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fundamental particles in cond-mat:

‣ low-energy excitations 

➡ can behave as Dirac/Weyl fermions:  

‣ universal properties:  

DOS, specific heat, transport,  

thermodynamic properties, …

‣ Dirac/Weyl fermions emerge in:

• d-wave superconductors

• graphene, Na3Bi,…

• topological insulators
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hole pairs are therefore exponentially suppressed at low temperatures. For many met-
als, as well as doped semiconductors, the concept of nearly free quasiparticles obeying
the Schrödinger equation with the Hamiltonian HS = p2/2m⇤, where m⇤ is the e↵ec-
tive mass, provides an extremely successful description of the low-energy excitations.
These excitations are often simply referred to as “Schrödinger fermions”. In contrast,
in Dirac materials the low-energy fermionic excitations or quasiparticles do not obey
the Schrödinger Hamiltonian HS but rather a Dirac Hamiltonian [1] with the e↵ective
“speed of light” c being given by the Fermi velocity vF. In two spatial dimensions, this
Hamiltonian has the form

HD = c� · p + mc2�z, (1)

where � = (�x, �y) and �z are the usual Pauli matrices. Quasiparticles described by the
Hamiltonian HD are frequently called ”Dirac fermions”.

In the limit of vanishing Dirac mass m ! 0, there is no gap in the spectrum of HD and
the quasiparticle dispersion is linear, which is qualitatively di↵erent from the parabolic
dispersion of conventional metals or semiconductors. Moreover, even for non-zero mass,
positive and negative energy eigenstates of the Dirac Hamiltonian are made from the same
space of spinor wave functions. Thus, particles and holes are interconnected and have
the same e↵ective mass m, which is directly related to the spectral gap � = 2mc2 [10].
This is very di↵erent from systems like conventional metals and semiconductors, where
electrons and holes obey separate Schrdinger equations with di↵erent e↵ective masses
and no unique relation between gap and mass. Therefore, Dirac fermions with non-zero
mass still are qualitatively di↵erent from Schrödinger fermions, as soon as experimentally
probed energies are on the order of mc2 or higher. It is thus natural to include both
systems with massless and massive Dirac fermion excitations in the unifying framework
of Dirac materials.

A variety of Dirac materials has been discovered to date ranging from “normal state”
crystalline materials to exotic quantum fluids (c.f. Table 1). In the superfluid 3He-A
phase [2, 3], for example, the low-energy fermionic excitations near the north and south
pole of the Fermi surface form two nodal points where the Bogoliubov quasiparticles
are described by a Dirac Hamiltonian (1). A related example is the case of the cuprate
superconductors, a class of superconductors with an order parameter with d-wave sym-
metry, �k = �0(cos kxa�cos kya), and low-energy fermionic excitations being described
by the Dirac Hamiltonian (1) [2, 4, 11–13]. The rise of graphene [14–16] — a layer of
carbon atoms arranged in a honeycomb lattice — draws attention to the fact that the
same Dirac-like spectrum, Eq. (1), as in the superconducting or superfluid materials can
be an inherent property of the band structure of a material, ultimately stemming from
the crystalline order [5, 6, 17, 18]. The same crystalline order produces Dirac fermions
also in silicene and germanene [19], the Si and Ge equivalents of graphene, as well as in
“artificial” graphene [20, 21]. In a more recent development, a new kind of insulators has
been discovered [7, 22–27], the so-called topological insulators, which have a fully gapped
energy spectrum in the bulk but Dirac fermions on the surface. Furthermore, ultra-cold
atoms in optical lattices provide another realizations of Dirac fermions in condensed
matter systems [28, 29].

The possibility of finding materials with three-dimensional Dirac-like spectrum has
recently also gained a lot of attention. In three dimensions, all three Pauli matrices are
used in the momentum dependent term: HD = c� · p, and a mass term is thus per
definition absent. This Hamiltonian enters the Weyl equation in particle physics, and
materials with this low-energy spectrum have subsequently been coined Weyl semimetals
[30]. If there is a band degeneracy present at the Dirac nodal point (but not causing a
finite gap) these materials are instead called three-dimensional Dirac semimetals [31].
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Electrons on the honeycomb lattice

‣ lattice in real space:

• focus on 2D Dirac materials with electron quasiparticles (graphene)
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Electrons on the honeycomb lattice

‣ tight-binding Hamiltonian: H0 = �t

X
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Dirac cone‣ energy dispersion:

‣ no gap + vanishing density of states → semimetallic behavior

E±(~q) ⇡ 3t0 ± vF |~q|

t = 2.8 eV, t0 = �0.2t

‣ lattice in real space:

• focus on 2D Dirac materials with electron quasiparticles (graphene)
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Electron-electron interactions

2

istic first-principle Monte-Carlo simulations of the elec-
tronic properties of graphene. We further demonstrate
that a rather mild increase of interaction strength do
leads to spontaneous chiral symmetry breaking. Due to
such proximity of the transition point, nonperturbative
effects can be quite important in suspended graphene.
Since the screening of the Coulomb potential due to

σ-orbitals is mostly important at small distances of the
order of lattice spacing [7], it seems that the position of
the semimetal-insulator phase transition is highly sensi-
tive to the form of the inter-electron interaction potential
at short distances. We note that the high sensitivity of
low-energy effective theory to ultraviolet regularization
was also discovered in the work [8], where fermionic prop-
agators were found to be saturated by momenta of the
order of inverse lattice spacing.
The fact that in suspended monolayer graphene the ef-

fective inter-electron interaction should be weaker than in
the tight-binding model for the π orbitals was also noted
in [9] by fitting the numerical value of the renormalized
Fermi velocity vF (α) to the experimental data of [6]. The
corresponding value of α was estimated as α ∼ 0.7 . . .0.9,
which is significantly smaller than αs. Recent semi-
analytic studies of the gap equations in graphene [10] has
also shown that the phase transition is shifted to larger
couplings if one takes into account the renormalization
of the Fermi velocity. Our results provide a microscopic
explanation of these findings.
The starting point of our simulations is the tight-

binding Hamiltonian with the staggered potential m:

Ĥtb = −κ
∑

<x,y>

(

â†yâx + b̂†y b̂x + h.c.
)

+

+
∑

x

±mâ†xâx ±mb̂†xb̂x. (1)

where κ = 2.7 eV, the sum
∑

<x,y>
is performed over all

pairs of nearest-neighbour sites of the graphene hexag-
onal lattice (we impose periodic spatial boundary con-
ditions as in [3]) and â†, â and b̂†, b̂ are the cre-
ation/annihilation operators for particles and holes, re-
spectively. The latter are related to creation/annihilation
operators ĉ†x,s, ĉx,s for electrons with spin s =↑, ↓ as

âx = ĉx,↑, b̂x = ±ĉ†x,↓, where we take the plus sign for
x belonging to one of the simple sublattices of graphene
hexagonal lattice and the minus sign - for another simple
sublattice [3, 4]. The whole Hilbert space of the tight-
binding model can be constructed by the action of the
creation operators â†x, b̂

†
x on the ground state |0⟩ fixed

by the conditions âx |0⟩ = 0, b̂x |0⟩ = 0. In this ground
state each lattice site is occupied by one electron with
spin down. Of course, in Monte-Carlo simulations we
sum over all possible states of the system, so this choice
of the ground state is only motivated by calculational
convenience.
The staggered potential is equal to +m for the sites of

one simple sublattice and −m for sites of another sim-
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FIG. 1: A comparison of the partially screened Coulomb po-
tential with the exact Coulomb potential and the potential
obtained from non-compact gauge field on the hexagonal lat-
tice [3].

ple sublattice. Its role is twofold: first, it regularizes the
inverse of the fermionic kinetic operator in the Hybrid
Monte-Carlo algorithm [3, 4]. Second, the staggered po-
tential explicitly breaks the chiral (sublattice) symmetry
and thus serves as a seed for spontaneous chiral symme-
try breaking, which would otherwise be impossible in a
finite volume. In the low-energy effective theory m cor-
responds to the Dirac mass.
Next we introduce the interaction Hamiltonian with an

inter-electron interaction potential Vxy:

ĤC =
1

2

∑

x,y

Vxy q̂xq̂y, (2)

where q̂x = â†xâx − b̂†xb̂x is the operator of electric charge
at lattice site x.
For the on-site interaction potential Vxx ≡ V00 and

the potentials between nearest (V01), next-to-nearest
(V02) and next-to-next-to-nearest-neighbouring lattice
sites (V03) we use the values calculated in [7] (see table I,
3d column). The resulting shape of the potential is illus-
trated on Fig. 1. At larger distances we use the Coulomb
potential V (r) = 1/ (ϵσr). The form of the potential is
additionally corrected to account for periodic boundary
conditions. The factor ϵσ ≈ 1.41 describes the contribu-
tion of electrons on σ orbitals to the effective dielectric
permittivity of graphene monolayer at intermediate dis-
tances and is obtained by equating V03 to the Coulomb
potential at r = r03 = 0.284 nm: V03 = 1/ (ϵσr03). Phys-
ically this means that we assume that all the charges
which screen the potential of a test charge are localized
within the radius r03. It is important to stress that this
large-distance correction of the potential by a factor 1/ϵσ
alone is insufficient to prevent the semimetal-insulator
phase transition in suspended graphene. Indeed, since
for the unscreened Coulomb potential the correspond-
ing critical value of the coupling constant αc ≈ 1 [2, 3]
is more than two times smaller than the effective cou-
pling constant αs ≈ 2.2 in suspended graphene, the coef-

Ulybyshev et al. (2013)

Wehling et al. (2011)
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Strength of effective Coulomb interactions in graphene and graphite

T. O. Wehling,1 E. Şaşıoğlu,2 C. Friedrich,2 A. I. Lichtenstein,1 M. I. Katsnelson,3 and S. Blügel2

11. Institut für Theoretische Physik, Universität Hamburg, D-20355 Hamburg, Germany
2Peter Grünberg Institut and Institute for Advanced Simulation,
Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany

3Radboud University Nijmegen, Institute for Molecules and Materials, NL-6525 AJ Nijmegen, The Netherlands

To obtain an effective many-body model of graphene and related materials from first principles
we calculate the partially screened frequency dependent Coulomb interaction. In graphene, the
effective on-site (Hubbard) interaction is U00 = 9.3 eV in close vicinity to the critical value separating
conducting graphene from an insulating phase emphasizing the importance of non-local Coulomb
terms. The nearest-neighbor Coulomb interaction strength is computed to U01 = 5.5 eV. In the long
wavelength limit, we find the effective background dielectric constant of graphite to be ϵ = 2.5 in
very good agreement with experiment.

PACS numbers: 73.22.-f, 73.22.Pr, 71.45.Gm

The role of Coulomb interactions in graphene and re-
lated materials poses a long standing problem: Experi-
ments reported ferromagnetic ordering in nanographene
[1], in disordered graphite samples [2] and at grain bound-
aries in highly oriented pyrolytic graphite (HOPG) [3].
Ferromagnetism in pristine graphene, however, has been
excluded experimentally for temperatures down to 2K
[4]. Theoretically, the possibility of magnetism in de-
fect free graphene has been predicted: An antiferro-
magnetic insulating ground state has been obtained for
the local Coulomb interactions exceeding a critical value
UAF

>
∼ (4.5± 0.5)t in Quantum Monte Carlo (QMC) cal-

culations [5–7] and UAF
>
∼ 2.2t in Hartree-Fock theory

[5, 6], where t ≈ 2.8 eV is the nearest neighbor hopping
parameter. A gapped spin-liquid has been predicted for
on-site repulsion between Usl = 3.5t and UAF [8]. Siz-
able non-local Coulomb interactions can make the phase
diagram even richer and lead to a competition between
spin- and charge-density-wave phases [9, 10] or topolog-
ically non-trivial phases [11]. Doping of graphene might
trigger further instabilities [12, 13]. In pristine graphene,
the Coulomb interaction remains long ranged and it is
controversial whether this might lead to strongly corre-
lated electronic phases like an insulator [9, 14] or whether
graphene is rather weakly correlated. The local part
of Coulomb interaction is also crucial for the theory of
defect-induced magnetism in graphene [15].

The central issue in this discussion is the effective
strength of the Coulomb interaction acting on the carbon
pz-electrons, which has only been estimated very roughly
up to now [16]: The bare on-site Coulomb interaction in
benzene obtained from atomic carbon pz orbitals was es-
timated to be 16.9 eV [17]. For polyacetylene, an analysis
of optical modulation spectroscopy experiments within
weak coupling perturbation theory yielded an effective
on-site Coulomb repulsion of 10 eV [18, 19]. However, in
this regime weak coupling perturbation theory might be
inapplicable. For the long wavelength limit, reflectance
measurements of graphite [20] yielded a dielectric con-

graphene graphite

bare cRPA bare cRPA

UA/B
00

(eV) 17.0 9.3 17.5, 17.7 8.0, 8.1

U01 (eV) 8.5 5.5 8.6 3.9

UA/B
02

(eV) 5.4 4.1 5.4, 5.4 2.4, 2.4

U03 (eV) 4.7 3.6 4.7 1.9

TABLE I. On-site (UA
00, U

B
00), nearest-neighbor (U01), next-

nearest-neighbor (UA
02, U

B
02), and third-nearest-neighbor (U03)

(intra-layer) Coulomb interaction parameters for freestanding
graphene and graphite. In graphene UA

00 = UB
00 and UA

02 =
UB

02 due to the sublattice symmetry. The bare and partially
screened (cRPA) parameters are given. The cRPA parameters
should be used in the effective Hamiltonian (1).

stant of ϵ = 2.4 due to screening by the high energy σ-
bands. This would correspond to an effective fine struc-
ture constant of α = e2

ϵh̄vF
≈ 0.9 for bulk graphite, where

h̄vF ≈ 5.8 eVÅ is the Fermi velocity [16]. For graphene,
recent inelastic x-ray scattering experiments [21] suggest
a fully screened dielectric constant of ϵ ≈ 15 correspond-
ing to a fine structure constant of α = 0.14. At the same
time, first-principles GW calculations [22] give ϵ ≈ 4, in
agreement with the predictions of a simple Dirac model
[16]. Recent experimental data on charge density depen-
dence of the Fermi velocity [23] seem to be in agreement,
rather, with the second value. So, up to now the strength
of Coulomb interactions in graphene related materials
has remained unclear and controversial — both theoret-
ically and experimentally (for a review of correlation ef-
fects in graphene, see Ref. 24).

In this letter, we determine the Coulomb interac-
tion strength in graphene and graphite within the con-
strained random phase approximation (cRPA) [25]. We
obtain ab initio effective Coulomb interaction param-
eters that should be used in a generalized Hubbard
model of graphene or graphite (see cRPA values in ta-
ble I). We find that the on-site interactions in free

• ab initio parameters:

U
V1

V2

V3

‣ other ab initio methods: QC-PPP,  Thomas-Fermi

local interaction Coulomb tail
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Honeycomb fermions & many-body interactions

• What to expect from many-body interaction effects?

‣ Dirac materials qualitatively different from normal metals:

- lack of electric screening

- renormalisation of Fermi velocity

• Hamiltonian: tight-binding part + interaction part H = H0 +H1
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FIG. 3: Complete mean-field phase diagram for the spinful
model. The transitions from the semimetal (SM) to the in-
sulating phases are continuous, whereas transitions between
any two insulating phases (red lines) are first-order.

[15].
Quantum fluctuations, however, lift the mean-field

degeneracy between the QAH and QSH phases. To
quadratic order in quantum fluctuations (RPA) about
the QSH phase , we obtain an effective action Seff =
∑

k⃗ δχµ(k⃗, Ω)Kµν(k⃗, Ω)δχν(−k⃗,−Ω) which shows the
presence of six modes (2 longitudinal and 4 transverse
modes), and 2 of the transverse modes correspond to de-
generate Goldstone modes whose velocity is proportion-
ality to the Fermi velocity v ≈ vf = 3t/2|a|. Thus, the
zero-point motion associated with these gapless modes,
lowers the free energy of the QSH state relative to the
QAH state.

Renormalization Group Analysis - Mean field theory
generally starts with a given, in a sense, biased Ansatz,
and investigate the self-consistency of the mean field so-
lution. Therefore, it is important to investigate the topo-
logical Mott states with a method without any a priori
bias. Next we go beyond mean-field theory and RPA us-
ing the temperature(T )-flow functional renormalization

group (fRG)[21][22]. In this scheme, we discretize the k⃗-
dependence of the interaction [23] and consider all possi-
ble scattering processes between a set of initial and final
momenta that occur between points on rings around the
Dirac points (inset of Fig. 4). Starting with T0 ∼ 2t,
the temperature T is lowered, and a flowing (renormal-
ized) interaction VT is obtained by the coupled summa-
tion of the T -derivatives of all one-loop channels. Due
to this, the method is unbiased and goes beyond the
mean-field-level. Applying the scheme to the Hamilto-
nian, Eq. 8, we search for flows to strong coupling, where
for a low temperature Tc certain components of VT be-
come large. Then the approximations break down, and
the flow is stopped. Information on the low-T state is
obtained from analyzing which coupling functions grow
most strongly and from susceptibilities for static external
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FIG. 4: a) Data for U=0, V1=1.4t, V2=0. Susceptibilities of
each phase vs. T are shown: CDW (black); SDW (green);
QAH(red) and QSH (blue).b) Same for U=0, V1=0, V2=1.8t
(QSH instability). The QSH phase has a larger susceptibility
than QAH. Inset: fRG phase diagram at U=0, indicating SM
(blue) and insulating (red) regions (CDW dominates at large
V1, QSH at large V2.) The colorbar correspond to Tc below
which the insulating phases develop in fRG.

fields coupling to the various order parameters. In this
scheme, a tendency towards ordering at a finite vector
Q can be detected as a growth of the associated vertex
VT . However, we have found that largest couplings occur
at Q = 0, which strongly supports the mean-field results
presented above.

