state wavefunction, so, strictly speaking, it is present
only when the temperature T is at absolute zero. Thus, from
an experimental perspective, it may seem that a continuous
quantum phase transition, and its exotic entangled critical
point, is an abstract theoretical idea of little practical interest.
However, as described below, the influence of the critical
point extends over a wide regime in the T > 0 phase diagram.
That regime of quantum criticality is the key to explaining a
wide variety of experiments.

The quantum Ising chain
Two paradigmatic examples from recent experiments illus-
trate quantum phase transitions and quantum criticality.
Both examples are in insulators, so the electron charge is
 localized and we can focus attention solely on the orientation
of the electron spins on different sites in the crystal lattice.

In cobalt niobate, CoNb2O6, only the total electronic spin
on the Co2+ ion is able to choose its orientation. Because of
spin– orbit effects, the Co2+ spins have a lower energy when
their spins are either parallel or antiparallel to a preferred
crystalline axis; such spins are referred to as Ising spins. We
denote the two possible electronic spin states on the Co2+ ion
at site j by ∣↑〉j and ∣↓〉j. In quantum computing terminology,
each Co2+ ion realizes a qubit. The spin Hamiltonian of
CoNb2O6 has a coupling between neighboring spins along
one-dimensional zigzag chains in the crystal, shown in
 figure 1, so that the spins prefer to be parallel to each other.
Consequently, in its ground state, CoNb2O6 is a ferromagnet,
with all spins parallel (figure 1, left). There are two possible
ferromagnetic ground states:

(1)

where N is the total number of spins in the chain. The ground
states are simple product states, as expected far from a quan-
tum critical point. The crystal chooses one of the two states
depending on small external perturbations. That choice be-
tween the states breaks the reflection symmetry across the
xy-plane, under which ∣↑〉j is interchanged with ∣↓〉j.

One can drive a quantum phase transition in CoNb2O6
by applying a magnetic field transverse to the preferred crys-
talline axis, as was done recently by Radu Coldea and col-
leagues.1 The strength of the transverse field is the tuning
 parameter g. As g → ∞, a ground state very different from
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Figure 2. Thallium copper chloride (TlCuCl3) exemplifies an-
other quantum phase transition.2 The Cu2+ ions boast active
spin-1⁄2 states. At ambient pressure, the spins pair into dimers
and form singlet bonds (∣↑↓〉 − ∣↓↑〉)/√2�, as indicated by the
 ellipsis (top). The behavior is similar to that of a so-called dimer
 antiferromagnet on a square lattice. The solid red lines repre-
sent strong spin interaction with a positive exchange coupling
J > 0, while the dashed green lines have a weaker exchange
coupling J/g, with g ≥ 1. The ground state of TlCuCl3 is similar
to the dimerized, large-g ground state of the dimer antiferro-
magnet, which behaves like a quantum paramagnet (right).
For TlCuCl3, g is inverse pressure. As the pressure increases and
g decreases, TlCuCl3 undergoes a quantum phase transition to
Néel antiferromagnetic order, in which neighboring spins are
antiparallel. In the dimer antiferromagnet model, the transition
to Néel order occurs at a quantum critical point g= gc.
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Conventional Phases and Phase Transitions

more phases by varying an external parameter. The parame-
ter could be the pressure applied to the solid, the strength of
an external magnetic field, or the density of electrons in the
solid (which can be controlled, for example, by the concen-
tration of dopant ions). Temperature isn’t in this list of exter-
nal parameters: We are considering changes in the ground
state of the electrons and are not yet interested in the thermal
excitations above it. In this article we will generically refer to
the tuning parameter as g. As g is varied, there is the possi-
bility at some critical point g = gc of a quantum phase transi-
tion: a qualitative change in the ground-state wavefunction
of a large many-body system on smoothly changing one or
more coupling constants in its Hamiltonian.

Sometimes, the transition between the two phases can
involve sudden jumps in physical properties; such a first-
order quantum transition is analogous to a first-order ther-
mally driven phase transition, like water boiling to steam.
More interesting and quite common, however, is the contin-
uous transition, in which the change is more gradual.

A key feature of a  second- order quantum phase transi-
tion is the special nature of the ground state precisely at g = gc.
Far away from the quantum critical point, the system is usu-
ally in one of the states mentioned above, such as a metallic
antiferromagnet, for which one can write down a straightfor-
ward wavefunction involving a product of simple configura-
tions of all the electrons. For a first- order transition, those
simple states are found on both sides of the transition all the

way to g = gc , and the quantum state just jumps from one to
the other upon crossing the transition. For a continuous tran-
sition, in contrast, the wavefunction at g = gc is very different
from a product state: It is a complex quantum superposition
of an exponentially large set of configurations fluctuating at
all length scales. In modern parlance, the critical-point wave-
function has long-range quantum entanglement. Albert Ein-
stein, Boris Podolsky, and Nathan Rosen emphasized the
 peculiar nonlocal nature of quantum entanglement in their
famous 1935 thought experiment on a single pair of electrons;
a similar entanglement appears here in a system of a very
large number of electrons and between electrons separated
at all length scales.

Quantum-critical states are among the most complicated
quantum states ever studied, and describing them efficiently
is an important goal of theoretical studies of quantum criti-
cality. In almost all cases, one cannot even explicitly write
down the critical wavefunction; instead, one must usually re-
sort to tools from quantum field theory or from numerical
simulations to extract the subtle quantum correlations be-
tween the electrons.

The quantum-critical state at g = gc is defined by the
ground-state wavefunction, so, strictly speaking, it is present
only when the temperature T is at absolute zero. Thus, from
an experimental perspective, it may seem that a continuous
quantum phase transition, and its exotic entangled critical
point, is an abstract theoretical idea of little practical interest.
However, as described below, the influence of the critical
point extends over a wide regime in the T > 0 phase diagram.
That regime of quantum criticality is the key to explaining a
wide variety of experiments.

The quantum Ising chain
Two paradigmatic examples from recent experiments illus-
trate quantum phase transitions and quantum criticality.
Both examples are in insulators, so the electron charge is
 localized and we can focus attention solely on the orientation
of the electron spins on different sites in the crystal lattice.

In cobalt niobate, CoNb2O6, only the total electronic spin
on the Co2+ ion is able to choose its orientation. Because of
spin– orbit effects, the Co2+ spins have a lower energy when
their spins are either parallel or antiparallel to a preferred
crystalline axis; such spins are referred to as Ising spins. We
denote the two possible electronic spin states on the Co2+ ion
at site j by ∣↑〉j and ∣↓〉j. In quantum computing terminology,
each Co2+ ion realizes a qubit. The spin Hamiltonian of
CoNb2O6 has a coupling between neighboring spins along
one-dimensional zigzag chains in the crystal, shown in
 figure 1, so that the spins prefer to be parallel to each other.
Consequently, in its ground state, CoNb2O6 is a ferromagnet,
with all spins parallel (figure 1, left). There are two possible
ferromagnetic ground states:

(1)

where N is the total number of spins in the chain. The ground
states are simple product states, as expected far from a quan-
tum critical point. The crystal chooses one of the two states
depending on small external perturbations. That choice be-
tween the states breaks the reflection symmetry across the
xy-plane, under which ∣↑〉j is interchanged with ∣↓〉j.

One can drive a quantum phase transition in CoNb2O6
by applying a magnetic field transverse to the preferred crys-
talline axis, as was done recently by Radu Coldea and col-
leagues.1 The strength of the transverse field is the tuning
 parameter g. As g → ∞, a ground state very different from

∣⇑〉 = ∏ ∣↑ ∣ ∣↓〉 or ⇓〉 = 〉j j∏ ,
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Figure 2. Thallium copper chloride (TlCuCl3) exemplifies an-
other quantum phase transition.2 The Cu2+ ions boast active
spin-1⁄2 states. At ambient pressure, the spins pair into dimers
and form singlet bonds (∣↑↓〉 − ∣↓↑〉)/√2�, as indicated by the
 ellipsis (top). The behavior is similar to that of a so-called dimer
 antiferromagnet on a square lattice. The solid red lines repre-
sent strong spin interaction with a positive exchange coupling
J > 0, while the dashed green lines have a weaker exchange
coupling J/g, with g ≥ 1. The ground state of TlCuCl3 is similar
to the dimerized, large-g ground state of the dimer antiferro-
magnet, which behaves like a quantum paramagnet (right).
For TlCuCl3, g is inverse pressure. As the pressure increases and
g decreases, TlCuCl3 undergoes a quantum phase transition to
Néel antiferromagnetic order, in which neighboring spins are
antiparallel. In the dimer antiferromagnet model, the transition
to Néel order occurs at a quantum critical point g= gc.
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more phases by varying an external parameter. The parame-
ter could be the pressure applied to the solid, the strength of
an external magnetic field, or the density of electrons in the
solid (which can be controlled, for example, by the concen-
tration of dopant ions). Temperature isn’t in this list of exter-
nal parameters: We are considering changes in the ground
state of the electrons and are not yet interested in the thermal
excitations above it. In this article we will generically refer to
the tuning parameter as g. As g is varied, there is the possi-
bility at some critical point g = gc of a quantum phase transi-
tion: a qualitative change in the ground-state wavefunction
of a large many-body system on smoothly changing one or
more coupling constants in its Hamiltonian.

