Tidal Dissipation in Binaries

From Merging White Dwarfs to Exoplanetary Systems

Dong Lai Cornell University

May 18, 2014, Tsinghua University

Tidal Dissipation in Binaries

- I. Merging White Dwarf Binaries
- II. Kepler Heartbeat Stars (KOI-54)
- **III. Exoplanetary Systems**
 - (a) Hot Jupiters
 - (b) Host Stars

Equilibrium Tide

Equilibrium Tide

Equilibrium Tide

Problems:

- -- Parameterized theory
- -- The physics of tidal dissipation is more complex: **Excitation/damping of internal waves/modes (Dynamical Tides)**
- -- For some applications, the parameterization is misleading

Compact White Dwarf Binaries (mins - hour)

- -- Dominant sources of gravitational waves (10⁻⁴-0.1 Hz) Space interferometer (eLISA-NGO??)
- -- Lead to various outcomes:

R CrB stars, AM CVn binaries, transients If total mass ~ $1.4M_{sun}$: AIC => NS or SN Ia

Dynamical Tides in Compact WD Binaries

with Jim Fuller (Ph.D. 2013 → Caltech)

Issues:

- -- Spin-orbit synchronization?
- -- Tidal dissipation and heating?
- -- Effect on orbital decay rate? (e.g. eLISA-NGO)

White Dwarf Propagation Diagram

"Continuous" Excitation of Gravity Waves

Waves are excited in the interior/envelope, propagate outwards and dissipate near surface

"Continuous" Excitation of Gravity Waves

Waves are excited in the interior/envelope, propagate outwards and dissipate near surface

"Heartbeat Stars"

Tidally Excited Oscillations in Eccentric Binaries

KOI-54a,b Binary

Welsh et al 2012

A-type stars: 2.32, 2.38 M_{sun} P=42 days, e=0.834, face-on (5.5 deg) --> At periastron: $a_p = 6.5R$, $f_p = 20f_{orb}$

BJD-2455000

Tidally Forced Oscillations: Flux Variations

Most of the observed flux variations are explained by m=0 modes (more visible for near face-on orientation)

Variations at 90,91 harmonics require very close resonances $(N\Omega = \omega_{\alpha})$

Non-Linear Mode Coupling

- 9 oscillations detected at non-integer multiples of orbital frequencies
- Could be produced by nonlinear coupling to daughter modes

$$\omega_p = \omega_{d1} + \omega_{d2}$$

• In KOI-54,

$$rac{\omega_2}{\Omega}=91.00$$
 $rac{\omega_5}{\Omega}=22.42$ $rac{\omega_6}{\Omega}=68.58$

 Other non-integer modes likely due to nonlinear coupling in which one of the daughter modes is invisible

Recent work: O'Leary & Burkart 2013

amplitude	f/f_{orbit}
(μmag)	2,20,000
907.7	90.00
291.1	90.00
229.4	44.00
91.2	44.00
02.9	40.00
82.9	22.42
49.3	68.58
30.2	72.00
17.3	63.07
15.9	57.58
14.6	28.00
13.6	53.00
13.4	46.99
12.5	39.00
11.6	59.99
11.5	37.00
11.4	71.00
11.1	25.85
9.8	75.99
9.3	35.84
9.1	27.00
8.4	42.99
8.3	45.01
8.1	63.09
6.9	35.99
6.8	60.42
6.4	52.00
6.3	42.13
5.9	33.00
5.8	29.00
5.7	48.00

Tides in Exoplanetary Systems

S*-L_p misalignment in Exoplanetary Systems → The Importance of few-body interactions

"High-Eccentricty Migration"

- -- Planet forms at a few AUs
- -- Interaction with another body pumps it into high-e/inclined orbit
- -- Tidal dissipation on planet circularizes the orbit
- -- "Chaos" in spin evolution ! (Storch, Anderson & DL 2014)

High-e Migration requires tidal dissipation in giant planets

Tidal Q of Solar System Planets

Measured/constrained by orbital evolution of their satellites (Goldreich & Soter 1966, Peale ...)

Jupiter:

$$6 imes 10^4 \lesssim Q \lesssim 2 imes 10^6$$

 $Q \simeq 4 imes 10^4$ (Lainey et al. 2009) $P_{
m tide} = 6.5~{
m hr}$

Saturn:

$$2 imes 10^4 \lesssim Q \lesssim 10^5$$
 $Q = (1-2) imes 10^3$ (Lainey et al. 2012) $P_{
m tide} \simeq 5.8-7.8\,{
m hrs}$

Theory of Tidal Q of Giant Planets

- Viscous (turbulent) dissipation of equilibrium tide in convective envelope → Q>10¹³ (Goldreich & Nicholson'77)
- Gravity waves in outer radiative layer → Q>10¹⁰
 (Lubow et al. 1997)

-- Inertial waves

(Ogilvie & Lin 2004,07; Ogilvie 2009,13; Goodman & Lackner 2009)

Inertial Waves in Rotating Fluid

Dispersion relation (in rotating frame)