For onsite and nearest-neighbor repulsions U > Uc ≈
3.8t and V1 > V1c ≈ 1.2t, the flow to strong coupling
is either an SDW instability for dominant U or a CDW
instability for dominant V1, in good agreement with a
1/N-study[24] and Quantum-Monte-Carlo[17]. For more
details, see Ref. [25]. If we include a sufficiently strong
second-nearest-neighbor repulsion V2 > 1.6t, the flows
change qualitatively; there is a leading growth of the QSH
susceptibility. In Fig. 4 a) and b) we compare the T -flows
of various susceptibilities for V1 > V2 and for V2 > V1.
For the latter case, the QSH susceptibility grows most
strongly toward low T , followed by the QAH susceptibil-
ity, which is consistent with the RPA treatment of the
Goldstone modes in the QSH. The QSH phase remains
stable even when a moderate onsite interaction of U = t
or U = 2t is introduced. Hence the global structure of
the mean-field phase diagram is confirmed by the fRG
results. Note however that the slope of the lines of criti-
cal V1 versus V2 differs. We interpret this a competition
effect captured by the fRG, where V2 decreases the CDW
tendencies induced by V1.

Discussion - We have shown that topological phases
displaying the QAH and QSH effects can be generated
from strong interactions - thus, we refer to these phases
as topological Mott insulators. Both phases have asso-
ciated with them conventional order parameters which
develop continuously at the quantum critical phase tran-
sition from the semi-metallic state. However, these states
are also described by topological quantum numbers which
jump discontinuously at the transition. Although the in-
teraction strengths needed to produce these phases are

Raghu et al. (2008)

mean-field phase diagram:‣ dynamical generation of mass gaps?

- triggered by strong short-ranged i.a. components

- Dirac fermions have vanishing DOS at Fermi level

- critical interaction strength for transition

‣ Experimental studies: graphene is in SM phase!



Refined phase diagrams - spinless fermions on the honeycomb

‣ short-ranged interaction components V1, V2

CONTENTS 3

• If one modulates the nearest-neighbor hopping ampli-
tudes then a Kekulé bond-density wave (that preserves
sublattice and time-reversal symmetries) emerges [13].

• In the presence of next-nearest-neighbor hopping with
fluxes (but no net total flux per hexagon), then the
QAH bond-density wave (that breaks both sublattice
and time-reversal symmetries) can be stabilized as
shown by Haldane [6].

These phases can thus be understood as resulting from the
relevant effects of 4 different mass terms [14, 15].

For comparison, the spinful case is far much richer
with 36 masses that can be added to the Dirac equation so
that several different phases can be realized [14].

Finally, let us remind the reader that due to a vanishing
density of states in the noninteracting semi-metallic phase,
a finite V1 and/or V2 is needed for any kind of instability.

3.2. Mean-field analyses

Given all the possible instabilities of the semi-metallic
phase, first attempts were made to investigate the zero-
temperature phase diagram using mean-field analysis. In a
seminal paper, Raghu et al. [16] have solved the mean-field
equations using the smallest unit cell. Their phase diagram
is shown in Fig. 2. Besides the expected Néel CDW at large
V1 > 0, they have found the emergence of a large quantum
anomalous Hall (QAH) phase for large V2 > 0. This phase
can be characterized by the existence of spontaneous charge
currents.

0 0.5 1 1.5 2
0

1

2

3

4

V
1

V
2

SM

QAH

CDW

Figure 2. (Color online) Phase diagram for model (1) vs (V1/t, V2/t).
The semimetallic (SM) state that occurs at weak coupling is separated from
the CDW and the topological QAH states via a continuous transition. The
line separating the QAH and CDW marks a first-order transition, which
terminates at a bicritical point. Reprinted figure with permission from
Ref. [16] Copyright (2008) by the American Physical Society.

Allowing for additional order parameters, Weeks and
Franz [17] have obtained a slightly refined phase diagram
(see Fig. 3) including a rather large Kekulé phase, which
is indeed another potential candidate, see above. In
particular, a rough estimate of the Coulomb interaction

strength in graphene would suggest that the Kekulé phase
could be realized experimentally. Unfortunately, suspended
graphene samples (where interactions are stronger than for
graphene over a substrate [18]) remain semi-metallic[19]
down to low temperature (⇠ 1 K).

0 1 2 3
V1/t

0

1

2

3

V
2/t

SM

Kekulé

CDW

QAH

Figure 3. (Color online) Same as Fig. 2 using a more refined analysis. A
novel Kekulé phase is proposed when both interactions are large enough.
At the mean-field level all transitions from the SM phase are second order
whereas transitions between all the gapped phases are first order. The
crosses represent the relevant line for graphene based on a crude estimate
of the bare Coulomb repulsion [20]. Critical values along both axis are
V c
1 /t ' 0.93 and V c

2 /t ' 1.2. Reprinted figure with permission from
Ref. [17] Copyright (2010) by the American Physical Society.

Figure 4. (Color online) Same as Fig. 3 using a larger unit cell. Kekulé
phase is denoted with the letter K. Lines are guides to the eyes. CMs stands
for a charge modulated phase which appears at large V2/t. Reprinted
figure with permission from Ref. [21] Copyright (2013) by the American
Physical Society.

Then, a larger (tripled) unit cell, allowing more
instabilities, was used in Refs. [21, 22]. There it was found
that not only Kekulé phase can appear, but also the more
interesting topological QAH can still be stabilized for a
large range of parameters. However, in the latter study [21],

Weeks, Franz (2010), MFT

CONTENTS 5

Néel A

Néel B

Néel B

Figure 6. (Color online) The Néel Domain Wall Crystal (NDWC): sketch
of a classical ground state at V1 = 4, V2 = 1 on the N = 24 sample,
which is maximally flippable within the classical ground state manifold
with respect to the hopping t. The shaded regions denote the two Néel
domains, and the orange circled bonds along the domain walls are flippable
to first order in t. The green box indicates a twelve-site unit cell. Figure
taken from Ref. [23].

3.4. Numerical approaches

Based on the previous arguments, we expect a rather
rich phase diagram, with many competing phases includ-
ing a putative topological QAH one. We will now dis-
cuss numerical investigations using state-of-the-art tech-
niques for strongly correlated systems, namely Exact Di-
agonalization (ED), density-matrix Renormalization Group
(DMRG), quantum Monte-Carlo (QMC) and functional
renormalization-group (fRG) technique.

3.4.1. Exact Diagonalization – Obviously, ED technique
is called for as it is unbiased and could allow to discriminate
between the different competing phases. The major caveat
is of course size limitation which can prevent conclusion
on the thermodynamic limit, or the difficulty to tackle with
incommensurate phases for instance ‡. Therefore, we will
argue that a systematic study should be performed, i.e.
one should consider different cluster sizes (with different k
points in their Brillouin zone) that can accomodate various
phases and also one should try to perform finite-size scaling
(even though it is limited typically to less than 50 sites in the
spinless case).

Regarding model (1), first ED results were provided
in Ref. [25] based on numerical study of clusters with
18 and 24 sites. The phase diagram based on N = 18
ED results is reproduced in Fig. 7. Note that this cluster
being rather small, it has more symmetries than the infinite
one (translations and C6v point group symmetry), which

‡ Note that dealing with incommensurate phases is also difficult for mean-
field approaches.

can lead to artifacts. Based on that, the authors’ major
conclusions were that (i) there is a quite good agreement
with the most refined mean-field [21], see Fig. 4 except
that the topological QAH is not realized; (ii) in particular,
there is large portion of CM phase, with 18-fold degeneracy
(which agrees with the strong coupling finding).
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Figure 7. (Color online) ED phase diagram for model (1) vs (V1/t, V2/t)
obtained using a cluster of N = 18 sites. This is in rough agreement with
most refined mean-field shown in Fig. 4 with the notable difference that
the topological QAH phase is not found. Reprinted figure with permission
from Ref. [25] Copyright (2013) by the American Physical Society.

Soon after, another ED study based on clusters with
N = 24 and N = 30 sites was published [26]. The authors
have focused on the putative topological phase so that they
have mostly considered V1 = 0 case. Their phase diagram
in Fig. 8 shows that there is a direct transition between the
semimetallic phase and the insulating CM phase at strong
coupling, i.e. no intermediate Kekulé phase along this line
contrary to Fig. 7. Note that there is a small difference
regarding the nature of the CM phase, as compared to
strong-coupling approach or previous ED reference, in the
sense that they did not find charge imbalance between the
sublattices.
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Figure 8. (Color online) ED phase diagram for model (1) vs V2/t at fixed
V1 = 0 using a cluster with N = 24 sites. The hatched region reflects
the uncertainty regarding the direct transition between semimetallic (SM)
and charge-modulated (CM) phase. Reprinted figure with permission from
Ref. [26] Copyright (2014) by the American Physical Society.

Then, an ED study was put forward using 18-site
cluster but with open boundary conditions [27]. While it
is rather small (there are less ”bulk” sites than edge ones), a
level crossing has been reported in the ground-state energy
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Figure 11. (Color online) Left: Numerical phase diagram for repulsive (V1/t, V2/t) interactions obtained with DMRG calculations on a semi-infinite
cylinder of width Ly = 12 keeping up to 1, 600 states. Right: Various unit cells (in red polygons) that have been chosen as well as charge and bond
strength patterns for various phases: (a) charge modulation (CM) with V1/t = 0.8 and V2/t = 3.2, (b) Kekulé phase with V1/t = 5.6 and V2/t = 1.6,
(c) CDW II phase with V1/t = 5.6 and V2/t = 3.2, (d) CDW III phase (aka NDWC) with V1/t = 9.2 and V2/t = 2.5. Reprinted figure with
permission from Ref. [32] Copyright (2015) by the American Physical Society.

also become competitive in two dimensions in studying sev-
eral frustrated quantum antiferromagnets for instance [35].
In Ref. [32], infinite DMRG algorithm has been applied to
the spinless fermionic model (1) using several possible unit
cells and the numerical phase diagram is shown in Fig. 11.

Comparing with the numerical phase diagram obtained
by ED in Fig. 9, we do observe a rather good semi-
quantitative agreement, both on the nature of the extended
phases as well as their locations. Most importantly, both
studies do not support any region of topological QAH
phase.

Note also that based on the entanglement entropy
dependence on the number of kept states, the authors of
Ref. [32] claim to have some indications about the nature of
the various phase transitions. We refer to their publication
for more details but we believe that, when possible, a deeper
analysis of these phase transitions should be attempted, see
below for instance.

Last, let us point out that a finite sublattice charge
imbalance was found in the CM phase in agreement with
our results [23].

3.4.3. Quantum Monte-Carlo – Even in the simplest case
(V2 = 0) where a phase transition is expected at finite V1/t
between the semi-metal and a Néel CDW state, stochastic
QMC simulations were not possible for a long time due to
a severe sign-problem in the standard determinantal QMC
agorithm [36, 37]. As a consequence, the accuracy on the
numerical critical value of the coupling V c

1 /t, as well as the
critical exponent of this continuous phase transitions were
not well known until recently.

I find this model rather important since it exemplifies
several advances that have occurred in the QMC commu-
nity, resulting in complete unbiased exact results. First, so-
called meron-cluster algorithm was used to solve the sign
problem for V1 � 2t [38]. More recently, the sign problem
has been entirely solved for any V1 > 0 by the continuous-
time interaction expansion method [39] using the Fermi

bag idea [40–42] and in the discrete-time method by us-
ing the Majorana fermion representation [43]. It turns out
that both solutions are possible thanks to a specific under-
lying Lie group structure of the determinantal QMC meth-
ods [44], which provides a useful guiding principle for sign-
free QMC simulations.

Figure 12. (Color online) Phase diagram of the model (1) at V2 = 0
as a function of V1/t and temperature on the honeycomb lattice. Shaded
region corresponds to the Néel CDW I phase. The critical tem- perature
Tc approaches to zero at the quantum critical point between the CDW I
and Dirac-semimetal (SM) state. The red solid line is a fit of the critical
temperature to Tc = A(V1 � V c

1 )
⌫z , leading to V c

1 /t = 1.36(3) and
⌫z = 0.72(9). The dashed black line indicates the critical temperature in
the Ising limit Tc = 0.38V1, valid in the strong-coupling limit V1 � t.
The quantum phase transition is in the Gross-Neveu-Yukawa with Z2

order parameter universality class. Reprinted figure with permission from
Ref. [45] Copyright (2016) by the American Physical Society.

Recently, an even more efficient algorithm, based on
stochastic series expansion (SSE) [46, 47] ideas, has been
devised [45] allowing to study the repulsive V1 (V2 = 0)
model and to obtain unbiased results on lattices up to 1, 152
sites at finite temperatures, thus revealing a very precise
phase diagram in Fig. 12. In parallel, another algorithm
using a Majorana representation has been used to study
similar system sizes and results are in full agreement [48].

Garcia-Martinez et al. (2013), ED

Motruk et al. (2015), DMRG

‣ many more suggestions…

‣ competition of many phases!

‣ various ordering transitions



Long-range tail

‣ hybrid-MC: hints for CDW transition in U-V plane

• use cRPA values & long-range extrapolation
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filling can be efficiently simulated via Hybrid-Monte-Carlo, a widely used algorithm in lattice
gauge theory, both in the low-energy (long-wavelength) limit [13–22] where graphene is well-
described by a variant of Quantum Electrodynamics in 2+1 dimensions, and as a full theory
which is valid on length-scales down to the interatomic distance a ≈ 1.42 Å [23–27].

An open question which is of immediate consequence to technological applications is
whether graphene, which is known to be an electric conductor when affixed to a number
of different substrates, can develop a band gap under proper circumstances. This could
correspond to a spontaneous breaking of the symmetry under exchange of the two triangular
sublattices with strong analogies to chiral symmetry breaking in relativistic field theory. A
substrate generates dielectric screening which lowers the effective fine-structure constant
αeff of the system. The expectation is that if screening is reduced, when αeff becomes larger
than some critical coupling αc, a phase transition to a gapped phase occurs. In order to be
physically realizable, αc should be smaller than αeff,0 ≈ 300/137 ≈ 2.2 which is the upper
bound in suspended graphene, where screening is minimal.

Experiments have provided evidence that graphene in vacuum is in fact a conductor
[28, 29], while analytical calculations [30–34] and simulations [13–15, 18, 19, 25], which
assumed that the electromagnetic interactions of π-band electrons (the relevant degrees
of freedom for the electronic properties) are essentially unmodified Coulomb interactions,
supported the scenario of a gapped phase for αeff > αc ≈ 1, well within the accessible region.
The origin of this disparity must thus be investigated.

Recently, it was suggested that additional screening (independent of the reduction of αeff

by the substrate) of the two-body Coulomb interactions, by electrons in the lower σ-bands
and other higher energy states of the carbon sheet itself [37], provides a mechanism which
moves αc to larger values, outside of the physical region.1 In Ref. [26] Hybrid-Monte-Carlo
simulations of the tight-binding model with an instantaneous two-body potential generated
by a Hubbard field were carried out (based on the framework developed in Refs. [23, 24])
which addressed the issue of σ-band screening. For these simulations a screened Coulomb
potential was chosen which used the results of a calculation within the constrained random
phase approximation (cRPA) [37] for on-site repulsion, the nearest-neighbor, next-to-nearest-
neighbor and third-nearest-neighbor interactions at short distances. At longer distances it
was assumed that the potential falls off as ∼ 1/(ϵσ r), where the constant ϵσ ≈ 1.41 was
adjusted to match the third-nearest-neighbor term. It was shown that for this particular
choice of potential, the critical coupling for the antiferromagnetic Mott transition is moved
to αc ≈ 3.14, which is outside of the physically accessible region and thus agrees with the
experimental observation.

In this work, we conduct simulations similar to those of Ref. [26], however with a more
realistic description of the partial screening of the Coulomb interactions at larger distances:
Instead of assuming the constant reduction in the strength of the long-range Coulomb tails,
by ϵσ which quite naturally necessitates an increased effective coupling to compensate that,
we use the phenomenological model also given in Ref. [37] to construct a partially screened
Coulomb interaction with a momentum dependent ϵσ(k⃗) which smoothly turns into the
unscreened Coulomb potential corresponding to ϵσ → 1 in the long-wavelength limit. This
reflects the fact that the high energy states in graphene do not screen the long-range Coulomb
tails in the interactions of the π-band electrons as demonstrated explicitly in [37]. Because
the density of states in the π-bands furthermore vanishes at the Dirac points in the band

1 Another mechanism which has been proposed is a reshaping of the Dirac cone due to renormalization of

the Fermi velocity [28, 35, 36]. The magnitude of this effect is likely much smaller than that of screening

and, in any case, the inclusion of this effect is automatic in lattice simulations.
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Ulybyshev et al. (2013)
Smith & von Smekal (2014)

‣ for fast enough decay of long-range tail:

Buividovich, Smekal, Smith, Ulybyshev (2016)

➡ study AFM ground state with QMC methods

➡ compatible with semimetallic ground state

Tang et al. (2015)• interaction-driven metal-insulator transition in strained graphene 3

FIG. 2. E↵ect of biaxial strain (left panel) and substrate (right panel) on the partially screened Coulomb interaction. We
use three representative models: constrained Random Phase Approximation (cRPA), circles/full curves; quantum chemistry –
Pariser-Parr-Pople (QC-PPP), squares/dashed curves; and Thomas-Fermi (TF), triangles/dot-dashed curves. (a) Suspended
graphene both unstrained and subject to 18% biaxial strain. (b) Unstrained graphene both suspended and deposited on SiO2

compared to the bare Coulomb potential.