Sometimes, the transition between the two phases can
involve sudden jumps in physical properties; such a first-
order quantum transition is analogous to a first-order ther-
mally driven phase transition, like water boiling to steam.
More interesting and quite common, however, is the contin-
uous transition, in which the change is more gradual.

A key feature of a  second- order quantum phase transi-
tion is the special nature of the ground state precisely at g = gc.
Far away from the quantum critical point, the system is usu-
ally in one of the states mentioned above, such as a metallic
antiferromagnet, for which one can write down a straightfor-
ward wavefunction involving a product of simple configura-
tions of all the electrons. For a first- order transition, those
simple states are found on both sides of the transition all the

way to g = gc , and the quantum state just jumps from one to
the other upon crossing the transition. For a continuous tran-
sition, in contrast, the wavefunction at g = gc is very different
from a product state: It is a complex quantum superposition
of an exponentially large set of configurations fluctuating at
all length scales. In modern parlance, the critical-point wave-
function has long-range quantum entanglement. Albert Ein-
stein, Boris Podolsky, and Nathan Rosen emphasized the
 peculiar nonlocal nature of quantum entanglement in their
famous 1935 thought experiment on a single pair of electrons;
a similar entanglement appears here in a system of a very
large number of electrons and between electrons separated
at all length scales.

Quantum-critical states are among the most complicated
quantum states ever studied, and describing them efficiently
is an important goal of theoretical studies of quantum criti-
cality. In almost all cases, one cannot even explicitly write
down the critical wavefunction; instead, one must usually re-
sort to tools from quantum field theory or from numerical
simulations to extract the subtle quantum correlations be-
tween the electrons.

The quantum-critical state at g = gc is defined by the
ground-state wavefunction, so, strictly speaking, it is present
only when the temperature T is at absolute zero. Thus, from
an experimental perspective, it may seem that a continuous
quantum phase transition, and its exotic entangled critical
point, is an abstract theoretical idea of little practical interest.
However, as described below, the influence of the critical
point extends over a wide regime in the T > 0 phase diagram.
That regime of quantum criticality is the key to explaining a
wide variety of experiments.

The quantum Ising chain
Two paradigmatic examples from recent experiments illus-
trate quantum phase transitions and quantum criticality.
Both examples are in insulators, so the electron charge is
 localized and we can focus attention solely on the orientation
of the electron spins on different sites in the crystal lattice.

In cobalt niobate, CoNb2O6, only the total electronic spin
on the Co2+ ion is able to choose its orientation. Because of
spin– orbit effects, the Co2+ spins have a lower energy when
their spins are either parallel or antiparallel to a preferred
crystalline axis; such spins are referred to as Ising spins. We
denote the two possible electronic spin states on the Co2+ ion
at site j by ∣↑〉j and ∣↓〉j. In quantum computing terminology,
each Co2+ ion realizes a qubit. The spin Hamiltonian of
CoNb2O6 has a coupling between neighboring spins along
one-dimensional zigzag chains in the crystal, shown in
 figure 1, so that the spins prefer to be parallel to each other.
Consequently, in its ground state, CoNb2O6 is a ferromagnet,
with all spins parallel (figure 1, left). There are two possible
ferromagnetic ground states:

(1)

where N is the total number of spins in the chain. The ground
states are simple product states, as expected far from a quan-
tum critical point. The crystal chooses one of the two states
depending on small external perturbations. That choice be-
tween the states breaks the reflection symmetry across the
xy-plane, under which ∣↑〉j is interchanged with ∣↓〉j.

One can drive a quantum phase transition in CoNb2O6
by applying a magnetic field transverse to the preferred crys-
talline axis, as was done recently by Radu Coldea and col-
leagues.1 The strength of the transverse field is the tuning
 parameter g. As g → ∞, a ground state very different from

∣⇑〉 = ∏ ∣↑ ∣ ∣↓〉 or ⇓〉 = 〉j j∏ ,
N N

j = 1 j = 1
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Figure 2. Thallium copper chloride (TlCuCl3) exemplifies an-
other quantum phase transition.2 The Cu2+ ions boast active
spin-1⁄2 states. At ambient pressure, the spins pair into dimers
and form singlet bonds (∣↑↓〉 − ∣↓↑〉)/√2�, as indicated by the
 ellipsis (top). The behavior is similar to that of a so-called dimer
 antiferromagnet on a square lattice. The solid red lines repre-
sent strong spin interaction with a positive exchange coupling
J > 0, while the dashed green lines have a weaker exchange
coupling J/g, with g ≥ 1. The ground state of TlCuCl3 is similar
to the dimerized, large-g ground state of the dimer antiferro-
magnet, which behaves like a quantum paramagnet (right).
For TlCuCl3, g is inverse pressure. As the pressure increases and
g decreases, TlCuCl3 undergoes a quantum phase transition to
Néel antiferromagnetic order, in which neighboring spins are
antiparallel. In the dimer antiferromagnet model, the transition
to Néel order occurs at a quantum critical point g= gc.
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more phases by varying an external parameter. The parame-
ter could be the pressure applied to the solid, the strength of
an external magnetic field, or the density of electrons in the
solid (which can be controlled, for example, by the concen-
tration of dopant ions). Temperature isn’t in this list of exter-
nal parameters: We are considering changes in the ground
state of the electrons and are not yet interested in the thermal
excitations above it. In this article we will generically refer to
the tuning parameter as g. As g is varied, there is the possi-
bility at some critical point g = gc of a quantum phase transi-
tion: a qualitative change in the ground-state wavefunction
of a large many-body system on smoothly changing one or
more coupling constants in its Hamiltonian.

Sometimes, the transition between the two phases can
involve sudden jumps in physical properties; such a first-
order quantum transition is analogous to a first-order ther-
mally driven phase transition, like water boiling to steam.
More interesting and quite common, however, is the contin-
uous transition, in which the change is more gradual.

A key feature of a  second- order quantum phase transi-
tion is the special nature of the ground state precisely at g = gc.
Far away from the quantum critical point, the system is usu-
ally in one of the states mentioned above, such as a metallic
antiferromagnet, for which one can write down a straightfor-
ward wavefunction involving a product of simple configura-
tions of all the electrons. For a first- order transition, those
simple states are found on both sides of the transition all the

way to g = gc , and the quantum state just jumps from one to
the other upon crossing the transition. For a continuous tran-
sition, in contrast, the wavefunction at g = gc is very different
from a product state: It is a complex quantum superposition
of an exponentially large set of configurations fluctuating at
all length scales. In modern parlance, the critical-point wave-
function has long-range quantum entanglement. Albert Ein-
stein, Boris Podolsky, and Nathan Rosen emphasized the
 peculiar nonlocal nature of quantum entanglement in their
famous 1935 thought experiment on a single pair of electrons;
a similar entanglement appears here in a system of a very
large number of electrons and between electrons separated
at all length scales.

Quantum-critical states are among the most complicated
quantum states ever studied, and describing them efficiently
is an important goal of theoretical studies of quantum criti-
cality. In almost all cases, one cannot even explicitly write
down the critical wavefunction; instead, one must usually re-
sort to tools from quantum field theory or from numerical
simulations to extract the subtle quantum correlations be-
tween the electrons.

The quantum-critical state at g = gc is defined by the
ground-state wavefunction, so, strictly speaking, it is present
only when the temperature T is at absolute zero. Thus, from
an experimental perspective, it may seem that a continuous
quantum phase transition, and its exotic entangled critical
point, is an abstract theoretical idea of little practical interest.
However, as described below, the influence of the critical
point extends over a wide regime in the T > 0 phase diagram.
That regime of quantum criticality is the key to explaining a
wide variety of experiments.

