Chern/Flat bands and correlation effects

Arun Paramekanti (Toronto)

[IAS Tsinghua, 24 Apr 2018]

Berezinskii-Kosterlitz-Thouless transition

Ordered ferromagnet

Vortex-Antivortex pair

- Proliferation of **Topological Defects: vortices, antivortices**
- Magnets, Superfluids, Superconductors, Early Universe

Berezinskii + Kosterlitz, Thouless Topological ideas in condensed matter

Quantum Hall Effect

Fractionalization: Interaction driven physics in a fractionally filled Landau level

- . (1/3)-Laughlin liquid: Electron ~ 3 'partons'
- . Electron FQHE = IQHE of fractional charges
- . Kills enormous entropy
- . Emergent charge-e/3 quasiparticle

Can we realize quantum Hall effects in crystalline solids?

- Without large magnetic fields
- Without ultralow temperatures
- With interaction-driven emergent phases

Bands in Crystals – Momentum Space Topology

$$\int \frac{dk_x dk_y}{4\pi} \hat{d}(\mathbf{k}) \cdot \partial_x \hat{d}(\mathbf{k}) \times \partial_y \hat{d}(\mathbf{k})$$

→ Topological invariant (Chern number)

Haldane model

- Time-reversal broken, but "no net magnetic field"
- Bands carry nonzero Chern numbers: Quantum Hall effect
- Chern bands ~ Landau levels

DR Hofstadter, PRB 1976; Thouless, Kohmoto, Nightingale, Nijs, PRL 1982; FDM Haldane, PRL 1988; G. Jotzu, et al (Esslinger group) Nature 2014

Quantum Anomalous Hall Effect

- Topological insulators: Surface Dirac Fermions
- Breaking time-reversal with dopant magnetization, no B-field!
- Spin orbit coupling is crucial: Gives a "Lorentz force"

(Bi,Sb)₂Te₃ film doped with Cr or V

Early results

Ferromagnetic Tc ~ 10K Hall quantization: T ~ 25 mK

C.Z. Chang et al, Science 2013 (Xue group, Tsinghua)
C.Z. Chang et al, arXiv (M. Chan + J. Moodera groups)
A. J. Bestwick et al, arXiv (Goldhaber-Gordon group)
A. Kandala, et al, arXiv (N. Samarth group)

Can one induce nontrivial band topologies in strongly correlated materials?

• **Transition metal oxide layers:** Quantum anomalous Hall effects

(Di Xiao, Zhu, Okamoto, Y Ran, Nagaosa, Okamoto, Nat Comm 2011; Fiete, PRB 2011, PRL 2013)

Multicomponent (111) bilayer thin films Predict high Tc quantum anomalous Hall effect

DFT+Monte Carlo

5d oxide: strong spin orbit coupling (Re, Ir, ...)

3d correlated oxide: high Tc ferromagnet (Cr, Fe, ...) QAH gap ~ 100 meV Ferromagnetic Tc ~ 300 K

A. M. Cook, AP (PRL 2014); S. Baidya, U.Waghmare, AP, T.Saha-Dasgupta (PRB 2015+16)

Half-metallic double perovskite (111) bilayer

"Orbital Dipoles" and the "Orbital Rashba effect"

["Orbital Rashba", Jung-Hoon Han group, PRL 2011, PRB 2012]

Г

K

Μ

- "Orbital Rashba" effect gaps out K Dirac point
- Half-semimetal

S. Baidya, U. Waghmare, AP, T. Saha-Dasgupta (PRB 2016)

Large gap quantum anomalous Hall insulator

SOC: $-\lambda \langle S_z \rangle L_z$

QAH gap ~ 100 meV Ferromagnetic Tc ~ 250 K

k-space skyrmion

S. Baidya, U. Waghmare, AP, T. Saha-Dasgupta (PRB 2016)

Fractionalization in Chern bands

- C=1 Chern band ~ Landau level
- Can 1/3-filled Chern band show FQHE?
- Clear alternative: Zero entropy metal

- **Band flattening** ~ more analogous to Landau levels
- Interactions drive fractional quantum Hall effect
- **Regime**: Dispersion << Interactions << Band gap
- v=1/2: Lattice version of bosonic Laughlin liquid
- v=1/3: Lattice version of fermionic Laughlin state

Sorensen, Demler, Lukin, PRL 2005; K. Sun, Z.-C. Gu, H. Katsura, S. Das Sarma, PRL 2011; Neupert, Santos, Chamon, Mudry, PRL 2011; E. Tang, J.-W. Mei, X.-G. Wen, PRL 2011; D. Sheng, et al, Nat Comm 2011

Half-filled Haldane Chern insulator with strong correlation

- Bulk gap
- Nontrivial Chern numbers

- Consider 2 copies: \uparrow,\downarrow
- Fill up lower Chern band: $\sigma_{xy}=2e^2/h~$ ("2" due to spin)
- Crank up interactions between \uparrow and \downarrow : "Haldane-Hubbard" model

Theoretical proposals -

J. He, et al, PRB 2011, 2012 - Slave rotor mean field theory: Chiral spin liquid (v=1/2 bosonic Laughlin state) J. Maciejko, A. Ruegg, PRB 2013 - Exotic Z₂ Cl* phase at intermediate U

D. Prychynenko, S. Huber arXiv:1410.2001 – Topological SDW/CDW order (with sublattice imbalance)

Mean Field Phase diagram: Novel broken symmetries

First careful mean field study - W. Zheng, H. Shen, Zhong Wang, Hui Zhai (PRB 2015)
* Predicted mean field topological Neel state (see: K. Jiang, S. Zhou, Xi Dai, Z. Wang, PRL 2018)
* Predicted fluctuation-induced 1st order – confirmed: M. Troyer group, (PRB 2016)

Mean field extended to larger t₂: V. S. Arun, R. Sohal, C. Hickey, AP (PRB 2016)

Strong coupling limit: Chiral spin interactions

Boson language: Correlated hopping

$$in_1(b_2^{\dagger}b_3 - b_3^{\dagger}b_2)$$

Strong coupling limit: Chiral spin interactions

- Ground state: magnetically ordered!