Fock techniques to solve for the ground state energy of
molecules comprising a small number of benzene rings.
These energies are then compared to an exact diagonal-
ization of the long range Hubbard model where the Ohno
interpolation formula, V(r) = U/

p
1 + (Ur/e2)2, is as-

sumed for the Coulomb interaction. The V(0) = U is a
free parameter that is fixed by requiring the minimization
of the root-mean square of the ground state energy of the
ab initio calculations and that of the long range Hubbard
model. The QC-PPP values of U and V used in this
manuscript were extracted from Ref. [33], which calcu-
lates V(r) for the phenalenyl (3H-C13H9) molecule. This
method gives an an upper bound for the Hubbard U in
graphene since larger molecules would have more screen-
ing and reduced V(r). Both the validity of the Ohno in-
terpolation and the extrapolation to larger system sizes
give some reasons for caution. It has nonetheless proven
extremely useful for small ⇡-conjugated planar polycyclic
aromatic hydrocarbons comprising tens of atoms such as
anthracene and polyacenes [33, 34].

Finally, inspired by the work of Jung and MacDon-
ald [26] we have constructed a Thomas-Fermi model
to account for the screening of higher energy bands in
graphene. Within the Thomas-Fermi screening approxi-
mation the on-site interaction U is given by

U =
e2

4⇡✏

Z
d3r1d

3r2 |�(r1)|2
e�k0|r1�r2|

|r1 � r2|
|�(r2)|2 , (2)

while the Coulomb interaction between two ⇡-bands’
electrons positioned at neighboring atoms (distance �)

V is given by

V =
e2

4⇡✏

Z
d3r1d

3r2 |�(r1 + �)|2 e�k0|r1�r2|

|r1 � r2|
|�(r2)|2 .

(3)

Here, �(r) stands for the pz-orbital’s wave-function
(which we approximate by that of atomic hydrogen). The
free parameter k0 in Eqs. (2) and (3) is fixed by requiring
that the hopping integral

t =

Z
d3r�⇤(r+ �)


� ~2r2

2m
+

e2

4⇡✏

X

i

e�k0|r�Ri|

|r�Ri|

�
�(r) ,

(4)

is equal to the literature accepted value of t0 = 2.7 eV
[21]. In parallel with what we do for the other two meth-
ods, we then interpolate between Vij ’s short-range val-
ues U and V and the long-range tail of Vij (see below).
The procedure used to compute Vij of biaxially strained
graphene is similar to that discussed earlier [34].
The computationally demanding method employed

prevents us from simulating large size systems. In par-
ticular, one must include the e↵ect of the surrounding
electrons since their inter-band polarizability contributes
at all length scales [2] thus modifying the e↵ective di-
electric constant from 1/r to 1/

⇥
r(1 + ⇡rs/2)

⇤
, where

rs = 2e2/
⇥
(a+b)~vF

⇤
is the e↵ective fine structure con-

stant (where a and b are the dielectric constants above
and below the graphene flake). The presence of disorder
in the substrate can also be accounted for by introducing
a modified screening function (see e.g. Ref. [35]). The
full profile of the partially screened Coulomb interaction

‣ AFM transition for TF parameters at 18% strain

‣ data of cRPA parameters not conclusive

‣ sign problem for |t’| > 0

‣ sign problem for QC-PPP data
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istic first-principle Monte-Carlo simulations of the elec-
tronic properties of graphene. We further demonstrate
that a rather mild increase of interaction strength do
leads to spontaneous chiral symmetry breaking. Due to
such proximity of the transition point, nonperturbative
effects can be quite important in suspended graphene.
Since the screening of the Coulomb potential due to

σ-orbitals is mostly important at small distances of the
order of lattice spacing [7], it seems that the position of
the semimetal-insulator phase transition is highly sensi-
tive to the form of the inter-electron interaction potential
at short distances. We note that the high sensitivity of
low-energy effective theory to ultraviolet regularization
was also discovered in the work [8], where fermionic prop-
agators were found to be saturated by momenta of the
order of inverse lattice spacing.
The fact that in suspended monolayer graphene the ef-

fective inter-electron interaction should be weaker than in
the tight-binding model for the π orbitals was also noted
in [9] by fitting the numerical value of the renormalized
Fermi velocity vF (α) to the experimental data of [6]. The
corresponding value of α was estimated as α ∼ 0.7 . . .0.9,
which is significantly smaller than αs. Recent semi-
analytic studies of the gap equations in graphene [10] has
also shown that the phase transition is shifted to larger
couplings if one takes into account the renormalization
of the Fermi velocity. Our results provide a microscopic
explanation of these findings.
The starting point of our simulations is the tight-

binding Hamiltonian with the staggered potential m:

Ĥtb = −κ
∑

<x,y>

(

â†yâx + b̂†y b̂x + h.c.
)

+

+
∑

x

±mâ†xâx ±mb̂†xb̂x. (1)

where κ = 2.7 eV, the sum
∑

<x,y>
is performed over all

pairs of nearest-neighbour sites of the graphene hexag-
onal lattice (we impose periodic spatial boundary con-
ditions as in [3]) and â†, â and b̂†, b̂ are the cre-
ation/annihilation operators for particles and holes, re-
spectively. The latter are related to creation/annihilation
operators ĉ†x,s, ĉx,s for electrons with spin s =↑, ↓ as

âx = ĉx,↑, b̂x = ±ĉ†x,↓, where we take the plus sign for
x belonging to one of the simple sublattices of graphene
hexagonal lattice and the minus sign - for another simple
sublattice [3, 4]. The whole Hilbert space of the tight-
binding model can be constructed by the action of the
creation operators â†x, b̂

†
x on the ground state |0⟩ fixed

by the conditions âx |0⟩ = 0, b̂x |0⟩ = 0. In this ground
state each lattice site is occupied by one electron with
spin down. Of course, in Monte-Carlo simulations we
sum over all possible states of the system, so this choice
of the ground state is only motivated by calculational
convenience.
The staggered potential is equal to +m for the sites of

one simple sublattice and −m for sites of another sim-

1
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Non-compact gauge field
Screened potentials

Coulomb

FIG. 1: A comparison of the partially screened Coulomb po-
tential with the exact Coulomb potential and the potential
obtained from non-compact gauge field on the hexagonal lat-
tice [3].

ple sublattice. Its role is twofold: first, it regularizes the
inverse of the fermionic kinetic operator in the Hybrid
Monte-Carlo algorithm [3, 4]. Second, the staggered po-
tential explicitly breaks the chiral (sublattice) symmetry
and thus serves as a seed for spontaneous chiral symme-
try breaking, which would otherwise be impossible in a
finite volume. In the low-energy effective theory m cor-
responds to the Dirac mass.
Next we introduce the interaction Hamiltonian with an

inter-electron interaction potential Vxy:

ĤC =
1

2

∑

x,y

Vxy q̂xq̂y, (2)

where q̂x = â†xâx − b̂†xb̂x is the operator of electric charge
at lattice site x.
For the on-site interaction potential Vxx ≡ V00 and

the potentials between nearest (V01), next-to-nearest
(V02) and next-to-next-to-nearest-neighbouring lattice
sites (V03) we use the values calculated in [7] (see table I,
3d column). The resulting shape of the potential is illus-
trated on Fig. 1. At larger distances we use the Coulomb
potential V (r) = 1/ (ϵσr). The form of the potential is
additionally corrected to account for periodic boundary
conditions. The factor ϵσ ≈ 1.41 describes the contribu-
tion of electrons on σ orbitals to the effective dielectric
permittivity of graphene monolayer at intermediate dis-
tances and is obtained by equating V03 to the Coulomb
potential at r = r03 = 0.284 nm: V03 = 1/ (ϵσr03). Phys-
ically this means that we assume that all the charges
which screen the potential of a test charge are localized
within the radius r03. It is important to stress that this
large-distance correction of the potential by a factor 1/ϵσ
alone is insufficient to prevent the semimetal-insulator
phase transition in suspended graphene. Indeed, since
for the unscreened Coulomb potential the correspond-
ing critical value of the coupling constant αc ≈ 1 [2, 3]
is more than two times smaller than the effective cou-
pling constant αs ≈ 2.2 in suspended graphene, the coef-



Interim summary

• electrons in neutral suspended unstrained graphene: semimetallic state

• ab initio parameters & models: vicinity to interaction-induced phase transition

• different ordering transitions may be induced by interaction parameters

‣ AFM, CDW, CM, Kekulé,…

✦ Theoretical methods:

‣ MFT: not exact, no correlations between different channels, no accurate critical exponents

‣ QMC: exact but sign problem if long-range tail falls off too slowly - bias towards AFM state

‣ ED: exact but too expensive for spin-1/2

‣ (F)RG: all correlation channels, numerically feasible, no sign problem, critical exponents

- fermion FRG: unbiased determination of many-body instabilities

- fermion-boson FRG: critical exponents, calculation in SSB phase
with Sánchez de la Peña, Lichtenstein, Honerkamp

with Torres, Classen, Herbut



(I) Many-body instabilities of graphene’s Dirac electrons

from the functional Renormalization group

with D. Sánchez de la Peña, J. Lichtenstein, and C. Honerkamp
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Effective action

‣ bare propagator (translation and spin rotation invariance):

‣ system of interacting fermions:

‣ effective action:

‣ generating functional (for connected Green functions):



Functional flow equations

‣ modify bare propagator by introduction of flow parameter  
 
(IR cutoff, cuts out soft modes        ):< ⇤
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Figure 3. (a) Cuto↵ function ⇥✏ (full line) and corresponding scale-derivative @⇤⇥✏ (dashed line). (b)
Momentum shells (gray) representing the finite support of the single-scale propagator S⇤ at an energy
scale ⇤ away from the Fermi surface (blue).

intuitive understanding of renormalization, they also involve serious drawbacks.
One is the violation of Ward identities at any finite cuto↵ value [46, 47] (see also
Appendix 6.1), as also the non-uniform treatment of particle-hole processes within
the momentum-cuto↵ scheme. In order to explain the latter issue, we first write
down the one-loop particle-hole fluctuations arising in elementary perturbation
theory,

�p�h(k, q) =
nF (⇠b(k))� nF (⇠b(k + q))

⇠b(k)� ⇠b(k + q)
. (30)

During the flow, these contributions are taken into account successively within the
trace (23)

tr
�
S⇤U⇤G⇤U⇤

�
⇠ tr

⇣
�p�h(k, q) · @⇤(✓

⇤
✏ (k)✓

⇤
✏ (k + q)) · . . .

⌘
, (31)

where we, for the simplicity of the argument, neglected frequency dependences and
self-energy insertion. If we now consider particle-hole fluctuations with vanishing
momentum transfer, i.e. �p�h(k, q ! 0), it turns out that the only nonzero con-
tribution in (30) comes from modes k in a small energy region (⇠ T ) around the
Fermi surface. However, due to the cuto↵ function ✓⇤✏ (k), these modes are not taken
into account until ⇤ ⇡ T . On the other hand, particle-hole fluctuations with large
momentum transfer are already taken into account right from the beginning. The
cuto↵-scheme, therefore, treats particle-hole fluctuations in a non-uniform way, and
it may happen that other channels already indicate a singularity at cuto↵ values
⇤ > T , whereas the small q particle-hole fluctuations have not yet contributed.
In order to avoid this issue, we can exploit the flexibility in the parameter de-

pendence of �⇤ and regard the temperature itself as flow parameter. However, we
first have to shift the temperature dependences towards the quadratic part of the
action (1), and we therefore write out all temperature prefactors

S( , ) = �T

Z

k,k0
Qk,k0 k k0 + T 3

Z
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2

and rescale the field variables according to

 k = T�3/4�k,  k = T�3/4�k. (32)

G⇤
0 (k0,k) =

⇥✏(|⇠k|� ⇤)

ik0 � ⇠k

‣ define all the above quantities with modified bare propagator 
 
              → variation w.r.t to scale provides exact RG equation:
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Figure 1. (a) Important energy scales in interacting electron systems (taken from Metzner et al. [12]).
(b) Flow of the e↵ective action, starting at �⇤init = Sbare for large values of ⇤ and approaching the full
e↵ective action at ⇤ = 0. Di↵erent trajectories correspond to distinct choices of the flow parameter.

lation ⇠b(k) in (2) characterizes the one-particle energy as a function of momentum
k and band index b. In addition, the integral

R
k contains integration and summa-

tion over each entry in k and also comprises prefactors such as temperature and
volume.
Based on the action S( , ) in (1), we can infer thermodynamic quantities such

as the grand-canonical partition function

Z =

Z
D( , )e�S( , ) (3)

or the imaginary-time ordered Green functions, i.e.

Gk1,...,kn;k0
1,...,k0

n
= �

1

Z

Z
D( , )e�S( , ) k1

. . . kn
 k0

n
. . . k0

1
(4)

just by choosing the appropriate functional averages. It is, further, convenient to
define a so-called generating functional

W [⌘, ⌘] =

Z
D( , )e�S( , )+(⌘, )+( ,⌘) (5)

with source terms

(⌘, ) :=

Z

k
⌘k k, ( , ⌘) :=

Z

k
 k⌘k,

such that the functional averages in (4) can be rephrased by derivatives of W [⌘, ⌘]
with respect to ⌘ and ⌘. Taking the logarithm of (5), one obtains another generating
functional

G[⌘, ⌘] = � ln (W [⌘, ⌘]) (6)

which, again by functional di↵erentiation, provides the connected n-particle Green

‣ exact RG equation has one-loop structure

‣ removing cutoff (          ) yields the full effective action

‣ lowering cutoff corresponds to momentum-shell integration

⇤ ! 0

from Platt, Hanke, Thomale (2013)
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intuitive understanding of renormalization, they also involve serious drawbacks.
One is the violation of Ward identities at any finite cuto↵ value [46, 47] (see also
Appendix 6.1), as also the non-uniform treatment of particle-hole processes within
the momentum-cuto↵ scheme. In order to explain the latter issue, we first write
down the one-loop particle-hole fluctuations arising in elementary perturbation
theory,

�p�h(k, q) =
nF (⇠b(k))� nF (⇠b(k + q))

⇠b(k)� ⇠b(k + q)
. (30)

During the flow, these contributions are taken into account successively within the
trace (23)

tr
�
S⇤U⇤G⇤U⇤

�
⇠ tr

⇣
�p�h(k, q) · @⇤(✓

⇤
✏ (k)✓

⇤
✏ (k + q)) · . . .

⌘
, (31)

where we, for the simplicity of the argument, neglected frequency dependences and
self-energy insertion. If we now consider particle-hole fluctuations with vanishing
momentum transfer, i.e. �p�h(k, q ! 0), it turns out that the only nonzero con-
tribution in (30) comes from modes k in a small energy region (⇠ T ) around the
Fermi surface. However, due to the cuto↵ function ✓⇤✏ (k), these modes are not taken
into account until ⇤ ⇡ T . On the other hand, particle-hole fluctuations with large
momentum transfer are already taken into account right from the beginning. The
cuto↵-scheme, therefore, treats particle-hole fluctuations in a non-uniform way, and
it may happen that other channels already indicate a singularity at cuto↵ values
⇤ > T , whereas the small q particle-hole fluctuations have not yet contributed.
In order to avoid this issue, we can exploit the flexibility in the parameter de-

pendence of �⇤ and regard the temperature itself as flow parameter. However, we
first have to shift the temperature dependences towards the quadratic part of the
action (1), and we therefore write out all temperature prefactors

S( , ) = �T

Z
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and rescale the field variables according to

 k = T�3/4�k,  k = T�3/4�k. (32)



… infinite hierarchy of flow equations!

exact RG equation

We now derive explicitly the first two flow equations from
the hierarchy. Comparing coefficients of quadratic contribu-
tions (proportional to !c c ) to the exact flow equation yields

d

d"
Að2Þ" ¼ $ð !c ; _Q"

0 c Þ $ trðS" !@@Að4Þ"Þ: (49)

Inserting Eq. (41), and using #ð2Þ" ¼ Q"
0 $$", one obtains

the flow equation for the self-energy,

d

d"
$"ðx0; xÞ ¼

X

y;y0
S"ðy; y0Þ#ð4Þ"ðx0; y0; x; yÞ: (50)

Comparing coefficients of quartic contributions [proportional
to ð !c c Þ2] yields

d

d"
Að4Þ" ¼ 1

2
trðS" !@@Að4Þ"G" !@@Að4Þ"

þS"t@ !@Að4Þ"G"t@ !@Að4Þ"Þ

$ 1

2
trðS" !@ !@Að4Þ"G"t@@Að4Þ"

þS"t@@Að4Þ"G" !@ !@Að4Þ"Þ
$ trðS" !@@Að6Þ"Þ: (51)

Inserting Eq. (41), one obtains the flow equation for the
two-particle vertex,

d

d"
#ð4Þ"ðx01; x02; x1; x2Þ

¼
X

y1;y
0
1

X

y2;y
0
2

G"ðy1; y01ÞS"ðy2; y02Þ

& f#ð4Þ"ðx01; x02; y1; y2Þ#ð4Þ"ðy01; y02; x1; x2Þ
$ ½#ð4Þ"ðx01; y02; x1; y1Þ#ð4Þ"ðy01; x02; y2; x2Þ
þ ðy1 $ y2; y

0
1 $ y02Þ( þ ½#ð4Þ"ðx02; y02; x1; y1Þ

& #ð4Þ"ðy01; x01; y2; x2Þ þ ðy1 $ y2; y
0
1 $ y02Þ(g

$
X

y;y0
S"ðy; y0Þ#ð6Þ"ðx01; x02; y0; x1; x2; yÞ: (52)

Note that there are several distinct contributions involving
two two-particle vertices, corresponding to the familiar

particle-particle, direct particle-hole, and crossed particle-
hole channels, respectively, as shown diagrammatically in
Fig. 4. Similarly, one can obtain the flow equation for #ð6Þ

and all higher vertices.
Since #½c ; !c ( at c ¼ !c ¼ 0 is essentially (up to a factor

T) the grand canonical potential %, the flow equation (35),
evaluated at vanishing fields, yields also a flow equation for
the grand canonical potential:

d

d"
%" ¼ $T trð _Q"

0 G
"Þ: (53)

The flow equation (35) and the ensuing equations for the
vertex functions can be easily generalized to cases with U(1)-
symmetry breaking by allowing for off-diagonal elements in
the matrices Q"

0 , G
", and S".