 $\omega = \pm 2 \, \mathbf{\Omega}_s \cdot \hat{\mathbf{k}}$

Can be excited if tidal forcing frequency satisfies

$$|\omega| < 2\Omega_s$$

Ogilvie & Lin 2004

Tidal Dissipation in High-e Migration: Phenomenological Approach

Using measured Q for Jupiter (6.5 hr), extrapolate to high-e (~5 days) using weak friction theory: (many papers...)

$$\delta \sim \omega_{
m tide} \Delta t_{
m lag} \sim 1/Q$$
 with $\Delta t_{
m lag} = {
m const}$

→ Hot Jupiters need to be >10 times more dissipative than our Jupiter (e.g., Socrates et al 2013)

Tidal Dissipation in Solid Core of Giant Planets

with Natalia Storch

Rocky/icy core: highly uncertain ... Can be important if $R_{core} \gtrsim 0.1 R_p$

Fun Facts about rocks for non-geophysicists:

-- Rock is more dissipative than fluid: stress → thermally activated creep/diffusion

-- Rock is both viscous fluid and elastic solid

Tidal response of Jupiter with visco-elastic core

Storch & DL 2013

Orbital decay/circularization of proto hot Jupiters

(visco-elastic core vs weak friction)

Storch & DL 2013

Tidal heating of rocky core

Hot Jupiter Radius Inflation

Leconte et al. 2010

Tidal Dissipation in Planet Host Stars:

Misalignment Damping and Survival of Hot Jupiters

Correlation: Misalignment -- Stellar Temperature/Mass

Winn et al. 2010; Schlaufman 2010

Winn et al.2010

Correlation: Misalignment -- Stellar Temperature/Mass

Albrecht, Winn, et al 2012

Correlation: Misalignment -- Stellar Age

Triaud 2011

Fig. 2. Secure, absolute values of β against stellar age (in Gyr), for stars with $M_{\star} \geq 1.2 M_{\odot}$. Size of the symbols scales with planet mass. In blue squares, stars with $M_{\star} \geq 1.3 M_{\odot}$; in red diamonds $1.3 > M_{\star} \geq 1.2 M_{\odot}$. Horizontal dotted line show where aligned systems are. Vertical dotted line shows the age at which where misaligned planets start to disappear.

Reasonable Hypothesis:

Many hot Jupiters are formed in misaligned orbits Tidal damping of misalignment (especially for cooler stars) Problem with Equilibrium Tide (with the parameterization...)

$$t_{\rm decay} \simeq 1.3 \left(\frac{Q'_{\star}}{10^7}\right) \left(\frac{M_{\star}}{10^3 M_p}\right) \left(\frac{P_{\rm orb}}{1\,{\rm d}}\right)^{13/3} {\rm Gyr}$$

$$\frac{t_{\rm align}}{t_{\rm decay}} \simeq \frac{2S_{\star}}{L} \simeq 2 \, \left(\frac{M_{\star}}{10^3 M_p}\right) \left(\frac{10\,{\rm d}}{P_s}\right) \left(\frac{1\,{\rm d}}{P_{\rm orb}}\right)^{1/3}$$

Possible Solution (?): DL 2012 (But see Rogers & Lin 2013) **Different Tidal Q's for Orbital Decay and Alignment ?**

Tidal Forcing Frequency=?

For aligned system

$$\omega = 2(\Omega_{
m orb} - \Omega_s)$$

For misaligned system

$$\omega = m' \Omega_{
m orb} - m \Omega_{m s} \qquad m,m'=0,\pm 1,\pm 2$$

7 physically distinct components

==> Effective tidal evolution equations with 7 different Q's

Inertial Waves in Rotating Fluid

Dispersion relation (in rotating frame)

$$\omega = \pm 2 \, \mathbf{\Omega}_s \cdot \hat{\mathbf{k}}$$

Can only be excited if tidal forcing frequency satisfies

$$|\omega| < 2\Omega_s$$

Stellar Tides in Hot Jupiter Systems

For aligned system:

 $\omega = 2(\Omega_{
m orb} - \Omega_s) \gg \Omega_s$

==> Cannot excite inertial waves

For misaligned system:

 $\omega = m' \Omega_{
m orb} - m \Omega_s$

The m'=0, m=1 component has $\omega = -\Omega_s$

This component leads to alignment, but not orbital decay

Summary: Tides in Hot Jupiter Systems

Tidal dissipation in giant planets:

- -- Required for high-e migration
- -- Inertial wave excitation?
- -- Dissipation in solid core?

Tidal dissipation in host stars:

- -- Spin-orbit misalignment may be damped faster than orbital decay
- -- Different Q's for different processes (equilibrium tide parameterization misleading)
- -- Ongoing/future works: A lot of unsolved issues/puzzles...

Tidal Dissipation in Binaries

- I. Merging White Dwarf Binaries
- II. Kepler Heartbeat Stars (KOI-54)
- III. Exoplanetary Systems
 - (a) Hot Jupiters
 - (b) Host Stars

Thanks !