The quantum Ising chain
Two paradigmatic examples from recent experiments illus-
trate quantum phase transitions and quantum criticality.
Both examples are in insulators, so the electron charge is
 localized and we can focus attention solely on the orientation
of the electron spins on different sites in the crystal lattice.

In cobalt niobate, CoNb2O6, only the total electronic spin
on the Co2+ ion is able to choose its orientation. Because of
spin– orbit effects, the Co2+ spins have a lower energy when
their spins are either parallel or antiparallel to a preferred
crystalline axis; such spins are referred to as Ising spins. We
denote the two possible electronic spin states on the Co2+ ion
at site j by ∣↑〉j and ∣↓〉j. In quantum computing terminology,
each Co2+ ion realizes a qubit. The spin Hamiltonian of
CoNb2O6 has a coupling between neighboring spins along
one-dimensional zigzag chains in the crystal, shown in
 figure 1, so that the spins prefer to be parallel to each other.
Consequently, in its ground state, CoNb2O6 is a ferromagnet,
with all spins parallel (figure 1, left). There are two possible
ferromagnetic ground states:

(1)

where N is the total number of spins in the chain. The ground
states are simple product states, as expected far from a quan-
tum critical point. The crystal chooses one of the two states
depending on small external perturbations. That choice be-
tween the states breaks the reflection symmetry across the
xy-plane, under which ∣↑〉j is interchanged with ∣↓〉j.

One can drive a quantum phase transition in CoNb2O6
by applying a magnetic field transverse to the preferred crys-
talline axis, as was done recently by Radu Coldea and col-
leagues.1 The strength of the transverse field is the tuning
 parameter g. As g → ∞, a ground state very different from

∣⇑〉 = ∏ ∣↑ ∣ ∣↓〉 or ⇓〉 = 〉j j∏ ,
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Figure 2. Thallium copper chloride (TlCuCl3) exemplifies an-
other quantum phase transition.2 The Cu2+ ions boast active
spin-1⁄2 states. At ambient pressure, the spins pair into dimers
and form singlet bonds (∣↑↓〉 − ∣↓↑〉)/√2�, as indicated by the
 ellipsis (top). The behavior is similar to that of a so-called dimer
 antiferromagnet on a square lattice. The solid red lines repre-
sent strong spin interaction with a positive exchange coupling
J > 0, while the dashed green lines have a weaker exchange
coupling J/g, with g ≥ 1. The ground state of TlCuCl3 is similar
to the dimerized, large-g ground state of the dimer antiferro-
magnet, which behaves like a quantum paramagnet (right).
For TlCuCl3, g is inverse pressure. As the pressure increases and
g decreases, TlCuCl3 undergoes a quantum phase transition to
Néel antiferromagnetic order, in which neighboring spins are
antiparallel. In the dimer antiferromagnet model, the transition
to Néel order occurs at a quantum critical point g= gc.

30 February 2011    Physics Today www.physicstoday.org

|Gi =
Y

i

�
| "#ii � | #"ii

�

single-site physics
(trivial many-body ground state)
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Search for Novel Physics

Difficulties :

1. Most materials : conventional ordered phases

2. Hard to find signals of exotic physics



Exotic Phases and Phase Transitions

Strategy

1. Entangled symmetric ground states

2. Quantum phase transitions near the entangled states 

Beyond LGW criticalities : exotic physics!
(Physical properties near criticalities are characteristics!)
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Entangled symmetric ground states ?

1. non-Fermi liquids

2. Topological phases
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Non Fermi liquids

Matsuda Group

electron systems is anomalous electron transport phenomena, which often display striking de-
viation from Fermi liquid behavior in a wide temperature range. As shown in Figure 6a, the in-
plane resistivity r follows the Fermi liquid relation of r ¼ r0 þ AT2 at x & 0.6. In stark contrast,
at x ¼ 0.33, close to the optimum concentration where the maximum Tc is achieved, r
shows linear temperature dependence, r ¼ r0 þ AT (52), which is a hallmark of non-Fermi
liquid behavior. We note that along with the T-linear resistivity, a striking enhancement of
the Hall coefficient at low temperatures and an apparent violation of Kohler’s law for the
magnetoresistance, which are both also indicative of non-Fermi liquid behavior (106), have
been reported (52).
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Figure 6

Quantum critical behavior of normal electrons above Tc in BaFe2(As1#xPx)2. (a) Temperature dependence of in-plane resistivity
r for 0.33 $ 0.71 (52). The dashed red lines show the fit of normal-state r(T) to power-law dependence r0 þ ATa. (b) Temperature
dependence of nuclear magnetic resonance 1/T1T measured for the 31P nuclei for several compositions (107). The lines are the fits
to the Curie-Weiss temperature dependence. (c) Temperature-dependent amplitude of a fast Fourier transform of the dHvA signal
for the b orbits for samples close to the spin density wave boundary. The lines are fits to the Lifshitz-Kosevich formula. The field ranges
of the fitting are from38T to 42T for x¼ 0.38, 40 T to 54T for x¼ 0.40, and 45T to 55T for x¼ 0.43. The inset shows extremalb orbits
in the outer electron pocket. (d) The inset shows the total measured specific heat for x ¼ 0.30; the solid line is the fitted normal
state background Cn. The main part of the figure shows the specific heat with Cn subtracted for different values of x, and the solid lines
show the entropy-conserving construction used to determine the jump height DC and Tc.
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Resistivity does not show Fermi-liquid behaviors

The color shading in Figure 7a represents the value of the resistivity exponent in the relation

r ¼ r0 þ ATa. 4:

A crossover from non-Fermi liquid to Fermi liquid with doping is clearly seen. The region of the
phase diagram,which includes a funnel ofT-linear resistivity centered on x# 0.3, bears a striking
resemblance to the quantum critical regime shown in Figure 1. Thus, the normal state transport
properties are consistent with the presence of a QCP at x # 0.3.

4.1.2. Magnetic properties. Nuclear magnetic resonance (NMR) experiments give important
information about the low-energymagnetic excitations of the system. TheKnight shiftK and spin-
lattice relaxation rate 1/T1 of BaFe2(As1$xPx)2 have beenmeasured with various P concentrations
(107). K is almost T-independent for all x, indicating that the DOS does not change substantially
with temperature. The 31P relaxation rate 1/T1 is sensitive to the AFM fluctuations: 1/T1T is
proportional to the average of the imaginary part of the dynamical susceptibility x(q, v0)/v0,
1/T1T}SqjA(q)j2x 00(q,v0)/v0, whereA(q) is the hyperfine coupling between 31P nuclear spin and
the surrounding electrons and v0 is the NMR frequency. In the Fermi liquid state, the Korringa
relation T1TK

2 ¼ constant holds, but it fails in the presence of strong magnetic fluctuations. In
particular, AFM correlations enhance 1/T1 through the enhancement of x(q ! 0), without ap-
preciable change of K.

Figure 6b shows the temperature dependence of 1/T1T in a wide range of P-substitution. At
x¼ 0.64, 1/T1T is nearly temperature independent, indicating the Korringa relationT1TK

2¼ constant.
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(a) Phase diagram of BaFe2(As1$xPx)2. Red and blue colors represent non-Fermi (nFL) and Fermi liquid (FL) regimes determined by the
exponent a of the temperature dependence of the resistivity. The structural transition temperature Ts (yellow triangles), the spin density
wave (SDW) transition temperature TN (gray circles), and the superconducting (SC) transition temperature Tc (white squares) are
determined by the anomalies in resistivity curves. u is the Weiss temperature determined by the nuclear magnetic resonance relaxation
rate. The light green squares and dark green diamonds represent the effective mass normalized by the band mass m%/mb (right axis)
determined by the dHvA and specific-heat measurements, respectively. Experimental evidence for a quantum critical point (QCP) in this
system at xc ¼ 0.3 includes a funnel of T-linear behavior in the resistivity centered on xc, a steep increase in m%/mb as x approaches xc,
and vanishing u at xc. (b) The x dependence of the square of zero-temperature London penetration depth l2Lð0Þ (74) determined by
the Al-coated method (diamonds), surface impedance (circles), and slope of the temperature dependence of DlL(T) (squares, right axis).
A sharp peak in lL(0) at xc indicates that the superfluid density is minimal at this critical x value and therefore that the QCP
survives under the superconducting dome.
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Non-Fermi liquid near QPT