2. Truncations

The exact hierarchy of flow equations for the vertex func-
tions can be solved only for systems which can also be solved
more directly, that is, without using flow equations. Usually
truncations are unavoidable. A natural truncation is to neglect
the flow of all vertices #ð2mÞ" beyond a certain order m0. We
call this the level-m0 truncation. The structure of the resulting
equations and general properties of their solution will be
discussed in Sec. II.E. Note that the level-m0 truncation
contains all perturbative contributions to order m0 in the
bare two-particle interaction.

In practice, in applications to physically interesting sys-
tems, vertices #ð2mÞ" with m> 3 have so far been neglected,
and the contributions from #ð6Þ" to the flow of #ð4Þ" are
usually restricted to self-energy corrections (see below) or
discarded completely. In particular, the analysis of competing
instabilities (see Sec. III) is based entirely on a level-2
truncation given by the flow equation (52) for the two-particle
vertex, with #ð6Þ" replaced by zero, where the self-energy
feedback is also neglected. This seemingly simple approxi-
mation captures the complex interplay of fluctuations in the
particle-particle and particle-hole channel, which leads to
interesting effects such as the generation of d-wave super-
conductivity from antiferromagnetic fluctuations. In the
quantum transport phenomena reviewed in Sec. VI, the
self-energy as given by the flow equation (50) plays a crucial
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FIG. 4. Contributions to the flow of the two-particle vertex with
particle-particle and particle-hole channels written explicitly, with-
out the contribution from #ð6Þ".
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scale propagator S", and the other lines to the full propagator G".
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‣ exact RG equation cannot be solved exactly!

‣ starting point for systematic approximations (vertex expansion)

Truncation & Approximations

‣ neglect 6-point and higher vertices

‣ neglect self-energy feedback

Salmhofer & Honerkamp (2001)



‣ system with spin-rotational invariance:

- RG flow of general 4-point function Γ(4)Λ:

➡ interaction vertex VΛ:

8

the absence of the topological Mott insulator state in the
phase diagram and the appearance of charge-modulated
states in the large V2 regime. On the other hand, we
do not find any sign for an incommensurable charge-
modulated state reported in Ref. 41. This would require
a much higher wavevector resolution. This is beyond the
applicability of the present multi-patch approach as it
requires a much higher numerical cost.

To summarize, an independent variation of the inter-
action parameters for the onsite, nearest-neighbor and
next-nearest-neighbor repulsions does not reveal any spot
in the tentative weak-coupling phase diagram, where the
interaction-driven QSH state represents the leading in-
stability. Also, for interaction profiles inspired by ab ini-
tio parameters for graphene no indication for an topo-
logical Mott insulator state is found. Instead, we iden-
tified large parts of the phase diagram where a charge-
modulated density wave order is the leading instability
and we have found evidence for a competition between
the spin correlations and the charge correlations.
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Appendix A: fRG flow equations

The connected correlation functions of a system of in-
teracting fermions are given by the generating functional
for the fully connected correlation functions48,

G[⌘̄,⌘] = − ln� D D ̄ e
−S[ ̄, ]+(⌘̄, )+( ̄,⌘)

. (A1)

In the fRG approach28–30, we consider the generating
functional for the one-particle irreducible (1PI) corre-
lation functions or e↵ective action �[ ,  ̄] = (⌘̄, ) +
( ̄,⌘) + G[⌘̄,⌘], which is the Legendre transform G[⌘̄,⌘]
and the field arguments in � are given by  = −@G�@⌘̄
and  ̄ = @G�@⌘. Note that we use  for both, the fields
in the micrscopic action as well as for the field arguments
of the e↵ective action for notational convenience.

The modification of the microscopic action by means
of the regulator function, cf. Eq. (5), in the action en-
tering the functional integral yields the scale-dependent
e↵ective action �⇤. The functional flow equation for this
version of the e↵ective action is obtained upon the vari-
ation of �⇤ with respect to ⇤ and reads

@
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The initial condition at the scale ⇤UV reads �⇤

UV
= S,

where ⇤UV is typically chosen as the bandwidth of the
model. In the limit ⇤→ 0 one successively integrates out
all fermionic fluctuations and obtains the full quantum
e↵ective action.

Appendix B: Truncation and approximations

We expand the e↵ective action �⇤ in fields,

�⇤[ ,  ̄] =
∞
�
i=0

(−1)i

(i!)2 �
k1,...ki

k′1,...k′i

�(2i)⇤(k′
1
, ...k

′
i, k1, ...ki)

×  ̄(k′
1
)... ̄(k′i) (ki)... (k1) , (B1)

and insert it into the flow equation (A2). Then one ob-
tains an infinite hierarchy of flow equations for the 1PI
vertex functions. To use these equations in applications
and integrate the flow equations numerically one has to
truncate the tower of equations at a certain level and em-
ploy approximations. For our analysis we follow the RG-
scale dependence of the two-particle interaction �(4)⇤

only, which carries spin indices �i and a multi-index k

gathering Matsubara frequencies ! as well as wavevectors
k and the band index b. For our spin-rotation invariant
system, we can write the two-particle interaction as

�(4)⇤�1,�2,�3,�4
= V

⇤
��1�3��2�4 − V

⇤
��1�4��2�3 , (B2)

where we have suppressed the ki and introduced the ef-
fective interaction vertex V

⇤ = V
⇤(k1, k2, k3, b4).

Appendix C: Flow of the e↵ective interaction vertex

The flow equation for the vertex is given in Eq. (6) and
the particle-particle channel the explicitely reads

�pp =�� V
⇤(k1, k2, k, b

′)L⇤(k, qpp)V ⇤(k, qpp, k3, b4)
(C1)

with ∑∫ = −A−1BZ
T ∑! ∫ d2

k∑b,b′ . The direct and crossed
particle-hole channels are given by

�ph,d =�� [−2V
⇤(k1, k, k3, b

′)L⇤(k, qd)V ⇤(qd, k2, k, b4)

+ V
⇤(k, k1, k3, b

′)L⇤(k, qd)V ⇤(qd, k2, k, b4)
+ V

⇤(k1, k, k3, b
′)L⇤(k, qd)V ⇤(k2, qd, k, b4)] ,

(C2)

�ph,cr =�� V
⇤(k, k2, k3, b

′)L⇤(k, qcr)V ⇤(k1, qcr, k, b4) ,
(C3)

and we define qpp = −k + k1 + k2, qd = k + k1 − k3 and
qcr = k+k2−k3. ABZ denotes the are of the first Brillouin
zone and the loop kernel reads

L
⇤(k, k

′) = d

d⇤
�G⇤

0
(k)G⇤

0
(k′)� (C4)

with the free propagator G0 due to the neglect of the
self-energy.

Symmetries & Approximations

‣ momentum arguments include frequency, wavevector and orbital indices

‣ ground-state properties: neglect frequency dependence, set external frequencies to zero

V⇤(k1, k2, k3, k4)

23

V Λ was also neglected, since it also affects the flow only
at third order in V Λ.
The coupling function V Λ(K1,K2,K3) depends on

three wavevectors and three Matsubara frequencies, so
that the RG equation for a two-dimensional system is a
differential equation in a 9-dimensional space. As dis-
cussed in Section II.E, its most singular part sits at
zero Matsubara frequency. Hence one may neglect the
frequency dependence. Then V Λ defines an effective
Hamiltonian. Similarly, the k-dependence is most im-
portant in the angular direction along the Fermi sur-
face. This dependence can then be taken into account
by a discretization, i.e. by devising patches in the
Brillouin zone in which the coupling function is kept
constant. Feldman et al. (1992) showed that using N
patches leads to a natural N -vector model in two dimen-
sions. Zanchi and Schulz (1998, 2000) were the first to
use it in studies of the Hubbard model.
Usually one forms elongated patches that extend

roughly perpendicular to the Fermi surface but are rather
narrow parallel to the Fermi surface (see Fig. 9). The
coupling function is then computed for wavevectors k1

to k3 at the Fermi surface in the center of the patches.
We label the patches by κi = 1, . . .N . The function
V Λ is thus approximated by O(N3) interpatch couplings
V Λ(κ1,κ2,κ3). Even if k1,k2 and k3 are on the Fermi
surface, k4 can be anywhere. In the calculation of
the loop integrals it is however necessary to assign a
patch number κ4 to k4, which amounts to an approx-
imation of projecting k4 on the Fermi surface. Note
that this projectedN -patch discretized coupling function
V Λ(κ1,κ2,κ3) then has fewer symmetries; for instance
V Λ(κ1,κ2,κ3) ̸= V Λ(κ2,κ1,κ4) in general, as in the lat-
ter object k3 is not necessarily on the Fermi surface. For
sufficiently large N , this discretization captures the an-
gular variation of the coupling function along the Fermi
surface with good precision.
The results obtained within this approximation,

described in the following, have been found to
be robust when the dependence on frequencies ωi

(Honerkamp et al., 2007; Klironomos and Tsai, 2006)
and the component of ki transversal to the Fermi sur-
face (Halboth and Metzner, 2000a; Honerkamp, 2001;
Honerkamp et al., 2004) are included. Katanin (2009)
performed a flow to third order in the scale-dependent
four-point-vertex (see Section II.E.3), with the fre-
quency dependence in the same approximation as
Honerkamp and Salmhofer (2003).

B. Results for the two-dimensional Hubbard model

Starting from the initial condition given by the Hub-
bard model, the flow is run from Λ0 down to a charac-
teristic scale Λ∗, where the largest coupling reaches some
multiple α of the bandwidth. The choice of α varies
widely in the literature; the discussion here is based on
the comparably cautious choice α = 2 or 3, as well as

s′, K1

s, K2 s, K3

s′, K4

T Λ
PP

T Λ
PH,cr

T Λ
PH,d

FIG. 8 Top row: The coupling function V Λ(K1,K2,K3) with
the spin convention, and the diagrams entering in the flow
equation for the self-energy (middle and right diagram). Mid-
dle and bottom row: The diagrams for the flow of the coupling
function. The internal lines are either full propagators GΛ or
single-scale propagators SΛ.

FIG. 9 (Color online) N-patch discretization of the Brillouin
zone for the one-band Hubbard model on the 2D square lat-
tice. The colored region is a patch in which the coupling
function is approximated as a constant.

on the consistency check that the results do not change
drastically as α is changed. The characteristic scale Λ∗
corresponds to a temperature T∗. If T is clearly above
T∗, the flow can be integrated to scale zero without any
instabilities. T∗ is only an upper bound for the tempera-
ture where ordering can set in because of order parameter
fluctuations at scales below Λ∗. In two dimensions they
are so strong that long-range order that breaks continu-
ous symmetries does not occur at any T > 0, thus “or-
dering” is to mean either short-range order with a very



‣ system with spin-rotational invariance:

- RG flow of general 4-point function Γ(4)Λ:

➡ flow of spin-independent interaction vertex VΛ:

Symmetries & Approximations
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the absence of the topological Mott insulator state in the
phase diagram and the appearance of charge-modulated
states in the large V2 regime. On the other hand, we
do not find any sign for an incommensurable charge-
modulated state reported in Ref. 41. This would require
a much higher wavevector resolution. This is beyond the
applicability of the present multi-patch approach as it
requires a much higher numerical cost.

To summarize, an independent variation of the inter-
action parameters for the onsite, nearest-neighbor and
next-nearest-neighbor repulsions does not reveal any spot
in the tentative weak-coupling phase diagram, where the
interaction-driven QSH state represents the leading in-
stability. Also, for interaction profiles inspired by ab ini-
tio parameters for graphene no indication for an topo-
logical Mott insulator state is found. Instead, we iden-
tified large parts of the phase diagram where a charge-
modulated density wave order is the leading instability
and we have found evidence for a competition between
the spin correlations and the charge correlations.
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Appendix A: fRG flow equations

The connected correlation functions of a system of in-
teracting fermions are given by the generating functional
for the fully connected correlation functions48,

G[⌘̄,⌘] = − ln� D D ̄ e
−S[ ̄, ]+(⌘̄, )+( ̄,⌘)

. (A1)

In the fRG approach28–30, we consider the generating
functional for the one-particle irreducible (1PI) corre-
lation functions or e↵ective action �[ ,  ̄] = (⌘̄, ) +
( ̄,⌘) + G[⌘̄,⌘], which is the Legendre transform G[⌘̄,⌘]
and the field arguments in � are given by  = −@G�@⌘̄
and  ̄ = @G�@⌘. Note that we use  for both, the fields
in the micrscopic action as well as for the field arguments
of the e↵ective action for notational convenience.

The modification of the microscopic action by means
of the regulator function, cf. Eq. (5), in the action en-
tering the functional integral yields the scale-dependent
e↵ective action �⇤. The functional flow equation for this
version of the e↵ective action is obtained upon the vari-
ation of �⇤ with respect to ⇤ and reads
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0
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2
Tr�(Ġ⇤

0
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where (G0
⇤)−1 = diag((G⇤

0
)−1, (G⇤t

0
)−1) and

�(2)⇤[ ̄, ] =
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�
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⇤

@ ̄@ 
@2

�
⇤

@ ̄@ ̄
@2

�
⇤

@ @ 
@2

�
⇤

@ @ ̄

�
�

. (A3)

The initial condition at the scale ⇤UV reads �⇤

UV
= S,

where ⇤UV is typically chosen as the bandwidth of the
model. In the limit ⇤→ 0 one successively integrates out
all fermionic fluctuations and obtains the full quantum
e↵ective action.

Appendix B: Truncation and approximations

We expand the e↵ective action �⇤ in fields,

�⇤[ ,  ̄] =
∞
�
i=0

(−1)i

(i!)2 �
k1,...ki

k′1,...k′i

�(2i)⇤(k′
1
, ...k

′
i, k1, ...ki)

×  ̄(k′
1
)... ̄(k′i) (ki)... (k1) , (B1)

and insert it into the flow equation (A2). Then one ob-
tains an infinite hierarchy of flow equations for the 1PI
vertex functions. To use these equations in applications
and integrate the flow equations numerically one has to
truncate the tower of equations at a certain level and em-
ploy approximations. For our analysis we follow the RG-
scale dependence of the two-particle interaction �(4)⇤

only, which carries spin indices �i and a multi-index k

gathering Matsubara frequencies ! as well as wavevectors
k and the band index b. For our spin-rotation invariant
system, we can write the two-particle interaction as

�(4)⇤�1,�2,�3,�4
= V

⇤
��1�3��2�4 − V

⇤
��1�4��2�3 , (B2)

where we have suppressed the ki and introduced the ef-
fective interaction vertex V

⇤ = V
⇤(k1, k2, k3, b4).

Appendix C: Flow of the e↵ective interaction vertex

The flow equation for the vertex is given in Eq. (6) and
the particle-particle channel the explicitely reads

�pp =�� V
⇤(k1, k2, k, b

′)L⇤(k, qpp)V ⇤(k, qpp, k3, b4)
(C1)

with ∑∫ = −A−1BZ
T ∑! ∫ d2

k∑b,b′ . The direct and crossed
particle-hole channels are given by

�ph,d =�� [−2V
⇤(k1, k, k3, b

′)L⇤(k, qd)V ⇤(qd, k2, k, b4)

+ V
⇤(k, k1, k3, b

′)L⇤(k, qd)V ⇤(qd, k2, k, b4)
+ V

⇤(k1, k, k3, b
′)L⇤(k, qd)V ⇤(k2, qd, k, b4)] ,

(C2)

�ph,cr =�� V
⇤(k, k2, k3, b

′)L⇤(k, qcr)V ⇤(k1, qcr, k, b4) ,
(C3)

and we define qpp = −k + k1 + k2, qd = k + k1 − k3 and
qcr = k+k2−k3. ABZ denotes the are of the first Brillouin
zone and the loop kernel reads

L
⇤(k, k

′) = d

d⇤
�G⇤

0
(k)G⇤

0
(k′)� (C4)

with the free propagator G0 due to the neglect of the
self-energy.
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tonian for the simplest one-band Hubbard model reads

H = −
∑

i,j,s

ti−jc
†
i,scj,s + U

∑

i

ni,↑ni,↓ (107)

where ti−j = tj−i is the hopping amplitude between sites
i and j and U is the Hubbard on-site repulsion. We
consider here mainly the case with only nearest-neighbor
hopping t and next-to-nearest neighbor hopping t′ on a
square lattice. Additional hopping terms can be added
if a more detailed description of the band structure is
required, and other interaction terms may be added. The
chemical potential µ and t and t′ determine the band
structure ξk = −2t(coskx+cos ky)− 4t′ cos kx cos ky −µ,
and hence the shape of the Fermi surface.
Resummations of perturbation theory in U suggest

singularities in different channels, arising from Fermi
surface nesting and Van Hove singularities (Schulz,
1987), hence competing effects, which are best treated
by RG methods. After two-patch studies, which pro-
vided a very crude approximation to the momentum
dependence of the four-point vertex (Dzyaloshinskii,
1987; Furukawa et al., 1998; Gonzalez et al., 1996;
Lederer et al., 1987; Schulz, 1987), more careful

analyses with momentum-dependent vertices were
done using the Polchinski (Zanchi and Schulz, 1997,
1998, 2000), the Wick ordered (Halboth and Metzner,
2000a,b), and the one-particle irreducible flow equations
(Honerkamp et al., 2001), all with a momentum space
regulator. To include ferromagnetism, the tempera-
ture flow was introduced by Honerkamp and Salmhofer
(2001a,b) and Honerkamp (2001), and further devel-
oped by Katanin and Kampf (2003). The results of
these studies at Van Hove filling were confirmed using
a refined parametrization of the wavevector dependence
(Husemann and Salmhofer, 2009). The decoupling of the
various ordering tendencies in the limit of small U very
close to the instability and the influence of non-local in-
teractions were discussed by Binz et al. (2002, 2003).