C. Hickey, L. Cincio, Z. Papic, AP (PRL 2016)

Cf: Nielsen, Sierra, Cirac, Nat. Comm. 2013 – Square lattice Chern insulator yields a CSL Mott insulator Cf: B. Bauer, et al, Nature Communications 5, 5137 (2014) – Kagome chiral terms give CSL Mott insulator

Melting the Tetrahedral Order

Add 3rd neighbor AFM interaction Frustrates Tetrahedral order Creates a CSL retaining large chirality!

Exact diagonalization results: N=18,24,32

C. Hickey, L. Cincio, Z. Papic, AP (PRL 2016)

Infinite cylinder DMRG results

Y. Zhang, et al PRB 2013 L. Cincio and G. Vidal, PRL 2013

C. Hickey, L. Cincio, Z. Papic, AP (PRL 2016)

Spin crystallization transition out of the CSL

• Low energy theory of CSL: Pure topological Chern Simons theory

$$\mathcal{L}_{\rm CS} = \frac{1}{2\pi} \epsilon^{\alpha\beta\lambda} a_{\alpha} \partial_{\beta} a_{\lambda} \qquad \qquad \text{U(1) level k=2}$$

- Need gapped excitations in CSL: Semions
- Like to examine continuous transition to a magnetically ordered state

Minimally couple bosonic spinons to CS gauge field

- In the CSL: Bosonic spinons bind π -flux to give semions
- Out of CSL: Condensing spinons can yield magnetic order

Adiabatic spinon transport: Berry Fluxes

Hofstadter Problem

Triangular loops: π/2 Hexagonal loops: π

Spin crystallization transition out of the CSL

$$\rho_{i} = \phi_{i\alpha}^{\dagger} \phi_{i\alpha}$$
$$\vec{\mathcal{S}}_{i} = \phi_{i\alpha}^{*} \vec{\sigma}_{\alpha\beta} \phi_{i\beta}$$

Spin crystallization transition out of the CSL

Chern-Simons-Higgs theory

- CSL arises from frustration induced melting of tetrahedral order
- How generic is this idea?

Generalization to other lattices

VMC/ED: Wietek, A. Laeuchli (PRB 2017) DMRG: Saadatmand, McCulloch (PRB 2017) DMRG: S.S. Gong, Zhu,Zhu, D.N. Sheng. K. Yang (PRB 2017)

ED/DMRG: C. Hickey, L. Cincio, Z. Papic, AP (PRB 2017)

Strain in correlated materials

Strained BaTiO₃ films

- Strain impacts electronic bands
- How do interactions modify the resulting phases?

Strain induced "Landau levels" in graphene

Uniform strain: Moves Dirac points $\vec{p} \rightarrow \vec{p} - ``e \vec{\mathcal{A}}"$ Non-uniform strain: $\vec{\mathcal{A}}(\mathbf{r})$

Graphene

• Time-reversal invariant

• Pseudomagnetic field: 300 Tesla!

F. Guinea, Katsnelson, Geim (Nat Phys 2010) N. Levy, et al (Science 2010)

Interactions can induce fractionalized

phases: Ghaemi, Cayssol, Sheng, Vishwanath (PRL 2012)

Flat bands in twisted bilayer graphene

Mott insulators?

Superconductivity at Tc ~ 1K upon doping

P. Jarillo-Herrero (Nature 2018)P. Jarillo-Herrero (Nature 2018)

Strain-induced Landau levels in Correlated Matter

Bogoliubov quasiparticles in d-wave SCs

Bogoliubov quasiparticles in strained d-wave SCs

Linearized BdG Hamiltonian

$$H_0 = \int d^2 \mathbf{r} \left[-i\sigma^z \vec{v}_f \cdot \vec{\nabla} - i\sigma^x \vec{v}_\Delta \cdot \vec{\nabla} \right]$$

 $\begin{aligned} \text{Strain: Time-reversal invariant perturbation} & \text{Hopping} \\ \delta H_1 \!=\! -\frac{1}{2} \sum_{\mathbf{R},\eta,\alpha} \delta t_\eta(\mathbf{R}) (c^{\dagger}_{\mathbf{R},\alpha} c_{\mathbf{R}+\eta,\alpha} \!+\! \text{h.c.}) & \text{Pairing} \\ \delta H_2 \!=\! \frac{1}{8} \!\sum_{\mathbf{R},\eta} \!\! \delta \Delta_\eta(\mathbf{R}) (c^{\dagger}_{\mathbf{R}\uparrow} c^{\dagger}_{\mathbf{R}+\eta,\downarrow} \!-\! c^{\dagger}_{\mathbf{R}\downarrow} c^{\dagger}_{\mathbf{R}+\eta,\uparrow} \!+\! \text{h.c.}) \end{aligned}$

Bogoliubov Landau levels on a (10) oriented d-wave SC strip

- Strain induced Landau levels
- Impact of residual interactions?

(G. Massarelli, G. Wachtel, J. Wei, AP, PRB 2017)

Bogoliubov Landau levels on a (11) oriented d-wave SC strip

Collaborators

Lukasz Cincio (LANL)

Zlatko Papic (Leeds)

Gideon Wachtel

John Wei

Summary

- Correlated materials are potential candidates for high Tc QAH
- Correlations in topological bands can induce FQH states
- Frustration of non-coplanar magnets: Chiral spin liquids
- Strain: Tunable knob to control superconductor band topology