Non Fermi liquids

Nakatsuji group

Resistivity does not show Fermi-liquid behaviors

Quantum critical phase?
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Figure 1 Physical properties of �-YbAlB4. a, Temperature dependence of the d.c. susceptibility M/H measured in a field of 100mT along the ab plane and c axis. The
c-axis susceptibility changes in slope around 40 K. This is most likely due to a crystal-electric-field splitting�, separating the ground-state Kramers doublet and the excited
states. Inset, the crystallographic unit cell of �-YbAlB4. It has an orthorhombic (Cmmm) space group with lattice parameters a= 0.73080(4) nm, b= 0.93150(5) nm,
c= 0.34980(2) nm and can be viewed as an interleaving of planar B nets and Yb/Al layers7. Interestingly, the closest Yb–Yb contact is 0.34980(2) nm, corresponding to c,
which is slightly more than twice the metallic radius of Yb3+ (0.174 nm). The underlying structural unit for magnetism may well be a one-dimensional chain of Yb3+

penetrating the B net. b, Temperature dependence of zero-field in-plane resistivity ⇢ab (open circle) and its 4f-electron contribution ⇢m (solid line). The latter was estimated
by subtracting the temperature dependence of ⇢ab for �-LuAlB4, the non-magnetic isostructural analogue of �-YbAlB4 (ref. 7). No superconductivity is found for �-LuAlB4
down to T= 35mK. A slight change in slope of ⇢m around 40 K is attributable to a crystal-electric-field effect. Insets, Low-temperature part of ⇢ab (T ) versus T (top left) and
T 1.5 (bottom right).
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Figure 2 Crossover from non-FL to FL behaviour in the resistivity. a, ab-plane resistivity ⇢ab versus T 2 at various magnetic fields along the c axis. b, Contour plot of the
resistivity exponent ↵ defined by�⇢ = (⇢ (T )�⇢ (0))⇠ T↵ in the temperature–field phase diagram.

5–6, which is characteristic of a system with strong magnetic
correlations. At the low-T limit, A shows a diverging behaviour as
B vanishes, following the form B�1/2 in the critical regime below
⇠4 T (Fig. 3d).

Thus, all our observations indicate that as the magnetic field
decreases to zero the FL state becomes unstable and A, �c and
CM/T all become singular at low T . This is the behaviour expected
of a system with a zero-field quantum critical point (QCP),
characterized by divergences of A, �c and CM/T of the form

T�x , where x is 1/2, 1/3 and 0+, respectively (0+ stands for
logarithmic divergence).

We now return to the observation of superconductivity, which
emerges at very low temperatures from the non-FL state in
samples with residual resistivity ratio RRR > 100. Figure 4a shows
the in-plane resistivity of two out of a dozen samples studied,
one normal and one superconducting, with RRR of 70 and
300, respectively. Figure 4b shows d.c. magnetization of a sample
consisting of a dozen crystals with an average RRR ⇠ 240 and
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Non Fermi liquids

Nakatsuji, Kondo, Shin groups

Strange behaviors : anomalous Hall, strange resistivity, etc…

Usually, the AHE arises in ferromagnets because the spontaneous
magnetization breaks the TRS macroscopically even in the absence of
applied magnetic field. The dominant part of the AHE in moderately
dirty ferromagnetic metals can be captured by the band-intrinsic mech-
anism4,16. The adiabatic motion of electrons under an electric field E
(ref. 17) acquires the Berry phase18 because of the relativistic spin-orbit
interaction and the net spin polarization. This phase acts as a mac-
roscopic fictitious magnetic field b that bends the orbital motion of
electrons like the Lorentz force does due to a real magnetic field B. Thus,
it causes the AHE characterized by a finite Hall conductivity sH at B 5 0.

In general, however, the source of the fictitious magnetic field b,
namely, the condition for observing the AHE at B 5 0, is not
restricted to the magnetization, but to the macroscopically broken
TRS19, which means that the time-reversal operation cannot be com-
pensated by any other symmetry operations of the crystal (Sup-
plementary Information). In particular, the scalar spin chirality in
non-coplanar ferromagnets or canonical spin glasses can also pro-
duce the fictitious field and thus the AHE4,5,12,13,20, as indeed has been
observed in Nd2Mo2O7 (ref. 5), AuMn (refs 6, 7), and MnSi (refs 9,
10). In these pioneering works, however, the spin chirality is not the
primary order parameter, but only accompanies a chiral spin texture
of a magnetic dipole LRO or is induced by the applied magnetic field.
Thus, it has remained an important open issue to find a possible
chiral spin-liquid phase3 by probing the macroscopically broken
TRS through the AHE at zero magnetic field.

Here, we report the discovery of a TRS-broken phase in the absence
of both magnetic dipole order and spin freezing in the thermodynamic
measurements, suggesting a chiral spin-liquid state. In particular, we
observed a spontaneous Hall effect in the absence of uniform mag-
netization within experimental accuracy in the metallic cooperative
paramagnet Pr2Ir2O7 above its spin freezing temperature, as indicated
by the bifurcation of the susceptibility. Both the experiment and the
theory suggest that a chiral spin-liquid phase is induced by melting of a
spin ice, because the quantum fluctuations of the Pr 4f magnetic
moments21 were stronger than in dipolar spin-ice systems14,15.

The pyrochlore iridate Pr2Ir2O7 has an antiferromagnetic Curie–
Weiss temperature HW < 220 K, mainly due to the correlations
among ,111 . 4f Ising magnetic moments of Pr31 ions, which point
either inwards to or outwards from the centre of the Pr tetrahedron
(Fig. 1b and c)22,23. Ir 5d conduction electrons are weakly correlated
and remain in a Pauli paramagnetic state22. They mediate the RKKY
interaction between Pr 4f moments via the Kondo coupling. The
absence of any sharp anomalies indicating conventional magnetic
LRO in the measurements of specific heat, magnetic susceptibility,
and muon spin relaxation (mSR)22,24 signals strong geometrical frus-
tration15. Only a spin freezing is observed in the magnetic suscepti-
bility below Tf < 0.3 K, which is two orders of magnitude lower than
jHWj< 20 K (ref. 22) (Fig. 2a). Therefore, below jHWj, the 4f
moments probably remain in a cooperative paramagnetic state down
to at least Tf < 0.3 K (refs 22, 24).

First, we show our main experimental evidence for the broken TRS
found in the states where neither magnetic dipole LRO nor spin freez-
ing is observed in thermodynamic measurements. Figure 2a presents
the temperature dependence of the Hall conductivity sH(T) (defined
in the figure caption) measured at a low field of 0.05 T applied along the
[111] direction. The zero-field-cooled and the field-cooled data of
sH(T) and thus the Hall resistivity rH(T) (Supplementary Fig. 1)
bifurcate at TH < 1.5 K, a temperature which is nearly an order of
magnitude higher than Tf < 0.3 K, although the longitudinal conduc-
tivity s(T) (Fig. 2b, inset) and resistivity r(T) (Supplementary Fig. 1)
does not exhibit any detectable bifurcation. The bifurcation in sH(T)
suggests the emergence of a spontaneous component. To avoid a
(partial) cancellation of sH due to a domain formation, we have per-
formed field sweep measurements up to 7 T at various temperatures.
Corresponding to the above bifurcation found in sH(T), the field
dependence of sH(B) for Bjj[111] at T , TH < 1.5 K shows a hysteresis
between field up and down sweeps, which is accompanied by a finite

remnant Hall conductivity at B 5 0 (Fig. 3a, inset). In sharp contrast,
the field dependence of the magnetization M(B) shows no hysteresis
within our experimental accuracy (,1023mB) at T , TH, and only a
small hysteresis at T , Tf (Fig. 3b, inset). Our observations on
sH(B 5 0, T) and M(B 5 0, T) at various temperatures are summarized
in Fig. 2b. This is evidence of a remarkable separation between the two
temperature scales TH and Tf. Upon cooling, the TRS is broken spon-
taneously and macroscopically at TH without any apparent LRO of
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Figure 2 | Temperature dependence of the magnetic and transport
properties of Pr2Ir2O2. a, Temperature dependence of the Hall conductivity
sH (left axis) and the direct-current susceptibility x 5 M/H (right axis)
under a magnetic field of B 5 0.05 T along the [111] direction. e.m.u.,
electromagnetic unit. Here, Hall conductivity is given by sH 5 2rH/
(rH