In the general RG setup of Section II, the fermion fields
now carry a spin index s and a multiindex K consisting
of Matsubara frequencies ω, wavevectors k, and possibly
a band index b. To avoid bias, the action is required to
retain all symmetries of the initial action. This implies
(see Honerkamp et al. (2001); Salmhofer and Honerkamp
(2001)) that

Γ(4)Λ
s1s2s3s4(K1,K2;K3,K4) = V Λ(K1,K2;K3,K4)δs1s3δs2s4 − V Λ(K2,K1;K3,K4)δs1s4δs2s3 (108)

for a spin-rotation invariant system. By lattice- and time-translation invariance, K4 is fixed by K1,K2 and K3 in the
one-band model (in multiband models, the fourth band index b4 still remains free). We therefore abbreviate notation
to V Λ(K1,K2,K3). In the truncation Γ(6)Λ = 0, the flow equations for the self-energy and for the coupling function
become

d
dΛΣ

Λ(K) = −
∫

dK ′ [2V Λ(K,K ′,K)− V Λ(K,K ′,K ′)
]

SΛ(K ′) , d
dΛV

Λ = T Λ
PP + T Λ

PH,d + T Λ
PH,cr (109)

with the particle-particle term T Λ
PP and the direct and crossed particle-hole terms T Λ

PH,d and T Λ
PH,cr:

T Λ
PP (K1,K2;K3,K4) =

∫

dK V Λ(K1,K2,K) LΛ(K,−K +K1 +K2)V
Λ(K,−K +K1 +K2,K3) , (110)

T Λ
PH,d(K1,K2;K3,K4) =

∫

dK

[

−2V Λ(K1,K,K3)L
Λ(K,K +K1 −K3)V

Λ(K +K1 −K3,K2,K)

+V Λ(K1,K,K +K1 −K3)L
Λ(K,K +K1 −K3)V

Λ(K +K1 −K3,K2,K)

+V Λ(K1,K,K3)L
Λ(K,K +K1 −K3)V

Λ(K2,K +K1 −K3,K)

]

, (111)

T Λ
PH,cr(K1,K2;K3,K4) =

∫

dK V Λ(K1,K +K2 −K3,K)LΛ(K,K +K2 −K3)V
Λ(K,K2,K3) . (112)

Here LΛ(K,K ′) = SΛ(K)GΛ(K ′) +GΛ(K)SΛ(K ′) is the product of single-scale propagators SΛ and full propagators
GΛ with momentum assignments corresponding to the diagrams in Fig. 8.

For the Hubbard Hamiltonian (107), the initial condi-
tion is V Λ0(K1,K2,K3) = U . Other interactions can be
dealt with by modifying this initial condition. The trun-
cation Γ(6)Λ = 0 is justified only for a sufficiently small

bare coupling, since a contribution to Γ(6)Λ is generated
at third order in the two-particle interaction, which leads
to third order contributions to the flow of V Λ (see Sec. II).
In most studies the self-energy feedback into the flow of

d

d⇤
V ⇤(K1,K2;K3,K4) =

+

+

- where L⇤(K,K 0) =
d

d⇤
[G⇤

0 (K)G⇤
0 (K

0)]



‣ system with spin-rotational invariance:

- RG flow of general 4-point function Γ(4)Λ:

➡ flow of spin-independent interaction vertex VΛ:
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the absence of the topological Mott insulator state in the
phase diagram and the appearance of charge-modulated
states in the large V2 regime. On the other hand, we
do not find any sign for an incommensurable charge-
modulated state reported in Ref. 41. This would require
a much higher wavevector resolution. This is beyond the
applicability of the present multi-patch approach as it
requires a much higher numerical cost.

To summarize, an independent variation of the inter-
action parameters for the onsite, nearest-neighbor and
next-nearest-neighbor repulsions does not reveal any spot
in the tentative weak-coupling phase diagram, where the
interaction-driven QSH state represents the leading in-
stability. Also, for interaction profiles inspired by ab ini-
tio parameters for graphene no indication for an topo-
logical Mott insulator state is found. Instead, we iden-
tified large parts of the phase diagram where a charge-
modulated density wave order is the leading instability
and we have found evidence for a competition between
the spin correlations and the charge correlations.
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Appendix A: fRG flow equations

The connected correlation functions of a system of in-
teracting fermions are given by the generating functional
for the fully connected correlation functions48,

G[⌘̄,⌘] = − ln� D D ̄ e
−S[ ̄, ]+(⌘̄, )+( ̄,⌘)

. (A1)

In the fRG approach28–30, we consider the generating
functional for the one-particle irreducible (1PI) corre-
lation functions or e↵ective action �[ ,  ̄] = (⌘̄, ) +
( ̄,⌘) + G[⌘̄,⌘], which is the Legendre transform G[⌘̄,⌘]
and the field arguments in � are given by  = −@G�@⌘̄
and  ̄ = @G�@⌘. Note that we use  for both, the fields
in the micrscopic action as well as for the field arguments
of the e↵ective action for notational convenience.

The modification of the microscopic action by means
of the regulator function, cf. Eq. (5), in the action en-
tering the functional integral yields the scale-dependent
e↵ective action �⇤. The functional flow equation for this
version of the e↵ective action is obtained upon the vari-
ation of �⇤ with respect to ⇤ and reads
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0
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− 1
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0
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−1
� , (A2)

where (G0
⇤)−1 = diag((G⇤

0
)−1, (G⇤t

0
)−1) and
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The initial condition at the scale ⇤UV reads �⇤

UV
= S,

where ⇤UV is typically chosen as the bandwidth of the
model. In the limit ⇤→ 0 one successively integrates out
all fermionic fluctuations and obtains the full quantum
e↵ective action.

Appendix B: Truncation and approximations

We expand the e↵ective action �⇤ in fields,

�⇤[ ,  ̄] =
∞
�
i=0

(−1)i

(i!)2 �
k1,...ki

k′1,...k′i

�(2i)⇤(k′
1
, ...k

′
i, k1, ...ki)

×  ̄(k′
1
)... ̄(k′i) (ki)... (k1) , (B1)

and insert it into the flow equation (A2). Then one ob-
tains an infinite hierarchy of flow equations for the 1PI
vertex functions. To use these equations in applications
and integrate the flow equations numerically one has to
truncate the tower of equations at a certain level and em-
ploy approximations. For our analysis we follow the RG-
scale dependence of the two-particle interaction �(4)⇤

only, which carries spin indices �i and a multi-index k

gathering Matsubara frequencies ! as well as wavevectors
k and the band index b. For our spin-rotation invariant
system, we can write the two-particle interaction as

�(4)⇤�1,�2,�3,�4
= V

⇤
��1�3��2�4 − V

⇤
��1�4��2�3 , (B2)

where we have suppressed the ki and introduced the ef-
fective interaction vertex V

⇤ = V
⇤(k1, k2, k3, b4).

Appendix C: Flow of the e↵ective interaction vertex

The flow equation for the vertex is given in Eq. (6) and
the particle-particle channel the explicitely reads

�pp =�� V
⇤(k1, k2, k, b

′)L⇤(k, qpp)V ⇤(k, qpp, k3, b4)
(C1)

with ∑∫ = −A−1BZ
T ∑! ∫ d2

k∑b,b′ . The direct and crossed
particle-hole channels are given by

�ph,d =�� [−2V
⇤(k1, k, k3, b

′)L⇤(k, qd)V ⇤(qd, k2, k, b4)

+ V
⇤(k, k1, k3, b

′)L⇤(k, qd)V ⇤(qd, k2, k, b4)
+ V

⇤(k1, k, k3, b
′)L⇤(k, qd)V ⇤(k2, qd, k, b4)] ,

(C2)

�ph,cr =�� V
⇤(k, k2, k3, b

′)L⇤(k, qcr)V ⇤(k1, qcr, k, b4) ,
(C3)

and we define qpp = −k + k1 + k2, qd = k + k1 − k3 and
qcr = k+k2−k3. ABZ denotes the are of the first Brillouin
zone and the loop kernel reads

L
⇤(k, k

′) = d

d⇤
�G⇤

0
(k)G⇤

0
(k′)� (C4)

with the free propagator G0 due to the neglect of the
self-energy.

- corresponds to infinite order summation of one-loop pp and ph terms

- unbiased investigation of competition between various correlations

- flow to strong coupling indicates ordering transition: analyze components of VΛ 
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FIG. 3: Left panel: Interaction vertex labeled with the spin
convention (upper diagram). Below, the loop contributions
to the flow of the interaction vertex including the particle-
particle-diagram (a), the crossed particle-hole-diagram (b)
and the direct particle-hole diagrams (c). Right panel: Patch-
ing of the Brillouin zone as explained in the text.

the direct particle-hole channel

τΛPH,d(k1, k2, k3, b4) = − 1

VBZ

∫

dk⃗
∑

b,b′

[

− 2V Λ(k1, k, k3, b
′)LΛ(k, qPH,d)V

Λ(qPH,d, k2, k, b4)

+ V Λ(k, k1, k3, b
′)LΛ(k, qPH,d)V

Λ(qPH,d, k2, k, b4)

+ V Λ(k1, k, k3, b
′)LΛ(k, qPH,d)V

Λ(k2, qPH,d, k, b4)
]

,

(19)

and the crossed particle-hole channel

τΛPH,cr(k1, k2, k3, b4) = − 1

VBZ

∫

dk⃗
∑

b,b′

[

V Λ(k, k2, k3, n
′)LΛ(k, qPH,cr)V

Λ(k1, qPH,cr, k, b4)
]

,

(20)

where k = (k⃗, b) collects the wave vector and the band
index. As mentioned above, external frequencies are set
to zero ω1 = ω2 = ω3 = ω4 = 0. q⃗PP = −k⃗ + k⃗1 +
k⃗2, q⃗PH,d = k⃗ + k⃗1 − k⃗3, q⃗PH,cr = k⃗ + k⃗2 − k⃗3 are the
wavevectors of the second loop line. The band index of
the second loop line is denoted with b′. The frequency of
the second line is fixed by frequency conservation to be
−ω in the particle-particle diagram and ω in the particle-
hole diagrams. VBZ ist the volume of the BZ. The loop
kernel is given by

LΛ(k, k′) =
d

dΛ

[

GΛ
0 (k)G

Λ
0 (k

′)
]

, (21)

where in our approximation self-energy corrections are
neglected, i.e., the full propagator is identical to the free
propagator.
The wavevector dependence of the interaction vertex

is simplified by discretization. The BZ is divided into N
patches with constant wavevector dependence within one

patch, so that the coupling function has to be calculated
for only one representative momentum in each patch.
The representative momenta for the patches are chosen
to lie close to the Fermi level. The patching scheme is
shown in Fig. 3, with N = 24. Each of the four mo-
menta in V Λ(k1, k2, k3, b4) is additionally equipped with
a band index. Momentum conservation fixes one of the
four wavevectors. Altogether this results in a 64 × N3

component coupling function V Λ.

We start the fRG flow at the initial scale Λ0 which is in
our case chosen as the maximum energy of all bands. We
then integrate out all modes of these bands by decreas-
ing Λ. In typical flows some components of the effective
interaction vertex become large and diverge at a critical
scale Λc > 0. In this work we use the scale at which the
interaction vertex exceeds a value of the order of 10 times
the bandwidth as an estimate for the critical scale. The
precise choice of this value has only a minor effect on the
extracted critical scale, as the couplings grow very fast
in the vicinity of the divergence.

The divergence is strictly speaking a (physically mean-
ingful) artifact caused by the neglect of the self-energy in
the flow. With self-energy correction a gap would open
up or some other modification of the low-energy spectrum
would take place, and the flow would be regularized. This
is all well known from the Cooper instability in super-
conductors. Our analysis here tells us in which channel
ordering occurs most prominently. The pronounced mo-
mentum structure of the vertex near the critical scale
can be used to extract an effective Hamiltonian for the
low-energy degrees of freedom. This is used to determine
the leading order parameter of a given instability. Fur-
thermore, the scale Λc can be interpreted as an estimate
for ordering temperatures, if ordering is allowed by the
Mermin-Wagner theorem, or at least as the temperature
below which the dominant correlations should be clearly
observable. Furthermore, one can understand Λc as en-
ergy scale for the modification of the spectrum, typically
by a gap.

In this work we study the flow at temperature T = 0.
We find flows to strong coupling with non-zero criti-
cal scales Λc for all choices of non-vanishing interaction
terms provided there is a non-vanishing density of states
at the Fermi level of the coupled layers.

IV. INSTABILITIES AND PHASE DIAGRAM

A. ABA and ABC trilayer Hubbard model

Let us start the description of the fRG results with the
case of onsite interactions only, i.e. U > 0, V1 = V2 = 0.
We limit the study to the charge-neutrality point, i.e.
with Fermi points at K and K ′ in the Brillouin zone.
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FIG. 3: Left panel: Interaction vertex labeled with the spin
convention (upper diagram). Below, the loop contributions
to the flow of the interaction vertex including the particle-
particle-diagram (a), the crossed particle-hole-diagram (b)
and the direct particle-hole diagrams (c). Right panel: Patch-
ing of the Brillouin zone as explained in the text.

the direct particle-hole channel

τΛPH,d(k1, k2, k3, b4) = − 1

VBZ

∫

dk⃗
∑

b,b′

[

− 2V Λ(k1, k, k3, b
′)LΛ(k, qPH,d)V

Λ(qPH,d, k2, k, b4)

+ V Λ(k, k1, k3, b
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,

(19)

and the crossed particle-hole channel

τΛPH,cr(k1, k2, k3, b4) = − 1

VBZ

∫

dk⃗
∑

b,b′

[

V Λ(k, k2, k3, n
′)LΛ(k, qPH,cr)V

Λ(k1, qPH,cr, k, b4)
]

,

(20)

where k = (k⃗, b) collects the wave vector and the band
index. As mentioned above, external frequencies are set
to zero ω1 = ω2 = ω3 = ω4 = 0. q⃗PP = −k⃗ + k⃗1 +
k⃗2, q⃗PH,d = k⃗ + k⃗1 − k⃗3, q⃗PH,cr = k⃗ + k⃗2 − k⃗3 are the
wavevectors of the second loop line. The band index of
the second loop line is denoted with b′. The frequency of
the second line is fixed by frequency conservation to be
−ω in the particle-particle diagram and ω in the particle-
hole diagrams. VBZ ist the volume of the BZ. The loop
kernel is given by

LΛ(k, k′) =
d

dΛ

[

GΛ
0 (k)G

Λ
0 (k

′)
]

, (21)

where in our approximation self-energy corrections are
neglected, i.e., the full propagator is identical to the free
propagator.
The wavevector dependence of the interaction vertex

is simplified by discretization. The BZ is divided into N
patches with constant wavevector dependence within one

patch, so that the coupling function has to be calculated
for only one representative momentum in each patch.
The representative momenta for the patches are chosen
to lie close to the Fermi level. The patching scheme is
shown in Fig. 3, with N = 24. Each of the four mo-
menta in V Λ(k1, k2, k3, b4) is additionally equipped with
a band index. Momentum conservation fixes one of the
four wavevectors. Altogether this results in a 64 × N3

component coupling function V Λ.

We start the fRG flow at the initial scale Λ0 which is in
our case chosen as the maximum energy of all bands. We
then integrate out all modes of these bands by decreas-
ing Λ. In typical flows some components of the effective
interaction vertex become large and diverge at a critical
scale Λc > 0. In this work we use the scale at which the
interaction vertex exceeds a value of the order of 10 times
the bandwidth as an estimate for the critical scale. The
precise choice of this value has only a minor effect on the
extracted critical scale, as the couplings grow very fast
in the vicinity of the divergence.

The divergence is strictly speaking a (physically mean-
ingful) artifact caused by the neglect of the self-energy in
the flow. With self-energy correction a gap would open
up or some other modification of the low-energy spectrum
would take place, and the flow would be regularized. This
is all well known from the Cooper instability in super-
conductors. Our analysis here tells us in which channel
ordering occurs most prominently. The pronounced mo-
mentum structure of the vertex near the critical scale
can be used to extract an effective Hamiltonian for the
low-energy degrees of freedom. This is used to determine
the leading order parameter of a given instability. Fur-
thermore, the scale Λc can be interpreted as an estimate
for ordering temperatures, if ordering is allowed by the
Mermin-Wagner theorem, or at least as the temperature
below which the dominant correlations should be clearly
observable. Furthermore, one can understand Λc as en-
ergy scale for the modification of the spectrum, typically
by a gap.

In this work we study the flow at temperature T = 0.
We find flows to strong coupling with non-zero criti-
cal scales Λc for all choices of non-vanishing interaction
terms provided there is a non-vanishing density of states
at the Fermi level of the coupled layers.

IV. INSTABILITIES AND PHASE DIAGRAM

A. ABA and ABC trilayer Hubbard model

Let us start the description of the fRG results with the
case of onsite interactions only, i.e. U > 0, V1 = V2 = 0.
We limit the study to the charge-neutrality point, i.e.
with Fermi points at K and K ′ in the Brillouin zone.
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Fermi-surface patching scheme

‣ wavevector dependence of Fermi surface from discretization in N patches:

‣ interaction constant within one patch

‣ representative momenta lie at Fermi level

‣ finite set of coupled flow equations for 

components of VΛ

‣ facilitates numerical implementation

‣example:

- t-t’-µ-Hubbard model on the square lattice:  

vertex has N3 components

- generally: VΛ has Nb4N3 components

equation for a two-dimensional system is a differential equa-
tion in a nine-dimensional space. As discussed in Sec. II.E, its
most singular part sits at zero Matsubara frequency. Hence
one may neglect the frequency dependence. Then V! defines
an effective Hamiltonian. Similarly, the k dependence is most
important in the angular direction along the Fermi surface.
This dependence can then be taken into account by a discre-
tization, i.e., by devising patches in the Brillouin zone in
which the coupling function is kept constant. Feldman et al.
(1992) showed that using N patches leads to a natural
N-vector model in two dimensions. Zanchi and Schulz
(1998, 2000) were the first to use it in studies of the
Hubbard model.