2 1 r2), where rH is the Hall resistivity and r is the longitudinal
resistivity. Both the zero-field-cooled (ZFC) and field-cooled (FC) results are
plotted. Vertical dashed lines denote TH < 1.5 K and Tf < 0.3 K, respectively.
b, Temperature dependence of the remnant Hall conductivity sH(B 5 0)
(left axis) and remnant magnetization M(B 5 0) (right axis) at zero field,
obtained after a field sweep down from 7 T in the hysteresis loop
measurements (Supplementary Information). The inset shows the
temperature dependence of the longitudinal conductivity s 5 1/r under
B 5 0.05 T along the [111] direction. No hysteresis is found between the
results obtained in the ZFC and FC sequences. c, Temperature dependence of
the nonlinear susceptibility x3 (Supplementary Information) (left axis), and
magnetic specific heat Cm (right axis) under zero field, adapted from ref. 22.
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Metallic Spin-Liquid Behavior of the Geometrically Frustrated Kondo Lattice Pr2Ir2O7
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Strongly frustrated magnetism of the metallic pyrochlore oxide Pr2Ir2O7 has been revealed by single
crystal study. While Pr 4f moments have an antiferromagnetic RKKY interaction energy scale of jT!j "
20 K mediated by Ir 5d-conduction electrons, no magnetic long-range order is found except for partial
spin freezing at 120 mK. Instead, the Kondo effect, including a lnT dependence in the resistivity, emerges
and leads to a partial screening of the moments below jT!j. Our results indicate that the underscreened
moments show spin-liquid behavior below a renormalized correlation scale of 1.7 K.

DOI: 10.1103/PhysRevLett.96.087204 PACS numbers: 75.20.Hr, 75.40.Cx, 75.50.Ee

Geometrically frustrated magnets have attracted great
interest because of the possible emergence of novel mag-
netic phases at low temperatures resulting from the sup-
pression of conventional order. Among them, the three-
dimensional pyrochlore lattice of corner sharing tetrahedra
has been studied extensively [1]. It is predicted theoreti-
cally that Heisenberg spins on a pyrochlore lattice with
nearest-neighbor antiferromagnetic (AF) coupling form a
spin-liquid state at T " 0 K [2]. However, only a few
compounds are believed to display a spin-liquid phase,
such as the insulator Tb2Ti2O7 [3].

In metallic systems, the frustration inherent to the pyro-
chlore lattice might also lead to new types of electronic
behavior. One remarkable possibility is the predominance
of the Kondo effect, and concomitant heavy-fermion be-
havior, in nearly localized d- and f-electron systems where
the Kondo temperature is generally too small to overcome
magnetic order without the frustration. Prominent ex-
amples are the heavy-fermion behavior in LiV2O4 and
Y#Sc$Mn2 with itinerant d-electron spins on a pyrochlore
lattice [4,5].

Connecting the two exotic states of frustrated magnets,
insulating spin-liquid and itinerant heavy fermions, there is
another exciting yet unprecedented possibility of metallic
spin liquid [6,7]. Ground states in f-electron based Kondo
lattices are generally classified into Fermi liquid and mag-
netic regimes as the result of the competition between the
Kondo effect and RKKY interactions. If the lattice has
geometrical frustration and the transition temperature is
depressed, the underscreened moments may stay disor-
dered even in the magnetic regime, and form a metallic
spin liquid on the geometrically frustrated Kondo lattice.
(See the inset of Fig. 1.)

There has been a number of reports on metallic systems
among the A2B2O7 pyrochlore oxides possessing localized
moments [1]. Yet, none is known to remain magnetically

disordered down to the lowest temperatures except for the
newly developed pyrochlore iridates [8]. In particular, the
AF correlated Pr 4f moments of Pr2Ir2O7 remain para-
magnetic down to at least 0.3 K in the metallic state due to
the Ir 5d-conduction bands [8]. This places Pr2Ir2O7 as a
candidate for a geometrically frustrated Kondo lattice.

Here we report on strongly frustrated magnetism in
single crystals of Pr2Ir2O7. We find that the h111i Ising-
like Pr3% moments have an AF RKKY interaction energy
scale jT!j " 20 K. However, the dc magnetization down to
70 mK does not exhibit any trace of long-range order
(LRO), except for an indication of partial freezing at
120 mK. Instead, the Kondo effect emerges below jT!j
and leads to a partial screening of the 4f moments, re-
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FIG. 1 (color online). Zero-field resistivity !#T$ (left axis), and
the inverse of susceptibility #"& "0$&1#T$ (right axis) measured
under a field of 100 mT along '100(, '110(, and '111(. The solid
line represents a fit to the Curie-Weiss law, while the broken line
indicates #"CEF & "vv$&1 based on the crystal electric field
analysis. Inset: the schematic phase diagram for geometrically
frustrated Kondo lattices.
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Perturbation breaks down : NFL? 
Kondo et. al. 2015



Fermi liquids VS non-Fermi liquids

Kinetic energy VS Coulomb energy

E
kin

� E
Coulomb

E
kin

⇠ E
Coulomb

Good metal : Fermi-liquid (perturbation works)

Something new happens!

Kondo et. al. 2015

Exotic quantum critical phase!

Physical quantities show exotic critical behaviors



Scaling analysis

§ RG setup

Scaling analysis in the spatial d dimension (z=2) :

The electric charge is relevant below four spatial 
dimensions.  

Two methods : 
ε(=4-d) expansion, Large Nf expansion (d=3)

(No Fermi surface : Wilsonian scaling is well-defined.)



Renormalization group : ε expansion

§ RG setup

Quantum correction (ε expansion ): 



Renormalization group : ε expansion

§ RG setup

Quantum correction (ε expansion ): 
For general dimension (d) and fermion flavor number (Nf), 
The RG equation is  



Renormalization group : ε expansion

§ RG setup

Quantum correction (ε expansion ): 
For general dimension (d) and fermion flavor number (Nf), 
The RG equation is  

Quantum correction : 
Screening effect from virtual particle-hole excitation



Renormalization group : ε expansion

§ RG setup

Quantum correction (ε expansion ): 
For general dimension (d) and fermion flavor number (Nf), 
The RG equation is  

New stable fixed point :
LAB (Luttinger-Abrikosov-Beneslaevski)

Anomalous dimension in all physical 
quantities



Fermi liquids VS non-Fermi liquids

Kinetic energy VS Coulomb energy

E
kin

� E
Coulomb

E
kin

⇠ E
Coulomb

Good metal : Fermi-liquid (perturbation works)

Something new happens!

Some Lessons : 

Smaller Fermi volumes are useful (ex: semi-metal).

Symmetry protection (ex : cubic & TRS) is useful

Questions :

Thermal properties??



Take-home Message I

Non-Fermi liquids are interesting.

Strong interaction / correlation are necessary!



Topological Phases

Beyond symmetry!  

From google images with the key words “Topological matters”



Topology

Two objects are topologically different.

: Continuous deformation cannot transform one to the other.

: Something happens between topologically different states.



Topology in condensed matter

Topological nature in insulators and gapped SC
: Well-understood!



Topology in condensed matter

Topological nature in semi-metals and gapless SC

Spatial dimension : d=2              

- point, line

Spatial dimension : d=3

- point, line, surface



Topology in condensed matter

Topological nature in semi-metals and gapless SC

Spatial dimension : d=2              

- point, line

Spatial dimension : d=3

- point, line, surface

Topological invariants (ex : Chern number)



Topology in condensed matter

Topological nature in semi-metals and gapless SC

Spatial dimension : d=2              

- point, line

Spatial dimension : d=3

- point, line, surface

Most topological materials : weakly interacting (s and p orbitals)

How to observe strong correlation effects in topological matter? 



Topology in condensed matter

Conventional phases : symmetry!