Usually one forms elongated patches that extend roughly
perpendicular to the Fermi surface but are rather narrow
parallel to the Fermi surface (see Fig. 9). The coupling
function is then computed for wave vectors k1 to k3 at the
Fermi surface in the center of the patches. We label the
patches by !i ¼ 1; . . . ; N. The function V! is thus approxi-
mated by OðN3Þ interpatch couplings V!ð!1;!2;!3Þ. Even if
k1, k2, and k3 are on the Fermi surface, k4 can be anywhere.
In the calculation of the loop integrals it is however necessary
to assign a patch number !4 to k4, which amounts to an
approximation of projecting k4 on the Fermi surface. Note
that this projected N-patch discretized coupling function
V!ð!1;!2;!3Þ then has fewer symmetries; for instance,
V!ð!1;!2;!3Þ ! V!ð!2;!1;!4Þ in general, as in the latter
object k3 is not necessarily on the Fermi surface. For suffi-
ciently large N, this discretization captures the angular varia-
tion of the coupling function along the Fermi surface with
good precision.

The results obtained within this approximation, described
in the following, have been found to be robust when the
dependence on frequencies !i (Klironomos and Tsai, 2006;
Honerkamp, Fu, and Lee, 2007) and the component of ki

transversal to the Fermi surface (Halboth and Metzner,
2000a; Honerkamp, 2001; Honerkamp et al., 2004) are
included. Katanin (2009) performed a flow to third order in

the scale-dependent four-point vertex (see Sec. II.E.3), with
the frequency dependence in the same approximation as
Honerkamp and Salmhofer (2003).

B. Results for the two-dimensional Hubbard model

Starting from the initial condition given by the Hubbard
model, the flow is run from !0 down to a characteristic scale
!$, where the largest coupling reaches some multiple " of the
bandwidth. The choice of " varies widely in the literature;
the discussion here is based on the comparably cautious
choice " ¼ 2 or 3, as well as on the consistency check that
the results do not change drastically as " is changed. The
characteristic scale !$ corresponds to a temperature T$. If T
is clearly above T$, the flow can be integrated to scale zero
without any instabilities. T$ is only an upper bound for the
temperature where ordering can set in because of order
parameter fluctuations at scales below !$. In two dimensions
they are so strong that long-range order that breaks continu-
ous symmetries does not occur at any T > 0, thus ‘‘ordering’’
means either short-range order with a large correlation length,
or ordering in a related system with a small coupling in the
third direction, as is present in most materials.

1. Antiferromagnetism and superconductivity

The results discussed here are obtained with a slightly
smeared-out step function as cutoff on k (no cutoff on the
frequencies) and by dropping the self-energy.

a. Antiferromagnetism

For t0 ¼ 0 and # ¼ 0, the band is half filled, and the Fermi
surface is a perfect square. Every vector connecting parallel
sides of the Fermi surface is a nesting vector, and r$k ¼ 0 at
ð%; 0Þ and ð0;%Þ. This strongly enhances particle-hole terms
at wave vector Q ¼ ð%;%Þ. A random-phase approximation
summation of these bubbles results in a divergent static spin
susceptibility at Q for any U > 0 at sufficiently low T,
indicating the formation of an antiferromagnetic (AF) spin-
density wave (SDW), in accordance with mean-field studies
(Fulde, 1991). The basic RG results at low T are shown for
U ¼ 2t in Fig. 10. The labeling of the N ¼ 32 patches along
the Fermi surface can be read off Fig. 10(a). Figure 10(b)
shows V! as a function of the patch indices !1 and !2, at
!$ % 0:16t and with !3 ¼ 1 [i.e., k3 near ð& %; 0Þ]. Strongly
enhanced repulsive interactions appear as a vertical line at
!2 ¼ 24 (i.e., for k2 & k3 ¼ Q), almost !1 independent, and
as a horizontal line at !1 ¼ 24 (corresponding to k1 & k3 ¼
Q) with only a weak dependence on !2, roughly half as large
as the vertical feature. In an extrapolation where the regular
profiles are narrowed down to delta functions with an appro-
priate prefactor J, V!ð!1;!2;!3Þ ¼ ðJ=4Þð2&k2& k3;Q þ
&k1& k3;QÞ, corresponding to a mean-field AF-spin interaction
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effective Hamiltonian consisting of the low-scale hopping
term and this interaction exhibits AF long-range order at
sufficiently low T. An analysis of the flow of susceptibilities
(Halboth and Metzner, 2000a; Honerkamp et al., 2001) as
described in Sec. II.F confirms this picture.

FIG. 9 (color online). N-patch discretization of the Brillouin zone
for the one-band Hubbard model on the 2D square lattice. The
colored region is a patch in which the coupling function is approxi-
mated as a constant.
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from Metzner et al. (2011)

N=32
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V Λ was also neglected, since it also affects the flow only
at third order in V Λ.
The coupling function V Λ(K1,K2,K3) depends on

three wavevectors and three Matsubara frequencies, so
that the RG equation for a two-dimensional system is a
differential equation in a 9-dimensional space. As dis-
cussed in Section II.E, its most singular part sits at
zero Matsubara frequency. Hence one may neglect the
frequency dependence. Then V Λ defines an effective
Hamiltonian. Similarly, the k-dependence is most im-
portant in the angular direction along the Fermi sur-
face. This dependence can then be taken into account
by a discretization, i.e. by devising patches in the
Brillouin zone in which the coupling function is kept
constant. Feldman et al. (1992) showed that using N
patches leads to a natural N -vector model in two dimen-
sions. Zanchi and Schulz (1998, 2000) were the first to
use it in studies of the Hubbard model.
Usually one forms elongated patches that extend

roughly perpendicular to the Fermi surface but are rather
narrow parallel to the Fermi surface (see Fig. 9). The
coupling function is then computed for wavevectors k1

to k3 at the Fermi surface in the center of the patches.
We label the patches by κi = 1, . . .N . The function
V Λ is thus approximated by O(N3) interpatch couplings
V Λ(κ1,κ2,κ3). Even if k1,k2 and k3 are on the Fermi
surface, k4 can be anywhere. In the calculation of
the loop integrals it is however necessary to assign a
patch number κ4 to k4, which amounts to an approx-
imation of projecting k4 on the Fermi surface. Note
that this projectedN -patch discretized coupling function
V Λ(κ1,κ2,κ3) then has fewer symmetries; for instance
V Λ(κ1,κ2,κ3) ̸= V Λ(κ2,κ1,κ4) in general, as in the lat-
ter object k3 is not necessarily on the Fermi surface. For
sufficiently large N , this discretization captures the an-
gular variation of the coupling function along the Fermi
surface with good precision.
The results obtained within this approximation,

described in the following, have been found to
be robust when the dependence on frequencies ωi

(Honerkamp et al., 2007; Klironomos and Tsai, 2006)
and the component of ki transversal to the Fermi sur-
face (Halboth and Metzner, 2000a; Honerkamp, 2001;
Honerkamp et al., 2004) are included. Katanin (2009)
performed a flow to third order in the scale-dependent
four-point-vertex (see Section II.E.3), with the fre-
quency dependence in the same approximation as
Honerkamp and Salmhofer (2003).

B. Results for the two-dimensional Hubbard model

Starting from the initial condition given by the Hub-
bard model, the flow is run from Λ0 down to a charac-
teristic scale Λ∗, where the largest coupling reaches some
multiple α of the bandwidth. The choice of α varies
widely in the literature; the discussion here is based on
the comparably cautious choice α = 2 or 3, as well as
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FIG. 8 Top row: The coupling function V Λ(K1,K2,K3) with
the spin convention, and the diagrams entering in the flow
equation for the self-energy (middle and right diagram). Mid-
dle and bottom row: The diagrams for the flow of the coupling
function. The internal lines are either full propagators GΛ or
single-scale propagators SΛ.

FIG. 9 (Color online) N-patch discretization of the Brillouin
zone for the one-band Hubbard model on the 2D square lat-
tice. The colored region is a patch in which the coupling
function is approximated as a constant.

on the consistency check that the results do not change
drastically as α is changed. The characteristic scale Λ∗
corresponds to a temperature T∗. If T is clearly above
T∗, the flow can be integrated to scale zero without any
instabilities. T∗ is only an upper bound for the tempera-
ture where ordering can set in because of order parameter
fluctuations at scales below Λ∗. In two dimensions they
are so strong that long-range order that breaks continu-
ous symmetries does not occur at any T > 0, thus “or-
dering” is to mean either short-range order with a very

V⇤(k1, k2, k3, k4)



fRG: from bare to effective interaction

‣ low-energy effective action & momentum structure 

➡ two-particle interaction vertex

➡ flow to strong coupling: singularity for Λ → Λ* 

➡ read off dominant interactions and e.g. extract form factors of order parameters

V (�p, �p0, �p+ �q)

‣ excitations at intermediate scales generate momentum structure in low-energy interaction

bandwidth (eV)

 (meV)~!D He� =
1

2

X

�p,�p0,�q,s,s0

V (�p, �p⇥, �p+ �q)c†�p+�q,sc
†
�p0��q,s0c�p0,s0c�p,s

Hbare = U

X

i

ni,"ni,# + V1

X

hi,ji,�,�0

ni,�nj,�0 + ...

fRG:{
energy

23

V Λ was also neglected, since it also affects the flow only
at third order in V Λ.
The coupling function V Λ(K1,K2,K3) depends on

three wavevectors and three Matsubara frequencies, so
that the RG equation for a two-dimensional system is a
differential equation in a 9-dimensional space. As dis-
cussed in Section II.E, its most singular part sits at
zero Matsubara frequency. Hence one may neglect the
frequency dependence. Then V Λ defines an effective
Hamiltonian. Similarly, the k-dependence is most im-
portant in the angular direction along the Fermi sur-
face. This dependence can then be taken into account
by a discretization, i.e. by devising patches in the
Brillouin zone in which the coupling function is kept
constant. Feldman et al. (1992) showed that using N
patches leads to a natural N -vector model in two dimen-
sions. Zanchi and Schulz (1998, 2000) were the first to
use it in studies of the Hubbard model.
Usually one forms elongated patches that extend

roughly perpendicular to the Fermi surface but are rather
narrow parallel to the Fermi surface (see Fig. 9). The
coupling function is then computed for wavevectors k1

to k3 at the Fermi surface in the center of the patches.
We label the patches by κi = 1, . . .N . The function
V Λ is thus approximated by O(N3) interpatch couplings
V Λ(κ1,κ2,κ3). Even if k1,k2 and k3 are on the Fermi
surface, k4 can be anywhere. In the calculation of
the loop integrals it is however necessary to assign a
patch number κ4 to k4, which amounts to an approx-
imation of projecting k4 on the Fermi surface. Note
that this projectedN -patch discretized coupling function
V Λ(κ1,κ2,κ3) then has fewer symmetries; for instance
V Λ(κ1,κ2,κ3) ̸= V Λ(κ2,κ1,κ4) in general, as in the lat-
ter object k3 is not necessarily on the Fermi surface. For
sufficiently large N , this discretization captures the an-
gular variation of the coupling function along the Fermi
surface with good precision.
The results obtained within this approximation,

described in the following, have been found to
be robust when the dependence on frequencies ωi

(Honerkamp et al., 2007; Klironomos and Tsai, 2006)
and the component of ki transversal to the Fermi sur-
face (Halboth and Metzner, 2000a; Honerkamp, 2001;
Honerkamp et al., 2004) are included. Katanin (2009)
performed a flow to third order in the scale-dependent
four-point-vertex (see Section II.E.3), with the fre-
quency dependence in the same approximation as
Honerkamp and Salmhofer (2003).

B. Results for the two-dimensional Hubbard model

Starting from the initial condition given by the Hub-
bard model, the flow is run from Λ0 down to a charac-
teristic scale Λ∗, where the largest coupling reaches some
multiple α of the bandwidth. The choice of α varies
widely in the literature; the discussion here is based on
the comparably cautious choice α = 2 or 3, as well as
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FIG. 8 Top row: The coupling function V Λ(K1,K2,K3) with
the spin convention, and the diagrams entering in the flow
equation for the self-energy (middle and right diagram). Mid-
dle and bottom row: The diagrams for the flow of the coupling
function. The internal lines are either full propagators GΛ or
single-scale propagators SΛ.

FIG. 9 (Color online) N-patch discretization of the Brillouin
zone for the one-band Hubbard model on the 2D square lat-
tice. The colored region is a patch in which the coupling
function is approximated as a constant.

on the consistency check that the results do not change
drastically as α is changed. The characteristic scale Λ∗
corresponds to a temperature T∗. If T is clearly above
T∗, the flow can be integrated to scale zero without any
instabilities. T∗ is only an upper bound for the tempera-
ture where ordering can set in because of order parameter
fluctuations at scales below Λ∗. In two dimensions they
are so strong that long-range order that breaks continu-
ous symmetries does not occur at any T > 0, thus “or-
dering” is to mean either short-range order with a very
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‣ sharp momentum structures in the interaction vertex emerge

‣ e.g., onsite interaction (U=3.0t), typical pattern (k3 fixed at point 1):

equation for a two-dimensional system is a differential equa-
tion in a nine-dimensional space. As discussed in Sec. II.E, its
most singular part sits at zero Matsubara frequency. Hence
one may neglect the frequency dependence. Then V! defines
an effective Hamiltonian. Similarly, the k dependence is most
important in the angular direction along the Fermi surface.
This dependence can then be taken into account by a discre-
tization, i.e., by devising patches in the Brillouin zone in
which the coupling function is kept constant. Feldman et al.
(1992) showed that using N patches leads to a natural
N-vector model in two dimensions. Zanchi and Schulz
(1998, 2000) were the first to use it in studies of the
Hubbard model.

Usually one forms elongated patches that extend roughly
perpendicular to the Fermi surface but are rather narrow
parallel to the Fermi surface (see Fig. 9). The coupling
function is then computed for wave vectors k1 to k3 at the
Fermi surface in the center of the patches. We label the
patches by !i ¼ 1; . . . ; N. The function V! is thus approxi-
mated by OðN3Þ interpatch couplings V!ð!1;!2;!3Þ. Even if
k1, k2, and k3 are on the Fermi surface, k4 can be anywhere.
In the calculation of the loop integrals it is however necessary
to assign a patch number !4 to k4, which amounts to an
approximation of projecting k4 on the Fermi surface. Note
that this projected N-patch discretized coupling function
V!ð!1;!2;!3Þ then has fewer symmetries; for instance,
V!ð!1;!2;!3Þ ! V!ð!2;!1;!4Þ in general, as in the latter
object k3 is not necessarily on the Fermi surface. For suffi-
ciently large N, this discretization captures the angular varia-
tion of the coupling function along the Fermi surface with
good precision.

The results obtained within this approximation, described
in the following, have been found to be robust when the
dependence on frequencies !i (Klironomos and Tsai, 2006;
Honerkamp, Fu, and Lee, 2007) and the component of ki

transversal to the Fermi surface (Halboth and Metzner,
2000a; Honerkamp, 2001; Honerkamp et al., 2004) are
included. Katanin (2009) performed a flow to third order in

the scale-dependent four-point vertex (see Sec. II.E.3), with
the frequency dependence in the same approximation as
Honerkamp and Salmhofer (2003).

B. Results for the two-dimensional Hubbard model

Starting from the initial condition given by the Hubbard
model, the flow is run from !0 down to a characteristic scale
!$, where the largest coupling reaches some multiple " of the
bandwidth. The choice of " varies widely in the literature;
the discussion here is based on the comparably cautious
choice " ¼ 2 or 3, as well as on the consistency check that
the results do not change drastically as " is changed. The
characteristic scale !$ corresponds to a temperature T$. If T
is clearly above T$, the flow can be integrated to scale zero
without any instabilities. T$ is only an upper bound for the
temperature where ordering can set in because of order
parameter fluctuations at scales below !$. In two dimensions
they are so strong that long-range order that breaks continu-
ous symmetries does not occur at any T > 0, thus ‘‘ordering’’
means either short-range order with a large correlation length,
or ordering in a related system with a small coupling in the
third direction, as is present in most materials.

1. Antiferromagnetism and superconductivity

The results discussed here are obtained with a slightly
smeared-out step function as cutoff on k (no cutoff on the
frequencies) and by dropping the self-energy.

a. Antiferromagnetism

For t0 ¼ 0 and # ¼ 0, the band is half filled, and the Fermi
surface is a perfect square. Every vector connecting parallel
sides of the Fermi surface is a nesting vector, and r$k ¼ 0 at
ð%; 0Þ and ð0;%Þ. This strongly enhances particle-hole terms
at wave vector Q ¼ ð%;%Þ. A random-phase approximation
summation of these bubbles results in a divergent static spin
susceptibility at Q for any U > 0 at sufficiently low T,
indicating the formation of an antiferromagnetic (AF) spin-
density wave (SDW), in accordance with mean-field studies
(Fulde, 1991). The basic RG results at low T are shown for
U ¼ 2t in Fig. 10. The labeling of the N ¼ 32 patches along
the Fermi surface can be read off Fig. 10(a). Figure 10(b)
shows V! as a function of the patch indices !1 and !2, at
!$ % 0:16t and with !3 ¼ 1 [i.e., k3 near ð& %; 0Þ]. Strongly
enhanced repulsive interactions appear as a vertical line at
!2 ¼ 24 (i.e., for k2 & k3 ¼ Q), almost !1 independent, and
as a horizontal line at !1 ¼ 24 (corresponding to k1 & k3 ¼
Q) with only a weak dependence on !2, roughly half as large
as the vertical feature. In an extrapolation where the regular
profiles are narrowed down to delta functions with an appro-
priate prefactor J, V!ð!1;!2;!3Þ ¼ ðJ=4Þð2&k2& k3;Q þ
&k1& k3;QÞ, corresponding to a mean-field AF-spin interaction
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effective Hamiltonian consisting of the low-scale hopping
term and this interaction exhibits AF long-range order at
sufficiently low T. An analysis of the flow of susceptibilities
(Halboth and Metzner, 2000a; Honerkamp et al., 2001) as
described in Sec. II.F confirms this picture.

FIG. 9 (color online). N-patch discretization of the Brillouin zone
for the one-band Hubbard model on the 2D square lattice. The
colored region is a patch in which the coupling function is approxi-
mated as a constant.
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‣ mean-field decoupling → antiferromagnetic SDW (AF-SDW)

The extrapolation to a mean-field Hamiltonian is a drastic
oversimplification, in which the spin fluctuations are lost, but
they are retained in the V! obtained by the RG flow. As the
leading instability is clearly exposed by this analysis, one can
also resort to a bosonized description that treats the collective
infrared physics (Baier, Bick, and Wetterich, 2004).

b. d-wave Cooper pairing

For t0 ¼ "0:3t and ! ¼ "1:2t, the Fermi surface still
contains the saddle points ð"; 0Þ and ð0;"Þ but is curved
away from these points [Fig. 10(c)]. Now Cooper pair scat-
tering dominates, well visible in Fig. 10(d) on the diagonal
lines k1 þ k2 ¼ 0 (j#1 " #2j ¼ N=2 in terms of patch in-
dices). It is attractive when the incoming pair k1;"k1 is near
the same saddle point ð&"; 0Þ as the outgoing pair k3, "k3,
and repulsive when incoming and outgoing pairs are at differ-
ent saddle points. This is the symmetry of the form factor
dðkÞ ¼ d0ðcoskx " coskyÞ for dx2"y2 Cooper pairing. In an

extrapolation as above, V!ðk1;k2;k3Þ gives rise to the mean-
field Hamiltonian

H!
dSC ¼ VdSC

X

k;k0
dðkÞdðk0Þcyk0;"c

y
"k0 ;#c"k;#ck;";

which has a d-wave singlet-paired ground state. This d-wave
pairing instability was found in a number of studies using
different functional RG schemes (Zanchi and Schulz, 1998,
2000; Halboth and Metzner, 2000a, 2000b; Honerkamp,
2001; Honerkamp et al., 2001; Honerkamp and Salmhofer,
2001a, 2001b; Tsai and Marston, 2001), in a rather large
parameter region. This constitutes convincing evidence that

the weakly coupled Hubbard model possesses a d-wave
superconducting ground state.

c. Interplay of AF and SC

In Fig. 10(d), the sign structure of the d-wave term goes
together, and fits perfectly with, enhanced repulsive interac-
tions near #1 ¼ 8 and #2 ¼ 24, which are the remnants of the
SDW feature in Fig. 10(b). Their larger width is due to the
Fermi surface curvature. As ! is decreased, these SDW
features appear first, due to approximate nesting at high
scales, and then create an attractive component in the
dx2"y2-pairing channel, which then grows as ! is lowered

further, while the SDW is cut off by Fermi surface curvature,
as discussed also in Appendix B.3. When the SDW-enhancing
terms are removed by hand from the right-hand side of the
RG equation, the d-wave terms are suppressed as well. Thus
the d-wave pairing interaction is induced by AF-spin fluctua-
tions that appear on higher scales.

At fixed U, t, and t0, there is a sizable interval of ! for
which the Fermi surface remains close to the saddle points.
Since both AF-SDW and d-wave SC are driven by repulsive
scattering between ð"; 0Þ and ð0;"Þ, both grow and reinforce
one another. In the saddle point regime, it becomes impossible
to single out one over the other in the truncation used here. By
analogy with the quasi-one-dimensional ladder systems, it has
been argued that in this regime the Fermi surface gets trun-
cated (Furukawa, Rice, and Salmhofer, 1998; Honerkamp
et al., 2001; Läuchli, Honerkamp, and Rice, 2004).

2. Ferromagnetism versus superconductivity

At the van Hove filling, ferromagnetic (FM) tendencies are
enhanced by the logarithmic divergence of the density of
states, and the Stoner criterion for the bare interaction sug-
gests an FM ordered state at arbitrarily smallU. However, the
van Hove singularities also make the OðU2Þ Cooper pair
scattering log2 divergent, hence putting the two terms into
direct competition.

As discussed in Sec. II.D.1, the momentum-shell cutoff
artificially suppresses FM. For this reason, the T flow (see
Sec. II.D.2) was invented (Honerkamp and Salmhofer, 2001a,
2001b), and we discuss results obtained by T flow here. The
main difference to the AF and SC scenario discussed above is
that at zero transfer momentum, scattering processes driving
FM must have the opposite sign from those driving singlet
SC, hence mutually suppressing one another. This simple
picture is confirmed by the RG with momentum-dependent
vertices, in a study where t0 and ! are varied at fixed U and t,
such that the Fermi surface always contains the saddle points:
near to t0 ¼ "t=3, T' gets strongly suppressed, hinting at a
quantum critical point between the d-wave SC and FM
phases (lower left plot in Fig. 11). These results were later
confirmed by a two-particle self-consistent approach
(Hankyevych, Kyung, and Termblay, 2003) and in the so-
called " scheme, which employs a soft infrared regulator on
the Matsubara frequencies (Husemann and Salmhofer, 2009);
see the lower right plot in Fig. 11. In the latter study, the
N-patch scheme was replaced by a parametrization of the
vertex functions in terms of exchange bosons. The much
higher value of !' in the transitional regime near t0¼"t=3
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FIG. 10 (color online). N-patch functional RG data obtained with
the momentum-shell functional RG for the repulsive Hubbard
model on the 2D square lattice. Upper plots: ! ¼ 0, t0 ¼ 0, and
initial U ¼ 2t; lower plots: ! ¼ 1:2t, t0 ¼ "0:3t, and U ¼ 3t. Left:
Fermi surfaces for the two cases and the N ¼ 32 discretization
points for the two incoming k1, k2 and the first outgoing wave
vector k3. Right: The coupling function V!' ð#1;#2;#3Þ with
#3 ¼ 1 and #1 and #2 moving around the Fermi surface. The color
bars on the right indicate the values of the interactions.
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@ zero doping

equation for a two-dimensional system is a differential equa-
tion in a nine-dimensional space. As discussed in Sec. II.E, its
most singular part sits at zero Matsubara frequency. Hence
one may neglect the frequency dependence. Then V! defines
an effective Hamiltonian. Similarly, the k dependence is most
important in the angular direction along the Fermi surface.
This dependence can then be taken into account by a discre-
tization, i.e., by devising patches in the Brillouin zone in
which the coupling function is kept constant. Feldman et al.
(1992) showed that using N patches leads to a natural
N-vector model in two dimensions. Zanchi and Schulz
(1998, 2000) were the first to use it in studies of the
Hubbard model.

Usually one forms elongated patches that extend roughly
perpendicular to the Fermi surface but are rather narrow
parallel to the Fermi surface (see Fig. 9). The coupling
function is then computed for wave vectors k1 to k3 at the
Fermi surface in the center of the patches. We label the
patches by !i ¼ 1; . . . ; N. The function V! is thus approxi-
mated by OðN3Þ interpatch couplings V!ð!1;!2;!3Þ. Even if
k1, k2, and k3 are on the Fermi surface, k4 can be anywhere.
In the calculation of the loop integrals it is however necessary
to assign a patch number !4 to k4, which amounts to an
approximation of projecting k4 on the Fermi surface. Note
that this projected N-patch discretized coupling function
V!ð!1;!2;!3Þ then has fewer symmetries; for instance,
V!ð!1;!2;!3Þ ! V!ð!2;!1;!4Þ in general, as in the latter
object k3 is not necessarily on the Fermi surface. For suffi-
ciently large N, this discretization captures the angular varia-
tion of the coupling function along the Fermi surface with
good precision.

The results obtained within this approximation, described
in the following, have been found to be robust when the
dependence on frequencies !i (Klironomos and Tsai, 2006;
Honerkamp, Fu, and Lee, 2007) and the component of ki

transversal to the Fermi surface (Halboth and Metzner,
2000a; Honerkamp, 2001; Honerkamp et al., 2004) are
included. Katanin (2009) performed a flow to third order in

the scale-dependent four-point vertex (see Sec. II.E.3), with
the frequency dependence in the same approximation as
Honerkamp and Salmhofer (2003).

B. Results for the two-dimensional Hubbard model

Starting from the initial condition given by the Hubbard
model, the flow is run from !0 down to a characteristic scale
!$, where the largest coupling reaches some multiple " of the
bandwidth. The choice of " varies widely in the literature;
the discussion here is based on the comparably cautious
choice " ¼ 2 or 3, as well as on the consistency check that
the results do not change drastically as " is changed. The
characteristic scale !$ corresponds to a temperature T$. If T
is clearly above T$, the flow can be integrated to scale zero
without any instabilities. T$ is only an upper bound for the
temperature where ordering can set in because of order
parameter fluctuations at scales below !$. In two dimensions
they are so strong that long-range order that breaks continu-
ous symmetries does not occur at any T > 0, thus ‘‘ordering’’
means either short-range order with a large correlation length,
or ordering in a related system with a small coupling in the
third direction, as is present in most materials.

1. Antiferromagnetism and superconductivity

The results discussed here are obtained with a slightly
smeared-out step function as cutoff on k (no cutoff on the
frequencies) and by dropping the self-energy.

a. Antiferromagnetism

For t0 ¼ 0 and # ¼ 0, the band is half filled, and the Fermi
surface is a perfect square. Every vector connecting parallel
sides of the Fermi surface is a nesting vector, and r$k ¼ 0 at
ð%; 0Þ and ð0;%Þ. This strongly enhances particle-hole terms
at wave vector Q ¼ ð%;%Þ. A random-phase approximation
summation of these bubbles results in a divergent static spin
susceptibility at Q for any U > 0 at sufficiently low T,
indicating the formation of an antiferromagnetic (AF) spin-
density wave (SDW), in accordance with mean-field studies
(Fulde, 1991). The basic RG results at low T are shown for
U ¼ 2t in Fig. 10. The labeling of the N ¼ 32 patches along
the Fermi surface can be read off Fig. 10(a). Figure 10(b)
shows V! as a function of the patch indices !1 and !2, at
!$ % 0:16t and with !3 ¼ 1 [i.e., k3 near ð& %; 0Þ]. Strongly
enhanced repulsive interactions appear as a vertical line at
!2 ¼ 24 (i.e., for k2 & k3 ¼ Q), almost !1 independent, and
as a horizontal line at !1 ¼ 24 (corresponding to k1 & k3 ¼
Q) with only a weak dependence on !2, roughly half as large
as the vertical feature. In an extrapolation where the regular
profiles are narrowed down to delta functions with an appro-
priate prefactor J, V!ð!1;!2;!3Þ ¼ ðJ=4Þð2&k2& k3;Q þ
&k1& k3;QÞ, corresponding to a mean-field AF-spin interaction

Hamiltonian J
P

hi;jie
iQ(ðRi& RjÞSi (Sj, withSi ¼ 1

2 c
þ
i !ci. The

effective Hamiltonian consisting of the low-scale hopping
term and this interaction exhibits AF long-range order at
sufficiently low T. An analysis of the flow of susceptibilities
(Halboth and Metzner, 2000a; Honerkamp et al., 2001) as
described in Sec. II.F confirms this picture.

FIG. 9 (color online). N-patch discretization of the Brillouin zone
for the one-band Hubbard model on the 2D square lattice. The
colored region is a patch in which the coupling function is approxi-
mated as a constant.
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oversimplification, in which the spin fluctuations are lost, but
they are retained in the V! obtained by the RG flow. As the
leading instability is clearly exposed by this analysis, one can
also resort to a bosonized description that treats the collective
infrared physics (Baier, Bick, and Wetterich, 2004).

b. d-wave Cooper pairing

For t0 ¼ "0:3t and ! ¼ "1:2t, the Fermi surface still
contains the saddle points ð"; 0Þ and ð0;"Þ but is curved
away from these points [Fig. 10(c)]. Now Cooper pair scat-
tering dominates, well visible in Fig. 10(d) on the diagonal
lines k1 þ k2 ¼ 0 (j#1 " #2j ¼ N=2 in terms of patch in-
dices). It is attractive when the incoming pair k1;"k1 is near
the same saddle point ð&"; 0Þ as the outgoing pair k3, "k3,
and repulsive when incoming and outgoing pairs are at differ-
ent saddle points. This is the symmetry of the form factor
dðkÞ ¼ d0ðcoskx " coskyÞ for dx2"y2 Cooper pairing. In an

extrapolation as above, V!ðk1;k2;k3Þ gives rise to the mean-
field Hamiltonian

H!
dSC ¼ VdSC

X

k;k0
dðkÞdðk0Þcyk0;"c

y
"k0 ;#c"k;#ck;";

which has a d-wave singlet-paired ground state. This d-wave
pairing instability was found in a number of studies using
different functional RG schemes (Zanchi and Schulz, 1998,
2000; Halboth and Metzner, 2000a, 2000b; Honerkamp,
2001; Honerkamp et al., 2001; Honerkamp and Salmhofer,
2001a, 2001b; Tsai and Marston, 2001), in a rather large
parameter region. This constitutes convincing evidence that

the weakly coupled Hubbard model possesses a d-wave
superconducting ground state.

c. Interplay of AF and SC

In Fig. 10(d), the sign structure of the d-wave term goes
together, and fits perfectly with, enhanced repulsive interac-
tions near #1 ¼ 8 and #2 ¼ 24, which are the remnants of the
SDW feature in Fig. 10(b). Their larger width is due to the
Fermi surface curvature. As ! is decreased, these SDW
features appear first, due to approximate nesting at high
scales, and then create an attractive component in the
dx2"y2-pairing channel, which then grows as ! is lowered

further, while the SDW is cut off by Fermi surface curvature,
as discussed also in Appendix B.3. When the SDW-enhancing
terms are removed by hand from the right-hand side of the
RG equation, the d-wave terms are suppressed as well. Thus
the d-wave pairing interaction is induced by AF-spin fluctua-
tions that appear on higher scales.

At fixed U, t, and t0, there is a sizable interval of ! for
which the Fermi surface remains close to the saddle points.
Since both AF-SDW and d-wave SC are driven by repulsive
scattering between ð"; 0Þ and ð0;"Þ, both grow and reinforce
one another. In the saddle point regime, it becomes impossible
to single out one over the other in the truncation used here. By
analogy with the quasi-one-dimensional ladder systems, it has
been argued that in this regime the Fermi surface gets trun-
cated (Furukawa, Rice, and Salmhofer, 1998; Honerkamp
et al., 2001; Läuchli, Honerkamp, and Rice, 2004).

2. Ferromagnetism versus superconductivity

At the van Hove filling, ferromagnetic (FM) tendencies are
enhanced by the logarithmic divergence of the density of
states, and the Stoner criterion for the bare interaction sug-
gests an FM ordered state at arbitrarily smallU. However, the
van Hove singularities also make the OðU2Þ Cooper pair
scattering log2 divergent, hence putting the two terms into
direct competition.

As discussed in Sec. II.D.1, the momentum-shell cutoff
artificially suppresses FM. For this reason, the T flow (see
Sec. II.D.2) was invented (Honerkamp and Salmhofer, 2001a,
2001b), and we discuss results obtained by T flow here. The
main difference to the AF and SC scenario discussed above is
that at zero transfer momentum, scattering processes driving
FM must have the opposite sign from those driving singlet
SC, hence mutually suppressing one another. This simple
picture is confirmed by the RG with momentum-dependent
vertices, in a study where t0 and ! are varied at fixed U and t,
such that the Fermi surface always contains the saddle points:
near to t0 ¼ "t=3, T' gets strongly suppressed, hinting at a
quantum critical point between the d-wave SC and FM
phases (lower left plot in Fig. 11). These results were later
confirmed by a two-particle self-consistent approach
(Hankyevych, Kyung, and Termblay, 2003) and in the so-
called " scheme, which employs a soft infrared regulator on
the Matsubara frequencies (Husemann and Salmhofer, 2009);
see the lower right plot in Fig. 11. In the latter study, the
N-patch scheme was replaced by a parametrization of the
vertex functions in terms of exchange bosons. The much
higher value of !' in the transitional regime near t0¼"t=3
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FIG. 10 (color online). N-patch functional RG data obtained with
the momentum-shell functional RG for the repulsive Hubbard
model on the 2D square lattice. Upper plots: ! ¼ 0, t0 ¼ 0, and
initial U ¼ 2t; lower plots: ! ¼ 1:2t, t0 ¼ "0:3t, and U ¼ 3t. Left:
Fermi surfaces for the two cases and the N ¼ 32 discretization
points for the two incoming k1, k2 and the first outgoing wave
vector k3. Right: The coupling function V!' ð#1;#2;#3Þ with
#3 ¼ 1 and #1 and #2 moving around the Fermi surface. The color
bars on the right indicate the values of the interactions.
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The extrapolation to a mean-field Hamiltonian is a drastic
oversimplification, in which the spin fluctuations are lost, but
they are retained in the V! obtained by the RG flow. As the
leading instability is clearly exposed by this analysis, one can
also resort to a bosonized description that treats the collective
infrared physics (Baier, Bick, and Wetterich, 2004).

b. d-wave Cooper pairing

For t0 ¼ "0:3t and ! ¼ "1:2t, the Fermi surface still
contains the saddle points ð"; 0Þ and ð0;"Þ but is curved
away from these points [Fig. 10(c)]. Now Cooper pair scat-
tering dominates, well visible in Fig. 10(d) on the diagonal
lines k1 þ k2 ¼ 0 (j#1 " #2j ¼ N=2 in terms of patch in-
dices). It is attractive when the incoming pair k1;"k1 is near
the same saddle point ð&"; 0Þ as the outgoing pair k3, "k3,
and repulsive when incoming and outgoing pairs are at differ-
ent saddle points. This is the symmetry of the form factor
dðkÞ ¼ d0ðcoskx " coskyÞ for dx2"y2 Cooper pairing. In an

extrapolation as above, V!ðk1;k2;k3Þ gives rise to the mean-
field Hamiltonian

H!
dSC ¼ VdSC

X

k;k0
dðkÞdðk0Þcyk0;"c

y
"k0 ;#c"k;#ck;";

which has a d-wave singlet-paired ground state. This d-wave
pairing instability was found in a number of studies using
different functional RG schemes (Zanchi and Schulz, 1998,
2000; Halboth and Metzner, 2000a, 2000b; Honerkamp,
2001; Honerkamp et al., 2001; Honerkamp and Salmhofer,
2001a, 2001b; Tsai and Marston, 2001), in a rather large
parameter region. This constitutes convincing evidence that

the weakly coupled Hubbard model possesses a d-wave
superconducting ground state.

c. Interplay of AF and SC

In Fig. 10(d), the sign structure of the d-wave term goes
together, and fits perfectly with, enhanced repulsive interac-
tions near #1 ¼ 8 and #2 ¼ 24, which are the remnants of the
SDW feature in Fig. 10(b). Their larger width is due to the
Fermi surface curvature. As ! is decreased, these SDW
features appear first, due to approximate nesting at high
scales, and then create an attractive component in the
dx2"y2-pairing channel, which then grows as ! is lowered

further, while the SDW is cut off by Fermi surface curvature,
as discussed also in Appendix B.3. When the SDW-enhancing
terms are removed by hand from the right-hand side of the
RG equation, the d-wave terms are suppressed as well. Thus
the d-wave pairing interaction is induced by AF-spin fluctua-
tions that appear on higher scales.