Topological phases : topology
(mostly, s and p orbitals)

Next step : interplay between symmetry and topology
(d and f orbitals)   

(see Pesin and Balents 2009)



Topological Phase Transitions

g
Non-topological phaseTopological phase

Beyond LGW criticalities 

Physical quantities show exotic behaviors!
(ex: density fluctuations are highly anisotropic)

Strong correlation driven topological phase transitions

interplay between symmetry and topology
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Strong correlation driven topological phase transitions



Beyond LGW criticalities 

Topological Phase Transitions
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nodal points (Weyl semi-metals) insulators

Weakly interacting topological phase transitions



Beyond LGW criticalities 

Topological Phase Transitions
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nodal points (Weyl semi-metals) insulators

Strong correlation driven topological phase transitions

Chiral Symmetry Breaking with Long-range Coulomb Interaction

in Topological Semi-metals

SangEun Han and Eun-Gook Moon
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea

(Dated: May 15, 2017)

Scrutinizing the Coulomb interaction and its consequences is one of the main issues in modern
condensed matter. Recent discoveries of topological states such as topological insulators and Weyl /
Dirac semi-metals opens up new regimes to observe intriguing phenomena driven by the Coulomb in-
teraction. Here, we uncover novel interplay physics between a chiral symmetry order parameter and
the instantaneous long range Coulomb interaction in topological semi-metals. The chiral symmetry
refers to a symmetry which protects gapless-ness of energy spectrums in a given topological semi-
metal; for example, a mirror symmetry in Dirac semi-metals of a distorted spinel, BiZnSiO4. We
find that the chiral symmetry breaking transition is stable under the presence of the instantaneous
Coulomb interaction. The long range interaction, however, induces novel quantum critical natures.
Asymptotically exact universal ratios of physical quantities are obtained. Furthermore, our calcula-
tion indicates the presence of the long range Coulomb interaction forbids emergence of symmetries,
for example, the Lorentz symmetry. We explicitly show that velocity of electrons becomes always
faster than one of the chiral order parameter, which implies a supersymmetry is forbidden by the
long range Coulomb interaction. Further implications of our analysis and experimental consequences
are also discussed.

The discovery of topological insulators and Weyl /
Dirac semi-metals shed new lights in our understanding
in condensed matter. Topology enforces characteristic
natures of electron wave-functions, so non-trivial states
such as gapless states appear in either boundary or bulk
[1–4]. Symmetry enrichment in topological states open
up a variety of new classification schemes as in symmetry-
protected topological phases [5]. Remarkable interplay
between topology and symmetry has been understood in
non-interacting systems which enables to classify topo-
logical natures of non-interacting many body states [6–
8].

Coulomb interaction e↵ect is one of the next signif-
icant problems. Intrinsic complexity of the quantum
many body e↵ects, however, makes the problem with
the Coulomb interaction formidable even though some
remarkable advances in our understanding have been
achieved recently (ashvin, senthil, xiaogang,...). Thus,
it is much desired to have concrete examples whose ex-
act analysis is available and reveals striking Coulomb in-
teraction e↵ects. We provide one such example relying
on a topological phase transition associated with a chiral
symmetry breaking below.

The chiral symmetry is a symmetry which protects
gapless-ness of energy spectrums in a given topological
semi-metal. Namely, breaking of the chiral symmetry
generates a “mass” of Dirac fermions. In condensed mat-
ter, it is realized by a discrete symmetry of a lattice in
sharp contrast to a continuous symmetry between left
and right handed fermions in high energy physics. For
example, a mirror symmetry plays a role as the chiral
symmetry in Dirac semi-metals of distorted spinels such
as BiZnSiO

4

[9], and a translation symmetry does it in
generic Weyl semi-metals [10, 11]. In Table I, we sum-
marize several topological materials and lattice symme-
tries. The chirality is intrinsically tied to a topological

Phase Material Chiral Sym. N
f

DSM BiZnSiO
4

[9] Mirror 1
DSM Cd

3

As
2

[12], Na
3

Bi [13] C
4

, C
3

2
DSM SrPd

3

O
4

[14] C̃
4

6
WSM R

2

Ir
2

O
7

[10, 11] Tran. 4, 12

TABLE I. Chiral symmetries and Dirac fermion numbers in
materials of topological semi-metals. DSM (WSM) is for
Dirac (Weyl) semi-metal. For WSM, we consider a generic
case where Weyl points do not touch a Brillouin zone bound-
ary. There, a translation symmetry (Tran.) plays a role as a
chiral symmetry.

number in terms of Berry flux (or phase) around gapless
excitations, and thus chiral symmetry breaking can be
naturally understood as a topological phase transition.

In this paper, we uncover novel interplay phenomena
between a chiral symmetry order parameter, the instan-
taneous long range Coulomb interaction, and topological
semi-metals. We consider a system near a chiral symme-
try breaking transition under the long range Coulomb in-
teraction and adopt the powerful renormalization group
(RG) method. In three spatial dimensions, we obtain
asymptotically exact results because the phase transi-
tion is at the upper critical dimension. Remarkably, the
chiral symmetry transition is stable under the Coulomb
interaction and novel universal ratios which characterize
the transition are obtained. We emphasize di↵erences
between our universal ratios and previous ones without
the Coulomb interaction. For example, the velocity ratio
between the order parameter and electrons is not a unity.

To illustrate our results, we begin with a kinetic Hamil-
tonian for topological semi-metals in three spatial dimen-

In preparation
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Topological phase transitions in line-nodal superconductors
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Fathoming interplay between symmetry and topology of many-electron wave functions has deepened our
understanding of quantum many-body systems, particularly after the discovery of topological insulators. Topology
of electron wave functions often enforces and protects emergent gapless excitation, and symmetry is intrinsically
tied to the topological protection of the excitations. Namely, unless the symmetry is broken, the topological
nature of the excitations is intact. We show intriguing phenomena of interplay between symmetry and topology
in three-dimensional topological phase transitions associated with line-nodal superconductors. More specifically,
we discover an exotic universality class out of topological line-nodal superconductors. The order parameter
of broken symmetries is strongly correlated with underlying line-nodal fermions, and this gives rise to a large
anomalous dimension in sharp contrast to that of the Landau-Ginzburg theory. Remarkably, hyperscaling violation
and emergent relativistic scaling appear in spite of the presence of nonrelativistic fermionic excitation. We also
propose characteristic experimental signatures around the phase transitions, for example, a linear phase boundary
in a temperature-tuning parameter phase diagram, and discuss the implication of recent experiments in pnictides
and heavy-fermion systems.

DOI: 10.1103/PhysRevB.95.094502

I. INTRODUCTION

Superconductivity is one of the most intriguing quantum
many-body effects in condensed-matter systems: Electrons
form Cooper pairs whose Bose-Einstein condensation be-
comes an impetus of the striking characteristics of super-
conductors (SCs), for example, the Meissner effect and zero
resistivity [1]. The pair formation suppresses gapless fermionic
excitation, and only the superconducting order parameter be-
comes important in conventional SCs. However, in unconven-
tional SCs, fermionic excitation is not fully suppressed generi-
cally and remains gapless, so the order parameter and fermions
coexist and reveal an intriguing unconventional nature [2–4].

The fermionic excitation in unconventional SCs is often
protected and classified by its topological nature. One conve-
nient way to characterize topological nature is the Berry phase
(or flux) of the Bogoliubov–de Gennes (BdG) Hamiltonian. In
the literature [5–7], the structure of the BdG Hamiltonian has
been extensively studied and is applied to weakly correlated
systems. Proximity effects between topologically different
phases (or defects in momentum space) have been investigated
and experimentally tested, focusing on a search for novel
excitation such as Majorana modes [8,9].

Here, we focus on a class of unconventional SCs whose
topological nature is protected by a symmetry. Namely, unless
the symmetry is broken, the topologically protected nodal
structure is intact. In this class, change of the topology and
spontaneous breaking of the symmetry appear concomitantly
at quantum-critical points, and thus an intriguing interplay
between symmetry and topology is expected. Therefore, topo-
logical phase transitions around the class of unconventional
SCs become a perfect venue to investigate the interplay
between topology and symmetry. In two dimensions (2D),
Sachdev and co-workers have investigated a similar class of the
transition in the context of d-wave SCs [10–12]. They found
the universality class of the phase transitions at which the point
nodes of d-wave SCs disappear is that of the Higgs-Yukawa
theory, i.e., the theory with relativistic fermions and bosons
in 2D.

A richer structure exists in three spatial dimensions (3D).
Line nodes are available in 3D in addition to point nodes. Point
and line nodes are obviously not homeomorphic and thus are
topologically different. The effective phase space of line-nodal
excitation is qualitatively distinct from that of order-parameter
fluctuation, as shown by codimension analysis in literature
[5–7]. Thus, concomitant appearance of symmetry breaking
and change of topology in line-nodal SCs has us expect an
exotic universality class of the topological transitions.

Abundant experiments in phase transitions inside super-
conducting domes with line-nodal excitation is another moti-
vation for the current work. Inside superconducting domes,
tuning parameters such as pressure, impurity, and doping
often invoke phase transitions, inducing so-called coexistence
regions [13–16]. Interestingly, many of these systems, in
particular, pnictides and heavy-fermion systems, are suggested
to have line-nodal excitations [16–27]. For example, the
recent experiment in Ba0.65Rb0.35Fe2As2 shows transitions
from nodeless SCs to line-nodal SCs by tuning pressure, and
various intriguing characters are reported, such as insensitivity
of superconducting temperature to pressure in spite of clear
transition in the SC gap structure [28–30]. Thus, it is imperative
to deepen our understanding in quantum phase transitions
inside superconducting domes with line nodes.

We investigate topological phase transitions with a con-
comitant appearance of symmetry breaking and change of
topology in line-nodal SCs, which often appear in side
superconducting domes. We discover an exotic universality
class out of the interplay between symmetry and topology.
Furthermore, we apply our theoretical results to experiments
and discuss direct relation with recent experiments in pnictides
and heavy-fermion systems.

II. MODEL AND ANALYSIS

A. Symmetry and phases

Topological line-nodal SCs protected by a symmetry
maintain their nodal structure unless the protecting symmetry

2469-9950/2017/95(9)/094502(6) 094502-1 ©2017 American Physical Society
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Matsuda et. al., 2006
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Topological phase transition

Nodal line SC Nodal point SC

Topological 
QPT

We focus on a special class
: symmetry protected topological line node.

If protecting symmetry is broken, line nodal structure is modified.  

Symmetry breaking and topological change are concomitant! 



Line-nodal Superconductors

Toy model : p-wave pairing gap

One line node exists in kz=0 plane. 
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Symmetry breaking
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Symmetry breaking and topological change are intrinsically tied.
(ex : time reversal symmetry(TRS)) 

An order parameter exists. 

Symmetric phase : line-node 
Symmetry-broken phase : no line-node 

(either point-node or fully gapped) 

Symmetry breaking
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Topological phase transition

Nodal line SC Nodal point SC

Topological 
QPT

NO! (no information about topological nature in the L-G theory)

Symmetry breaking

Symmetry breaking and topological change are intrinsically tied.
(ex : time reversal symmetry(TRS)) 

Can the Landau-Ginzburg theory describe the transition? 



Topological phase transition

Nodal line SC Nodal point SC

Topological 
QPT

Symmetry breaking and topological change are intrinsically tied.
(ex : time reversal symmetry(TRS)) 

Symmetry breaking

How to incorporate the topological nature? 



Topological phase transition

Nodal line SC Nodal point SC

Topological 
QPT

Symmetry breaking and topological change are intrinsically tied.
(ex : time reversal symmetry(TRS)) 

Fermions! 
(Berry phase or curvature)

Symmetry breaking

How to incorporate the topological nature? 



Topological phase transition

Nodal line SC Nodal point SC

Topological 
QPT

Symmetry breaking and topological change are intrinsically tied.
(ex : time reversal symmetry(TRS)) 

Symmetry breaking

Nodal line Hamiltonian



Example :

One line node exists in the symmetric phase.

No line node exists in the symmetry-broken phase.  

Topological phase transition



Topological phase transition

Nodal line SC Nodal point SC

Topological 
QPT

Can be generalized to general symmetry groups.

Symmetry breaking



Topological phase transition

Nodal line SC Nodal point SC

Topological 
QPT

Symmetry breaking

Mean field theory with



Topological phase transition

Nodal line SC Nodal point SC

Topological 
QPT

Symmetry breaking

Mean field Free energy

The cubic term appears due to nodal line fermion excitation. 

The MFT already shows the universality class is special!  



Critical theory 

Quantum corrections



Conventional Phase Transitions

g

SLGW =

Z

⌦,q
(⌦2 + q2 + r)|�(q,⌦)|2 + · · ·



Topological Phase Transitions
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=
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Topological Phase Transitions

g

S
exotic

=

Z

⌦,q

(
p

⌦2 + q2 + r)|�(q,⌦)|2 + · · ·



Critical theory 

1. Large anomalous dimension. 
2. Emergent Lorentz inv. 
3. Hyper-scaling violation.

Topological 
QPT



Comparison

In 3d,    
1.    theory and Higgs-Yukawa theory  (upper-critical dimension)  

2. Hertz-Millis Theory

3.  Line-nodal critical theory  

Mean-field + logarithmic correction

z=2,3  + hyperscaling violation

z=1  + hyperscaling violation



Phase diagram

S. Sachdev, Quantum Phase Transitions

Usual phase diagrams 

Basically, T2 ~ |g-gc|



Phase diagram

Significantly larger quantum critical region due to fermion excitation

The linear temperature phase boundary! 



Take-home Message II

Topological phase transitions are interesting.

Interplay between symmetry and topology!



Phases with Quantum Anomalies

Continuous Symmetry   →   Conservation law  (Noether’s thm)

Anomalous Symmetry   →   Conservation law is “spoiled”

Ex)



Phases with Quantum Anomalies

Example :  Weyl / Dirac semi-metal

WSM / DSM : 
almost non-interacting, very stable!
Yet, non-local transport!



Phases with Quantum Anomalies

Example :  Weyl / Dirac semi-metal

WSM / DSM : 
almost non-interacting, very stable!
Yet, non-local transport!

More interests in anomalies! 
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The “parity” anomaly on an unorientable manifold
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The “parity” anomaly—more accurately described as an anomaly in time-reversal or reflection symmetry—
arises in certain theories of fermions coupled to gauge fields and/or gravity in a spacetime of odd dimension.
This anomaly has traditionally been studied on orientable manifolds only, but recent developments involving
topological superconductors have made it clear that one can get more information by asking what happens on an
unorientable manifold. In this paper, we give a full description of the “parity” anomaly for fermions coupled to
gauge fields and gravity in 2 + 1 dimensions on a possibly unorientable spacetime. We consider an application to
topological superconductors and another application to M theory. The application to topological superconductors
involves using knowledge of the “parity” anomaly as an ingredient in constructing gapped boundary states of
these systems and in particular in gapping the boundary of a ν = 16 system in a topologically trivial fashion.
The application to M theory involves showing the consistency of the path integral of an M theory membrane on
a possibly unorientable worldvolume. In the past, this has been done only in the orientable case.

DOI: 10.1103/PhysRevB.94.195150

I. INTRODUCTION

A U(1) gauge theory in three spacetime dimensions,
coupled to a single massless Dirac fermion χ of charge
1, is invariant at the classical level under time-reversal and
reflection symmetry, which we will call T and R. However,
quantum mechanically there is an anomaly: To quantize this
theory in a gauge-invariant fashion, one must give up T
and R symmetry [1–3]. This anomaly is commonly called a
“parity” anomaly, but this terminology is somewhat misleading
as parity (a spatial inversion, acting as −1 on all spatial
coordinates) is in the connected component of the rotation
group in 2 + 1 dimensions. The anomaly is better understood
as an anomaly in T and R.

In this paper, we consider a refinement of the usual “parity”
anomaly. We will make this analysis for arbitrary gauge
groups, but for gauge group U(1), what we will learn can
be stated as follows. The usual statement of the anomaly is
that a U(1) gauge theory in 2 + 1 dimensions coupled to a
single Dirac fermion χ of charge 1 cannot be quantized in a
gauge-invariant way, consistent with R and T symmetry. If one
has two such Dirac fermions, both of charge 1, then the usual
“parity” anomaly is absent and, on an orientable manifold,
the theory can be quantized in a way that preserves U(1)
gauge-invariance as well as R and T. If R and T were ordinary
global symmetries (not acting on spacetime), one would now
ask: Can these symmetries be gauged? In general, for ordinary
global symmetries, the answer to such a question can be “No”:
Even if the symmetries are valid as global symmetries, there
may be an anomaly (sometimes called an ’t Hooft anomaly)
that would obstruct gauging them. For R and T, the closest
analog of gauging the symmetry is to use these symmetries to
formulate a theory on an unorientable manifold.1 Therefore,
to get a refined version of the usual “parity” anomaly, we
can consider a U(1) gauge theory with a general number y

1If a theory with R or T symmetry can be formulated on an
unorientable manifold, we say that R or T is gaugeable, while actually
gauging the symmetry in the context of quantum gravity would mean
summing over unorientable manifolds.

of Dirac fermions of charge 1 and ask for what values of y
can this theory be placed on an unorientable manifold without
violating gauge invariance. We shall answer this question and
find that y must be a multiple of 4. Thus, while the usual
“parity” anomaly is a mod 2 effect, its refinement in which
one “gauges” R and T symmetry is really a mod 4 effect.

The existence of this refinement should not come as
a surprise, since the purely gravitational analog is already
known.2 Consider a theory of ν Majorana fermions coupled
to gravity only. As long as one is on an orientable manifold,
the fermion path integral of this system is real in Euclidean
signature (because the Dirac operator is Hermitian). One
should worry about a possible problem in defining the sign
of the fermion path integral. However, as long as ν is even—to
ensure that the path integral is positive—the theory of ν
Majorana fermions is completely well defined and R and
T invariant on an orientable manifold.3 Can the R and T
symmetries be gauged, or, more precisely, is the theory well
defined when formulated on an unorientable manifold? The
answer to this question is that when the theory of ν Majorana
fermions is formulated on an unorientable manifold, one runs

2Also, it is already known from another point of view (see Sec. III C
of [4] and Appendix C of [5]) that a purely 2 + 1-dimensional
T-invariant U(1) gauge theory with 4n + 2 Dirac fermions of charge
1 is anomalous from the standpoint of condensed-matter physics.
The basic monopole operator of this theory, defined by a monopole
singularity of charge 1, is a bosonic operator that transforms under
T as a Kramers doublet. This is not possible in a purely 2 + 1-
dimensional system that is built microscopically from electrons and
nuclei. We discuss this issue in Sec. III B 2.

3In this introduction, we take all ν fermions ψ1, . . . ,ψν to transform
in the same way under T or R. Specifically, we define T by
Tψi(t,x⃗) = γ0ψi(−t,x⃗), i = 1, . . . ,ν, where here γµ, µ = 0, . . . ,2
are the Dirac γ matrices, and similarly for R. A fermion transforming
with the opposite sign—as Tψ(t,x⃗) = −γ0ψ(−t,x⃗)—would make a
contribution to the anomaly with the opposite sign. In general, ν

should be defined as the number of fermions that transform with a
+ sign minus the number that transform with a − sign. For more on
this, see [7], as well as Sec. II below.

2469-9950/2016/94(19)/195150(28) 195150-1 ©2016 American Physical Society



‘t Hooft anomaly matching

Non-perturbative nature : tool for strong coupling physics.  

Implication of continuous symmetry anomaly 
- Existence of the massless degrees of freedom  (Coleman and Grossman 1982)

‘t Hooft anomaly matching
- Anomalies at UV fixed point and IR fixed point should be matched. 
- Local deformation of theories do not change anomaly. (topological)

Roughly speaking, anomaly is conserved.

62 D. Mandrus, et. al., Continuous metal-insulator transition in the pyrochlore Cd2Os2O7, Phys.

Rev. B 63, 195104 (2001)

63 H. Sagayama, Determination of long-range all-in-all-out ordering of Ir4+ moments in a py-

rochlore iridate Eu2Ir2O7 by resonant x-ray di↵raction, Phys. Rev. B 87, 100403 (2013).

Appendix A: Massless excitation with anomalies

It is well understood that massless excitation is guaranteed by continuous symmetry

anomalies.47–49 The presence of continuous group’s anomalies enforces singularities of ana-

lytical structures of currents correlation functions. To be self-contained, we introduce the

proof with slight modification following the notation in Coleman and Grossman.49

In 4D, the anomalous Ward identity is in three currents correlation function,
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All non-abelian Lie algebra indices are absorbed into the anomaly coe�cient A.

The correlation function is symmetric under simlutaneous permutations of (q1, q2, q3)

and (µ, ⌫,�). Now let us investigate analytic structure of the correlation function. Due to

permutation and covariance, the structure must be in the form
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We omit possible tensors which cannot contribute to the anomalies. Note that the momen-

tums are o↵-shell, so one can access all available regions and we focus on the region

q21 = q22 = q23 = �Q2.
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‘t Hooft anomaly matching

Non-perturbative nature : tool for strong coupling physics.  

Implication of continuous symmetry anomaly 
- Existence of the massless degrees of freedom  (Coleman and Grossman 1982)

‘t Hooft anomaly matching
- Anomalies at UV fixed point and IR fixed point should be matched. 
- Local deformation of theories do not change anomaly. (topological)

Roughly speaking, anomaly is conserved.

1. Take a system with DSM 
2. Introduce strong correlation

3. Phase diagrams??



Phases with Quantum Anomalies

Conventional LGW paradigm (without anomaly), 

Broken sym. Sym.

Gapped spectrum

Exotic criticality (with anomaly)

Broken sym. Sym.

Gapless excitation

Broken sym. Sym.



Phases with Quantum Anomalies

Ex) 1d spin-chain

Hasting-Oshikawa-Lieb-Schultz-Mattias theorem

Spin ½ systems with a translation symmetry : always gapless!
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The spin system is described by 

O(4) non-linear sigma model with Wess-Zumino-Witten model



Phases with Quantum Anomalies
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Competing order physics between Neel and valence-bond-solid

Ex) 1d spin-chain



Phases with Quantum Anomalies
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The gapless excitation is protected by quantum anomalies!
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Ex) 1d spin-chain

3d spin systems can have similar quantum anomalies!



Phases with Quantum Anomalies

S =

Z
d

2
x
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The gapless excitation is protected by quantum anomalies!

~� = (n
x

, n
y

, n
z

,�
V BS

)

Competing order physics between Neel and valence-bond-solid

Ex) 1d spin-chain

Future Questions : 
1) 3d version of HOLSM? 
2) Relation with quantum spin liquids?
3) Experimental signals? 
4) …

3d spin systems can have similar quantum anomalies!



Take-home Message III

Quantum anomalies are interesting.

Gapless excitations are guaranteed!



Recipe???

1. Strong correlation physics (ex: d & f orbitals)

2. Tune parameters around QPT (pressure, doping,…)

3. Measure / calculate physical quantities (resistivity, susceptibility,…)

4. Find unusual behaviors (ex: NFL, top, anomaly)



Summary

Exotic quantum criticalities signal novel physics.

Non trivial symmetric ground states may realize exotic 
quantum criticalities. 

Non-Fermi liquids, topological phases, and quantum 
anomalies are specific examples. 

Collaboration between theory and experiment is necessary!



Thank you for your attention! 
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The correlation function contracted with q3� gives

q�3�µ⌫�

(q1, q2, q3) = �F (Q2)Q2✏
µ⌫↵�

q↵1 q
�

2 . (A2)

Then, the anomaly equation (A.1) gives

F (Q2) = � A
Q2

.

The pole structure at zero mass nicely show the presence of massless excitation (also see48

for dispersion analysis). The singularity even further enforces that UV and IR information

needs to be matched.

In the paper by Coleman and Grossman, they add more conditions such as non-

singularties from vertex corrections, and they conclude the helicity of massless degrees of

freedom is ±1
2 , which indicates the symmetric phase is massless fermions as in our minimal

model. The authors argue that the assumptions are not that strong, so it would be very

interesting the conditions are proved / disproved in future research.

The above discussion only relies on the anomaly properties and nothing more, thus it is

applied to everywhere in phase diagrams. But, it is only applied to anomalies of continuous

symmetries since the current conservation plays a crucial role. For the discrete gauge group,

which is especially important in SPT physics, the presence of anomalies does not guarantee

massless excitation.8–11

We note that in 2D, the minimal symmetry for spin 1/2 chains to be massless is SU(2)⇥Z2

corresponding SU(2)⇥Z2
16 which is smaller than SO(4) ⇠ SU(2)⇥SU(2), and it is manifest

some subgroups of the continuous group is enough on lattice systems, and it would be

interesting to find criteria to determine the subgroups in higher dimensions.

Appendix B: N
c

= 2 QCD theory

In QCD, confinement issue is subtle and it is known that chiral femrions with non-abelian

gauge fields are confined in the infra-red limit. To connect the QCD theory to our minimal

model, one needs to control one parameter to access both the chiral symmetry broken phase

and the symmetric phase. One way to do this is to tune gluon-quarks interaction strength

by adding a color doublet, flavor singlet scalar (Higgs) field �. In one limit, � is massive
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