At fixed U, t, and t0, there is a sizable interval of ! for
which the Fermi surface remains close to the saddle points.
Since both AF-SDW and d-wave SC are driven by repulsive
scattering between ð"; 0Þ and ð0;"Þ, both grow and reinforce
one another. In the saddle point regime, it becomes impossible
to single out one over the other in the truncation used here. By
analogy with the quasi-one-dimensional ladder systems, it has
been argued that in this regime the Fermi surface gets trun-
cated (Furukawa, Rice, and Salmhofer, 1998; Honerkamp
et al., 2001; Läuchli, Honerkamp, and Rice, 2004).

2. Ferromagnetism versus superconductivity

At the van Hove filling, ferromagnetic (FM) tendencies are
enhanced by the logarithmic divergence of the density of
states, and the Stoner criterion for the bare interaction sug-
gests an FM ordered state at arbitrarily smallU. However, the
van Hove singularities also make the OðU2Þ Cooper pair
scattering log2 divergent, hence putting the two terms into
direct competition.

As discussed in Sec. II.D.1, the momentum-shell cutoff
artificially suppresses FM. For this reason, the T flow (see
Sec. II.D.2) was invented (Honerkamp and Salmhofer, 2001a,
2001b), and we discuss results obtained by T flow here. The
main difference to the AF and SC scenario discussed above is
that at zero transfer momentum, scattering processes driving
FM must have the opposite sign from those driving singlet
SC, hence mutually suppressing one another. This simple
picture is confirmed by the RG with momentum-dependent
vertices, in a study where t0 and ! are varied at fixed U and t,
such that the Fermi surface always contains the saddle points:
near to t0 ¼ "t=3, T' gets strongly suppressed, hinting at a
quantum critical point between the d-wave SC and FM
phases (lower left plot in Fig. 11). These results were later
confirmed by a two-particle self-consistent approach
(Hankyevych, Kyung, and Termblay, 2003) and in the so-
called " scheme, which employs a soft infrared regulator on
the Matsubara frequencies (Husemann and Salmhofer, 2009);
see the lower right plot in Fig. 11. In the latter study, the
N-patch scheme was replaced by a parametrization of the
vertex functions in terms of exchange bosons. The much
higher value of !' in the transitional regime near t0¼"t=3
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FIG. 10 (color online). N-patch functional RG data obtained with
the momentum-shell functional RG for the repulsive Hubbard
model on the 2D square lattice. Upper plots: ! ¼ 0, t0 ¼ 0, and
initial U ¼ 2t; lower plots: ! ¼ 1:2t, t0 ¼ "0:3t, and U ¼ 3t. Left:
Fermi surfaces for the two cases and the N ¼ 32 discretization
points for the two incoming k1, k2 and the first outgoing wave
vector k3. Right: The coupling function V!' ð#1;#2;#3Þ with
#3 ¼ 1 and #1 and #2 moving around the Fermi surface. The color
bars on the right indicate the values of the interactions.
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   or d-wave SC

23

V Λ was also neglected, since it also affects the flow only
at third order in V Λ.
The coupling function V Λ(K1,K2,K3) depends on

three wavevectors and three Matsubara frequencies, so
that the RG equation for a two-dimensional system is a
differential equation in a 9-dimensional space. As dis-
cussed in Section II.E, its most singular part sits at
zero Matsubara frequency. Hence one may neglect the
frequency dependence. Then V Λ defines an effective
Hamiltonian. Similarly, the k-dependence is most im-
portant in the angular direction along the Fermi sur-
face. This dependence can then be taken into account
by a discretization, i.e. by devising patches in the
Brillouin zone in which the coupling function is kept
constant. Feldman et al. (1992) showed that using N
patches leads to a natural N -vector model in two dimen-
sions. Zanchi and Schulz (1998, 2000) were the first to
use it in studies of the Hubbard model.
Usually one forms elongated patches that extend

roughly perpendicular to the Fermi surface but are rather
narrow parallel to the Fermi surface (see Fig. 9). The
coupling function is then computed for wavevectors k1

to k3 at the Fermi surface in the center of the patches.
We label the patches by κi = 1, . . .N . The function
V Λ is thus approximated by O(N3) interpatch couplings
V Λ(κ1,κ2,κ3). Even if k1,k2 and k3 are on the Fermi
surface, k4 can be anywhere. In the calculation of
the loop integrals it is however necessary to assign a
patch number κ4 to k4, which amounts to an approx-
imation of projecting k4 on the Fermi surface. Note
that this projectedN -patch discretized coupling function
V Λ(κ1,κ2,κ3) then has fewer symmetries; for instance
V Λ(κ1,κ2,κ3) ̸= V Λ(κ2,κ1,κ4) in general, as in the lat-
ter object k3 is not necessarily on the Fermi surface. For
sufficiently large N , this discretization captures the an-
gular variation of the coupling function along the Fermi
surface with good precision.
The results obtained within this approximation,

described in the following, have been found to
be robust when the dependence on frequencies ωi

(Honerkamp et al., 2007; Klironomos and Tsai, 2006)
and the component of ki transversal to the Fermi sur-
face (Halboth and Metzner, 2000a; Honerkamp, 2001;
Honerkamp et al., 2004) are included. Katanin (2009)
performed a flow to third order in the scale-dependent
four-point-vertex (see Section II.E.3), with the fre-
quency dependence in the same approximation as
Honerkamp and Salmhofer (2003).

B. Results for the two-dimensional Hubbard model

Starting from the initial condition given by the Hub-
bard model, the flow is run from Λ0 down to a charac-
teristic scale Λ∗, where the largest coupling reaches some
multiple α of the bandwidth. The choice of α varies
widely in the literature; the discussion here is based on
the comparably cautious choice α = 2 or 3, as well as
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s′, K4

T Λ
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T Λ
PH,cr
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FIG. 8 Top row: The coupling function V Λ(K1,K2,K3) with
the spin convention, and the diagrams entering in the flow
equation for the self-energy (middle and right diagram). Mid-
dle and bottom row: The diagrams for the flow of the coupling
function. The internal lines are either full propagators GΛ or
single-scale propagators SΛ.

FIG. 9 (Color online) N-patch discretization of the Brillouin
zone for the one-band Hubbard model on the 2D square lat-
tice. The colored region is a patch in which the coupling
function is approximated as a constant.

on the consistency check that the results do not change
drastically as α is changed. The characteristic scale Λ∗
corresponds to a temperature T∗. If T is clearly above
T∗, the flow can be integrated to scale zero without any
instabilities. T∗ is only an upper bound for the tempera-
ture where ordering can set in because of order parameter
fluctuations at scales below Λ∗. In two dimensions they
are so strong that long-range order that breaks continu-
ous symmetries does not occur at any T > 0, thus “or-
dering” is to mean either short-range order with a very



Application to various systems
• Fermi-surface patching scheme:

‣ provides effective interaction without a priori assumption on SB pattern

‣ includes interplay of scale- & momentum-dependent scattering processes

‣ versatile tool for elaborate microscopic structures and multiple bands (DFT)

equation for a two-dimensional system is a differential equa-
tion in a nine-dimensional space. As discussed in Sec. II.E, its
most singular part sits at zero Matsubara frequency. Hence
one may neglect the frequency dependence. Then V! defines
an effective Hamiltonian. Similarly, the k dependence is most
important in the angular direction along the Fermi surface.
This dependence can then be taken into account by a discre-
tization, i.e., by devising patches in the Brillouin zone in
which the coupling function is kept constant. Feldman et al.
(1992) showed that using N patches leads to a natural
N-vector model in two dimensions. Zanchi and Schulz
(1998, 2000) were the first to use it in studies of the
Hubbard model.

Usually one forms elongated patches that extend roughly
perpendicular to the Fermi surface but are rather narrow
parallel to the Fermi surface (see Fig. 9). The coupling
function is then computed for wave vectors k1 to k3 at the
Fermi surface in the center of the patches. We label the
patches by !i ¼ 1; . . . ; N. The function V! is thus approxi-
mated by OðN3Þ interpatch couplings V!ð!1;!2;!3Þ. Even if
k1, k2, and k3 are on the Fermi surface, k4 can be anywhere.
In the calculation of the loop integrals it is however necessary
to assign a patch number !4 to k4, which amounts to an
approximation of projecting k4 on the Fermi surface. Note
that this projected N-patch discretized coupling function
V!ð!1;!2;!3Þ then has fewer symmetries; for instance,
V!ð!1;!2;!3Þ ! V!ð!2;!1;!4Þ in general, as in the latter
object k3 is not necessarily on the Fermi surface. For suffi-
ciently large N, this discretization captures the angular varia-
tion of the coupling function along the Fermi surface with
good precision.

The results obtained within this approximation, described
in the following, have been found to be robust when the
dependence on frequencies !i (Klironomos and Tsai, 2006;
Honerkamp, Fu, and Lee, 2007) and the component of ki

transversal to the Fermi surface (Halboth and Metzner,
2000a; Honerkamp, 2001; Honerkamp et al., 2004) are
included. Katanin (2009) performed a flow to third order in

the scale-dependent four-point vertex (see Sec. II.E.3), with
the frequency dependence in the same approximation as
Honerkamp and Salmhofer (2003).

B. Results for the two-dimensional Hubbard model

Starting from the initial condition given by the Hubbard
model, the flow is run from !0 down to a characteristic scale
!$, where the largest coupling reaches some multiple " of the
bandwidth. The choice of " varies widely in the literature;
the discussion here is based on the comparably cautious
choice " ¼ 2 or 3, as well as on the consistency check that
the results do not change drastically as " is changed. The
characteristic scale !$ corresponds to a temperature T$. If T
is clearly above T$, the flow can be integrated to scale zero
without any instabilities. T$ is only an upper bound for the
temperature where ordering can set in because of order
parameter fluctuations at scales below !$. In two dimensions
they are so strong that long-range order that breaks continu-
ous symmetries does not occur at any T > 0, thus ‘‘ordering’’
means either short-range order with a large correlation length,
or ordering in a related system with a small coupling in the
third direction, as is present in most materials.

1. Antiferromagnetism and superconductivity

The results discussed here are obtained with a slightly
smeared-out step function as cutoff on k (no cutoff on the
frequencies) and by dropping the self-energy.

a. Antiferromagnetism

For t0 ¼ 0 and # ¼ 0, the band is half filled, and the Fermi
surface is a perfect square. Every vector connecting parallel
sides of the Fermi surface is a nesting vector, and r$k ¼ 0 at
ð%; 0Þ and ð0;%Þ. This strongly enhances particle-hole terms
at wave vector Q ¼ ð%;%Þ. A random-phase approximation
summation of these bubbles results in a divergent static spin
susceptibility at Q for any U > 0 at sufficiently low T,
indicating the formation of an antiferromagnetic (AF) spin-
density wave (SDW), in accordance with mean-field studies
(Fulde, 1991). The basic RG results at low T are shown for
U ¼ 2t in Fig. 10. The labeling of the N ¼ 32 patches along
the Fermi surface can be read off Fig. 10(a). Figure 10(b)
shows V! as a function of the patch indices !1 and !2, at
!$ % 0:16t and with !3 ¼ 1 [i.e., k3 near ð& %; 0Þ]. Strongly
enhanced repulsive interactions appear as a vertical line at
!2 ¼ 24 (i.e., for k2 & k3 ¼ Q), almost !1 independent, and
as a horizontal line at !1 ¼ 24 (corresponding to k1 & k3 ¼
Q) with only a weak dependence on !2, roughly half as large
as the vertical feature. In an extrapolation where the regular
profiles are narrowed down to delta functions with an appro-
priate prefactor J, V!ð!1;!2;!3Þ ¼ ðJ=4Þð2&k2& k3;Q þ
&k1& k3;QÞ, corresponding to a mean-field AF-spin interaction

Hamiltonian J
P
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iQ(ðRi& RjÞSi (Sj, withSi ¼ 1
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effective Hamiltonian consisting of the low-scale hopping
term and this interaction exhibits AF long-range order at
sufficiently low T. An analysis of the flow of susceptibilities
(Halboth and Metzner, 2000a; Honerkamp et al., 2001) as
described in Sec. II.F confirms this picture.

FIG. 9 (color online). N-patch discretization of the Brillouin zone
for the one-band Hubbard model on the 2D square lattice. The
colored region is a patch in which the coupling function is approxi-
mated as a constant.
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Figure 18. (a) Vertex flow from our functional renormalization group study for LiFeAs [59]. With domi-
nant ferromagnetic fluctuations from the outset at high energies (⇤ ⇠ 100), the RG-flow renormalization
yields a switch to collinear AFM fluctuations as the dominant magnetic channel, which eventually drives
s± in the particle-particle channel. Leading SC form factors and Fermi-surface discretization at kz = 0
(b1) and kz = ⇡ (b2) display a nodeless s± gap. The colors indicate the leading orbital weights at the
corresponding FS points.

ported a magnetic resonance and hence provided strong indications for a usual
s±-wave pnictide pairing. On the other hand, it seems commonly accepted that
the superconducting gap is nodeless as confirmed by a large body of experimental
results like NMR [130], specific heat [131], ARPES [132] and penetration depth
measurements [133, 134].
In order to explore these di↵erent ordering tendencies, the FRG formalism al-

lows to employ a combined approach of density functional theory (DFT) and FRG
which connects an ab initio description with the unbiased analysis of functional
RG. The DFT description provides a band-structure matching well the ARPES
data [126] and quantum oscillation measurements [77] with a nontrivial kz depen-
dence. In addition, DFT also enables to compute the orbital dependent interaction
parameters via the knowledge of maximally localized Wannier functions [72]. Both
of these informations are essential to explain the interesting properties of LiFeAs.
Using the combined DFT+FRG approach, we find that, despite the presence of
strong ferromagnetic fluctuations at “high energy” (i.e. cut-o↵ scales ⇤ in Fig. 18),
LiFeAs features a nodeless s±-wave pairing state similar to the one in LaFeAsO at
“low energies”. Interestingly, its phosphorus based realization LiFeP (111) exhibits
nodal superconductivity, which is reminiscent of the nodeless/nodal behavior in
LaFeAsO/LaFePO, discussed in Sec. 3.4. Therefore, upon closer inspection, LiFeAs
does not appear to be much di↵erent from other FeSCs.
Fig. 18 summarizes the DFT-FRG results in terms of the RG-flow for LiFeAs.

The SC order parameter is found to be s±, driven by collinear AFM fluctuations.
In the RG flow, they eventually exceed the ferromagnetic fluctuations, mainly
stemming from the small hole pocket at the �-point, as the system flows to low
energy. This points clearly to the importance of taking the competing fluctuations
via an FRG-calculation into account, when evolving to the low-energy scale of SC,
⇤ ⇠ kBTc. It is an explicit example where a simplified RPA approach does not
yield the level of accuracy as the analogous FRG study.

3.6. Exotic d-wave Pairing in Strongly Hole-Doped KxBa1�xFe2As2

In the preceding section, we found that the existence of nodes in the s±-wave pair-
ing state of FeSCs is not required by symmetry, but may develop as a compromise
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Figure 33. (a) Brillouin zone displaying the Fermi surface near the van Hove point (dashed blue level
in (b)) with 96 patches used in the implementation of the functional RG as well as the (partial) nesting
vectors. (b) Band structure of graphene for t1 = 2.8, t2 = t3 = 0eV (red) and t1 = 2.8, t2 = 0.1, t3 = 0.07eV
(black). (c) Density of states for both band structures in (a). The inset shows the position shift of Fermi
surface nesting (dashed vertical lines) versus the VHS peak.

The resulting band structure shown in Fig. 32b then consists of two bands by
diagonalizing (96)

E1,2(k) = ±

p
B(k)2 + C(k)2 +A(k)� µ.

Most studies of the undoped graphene scenario focus on the linear dispersing part
at low energies near the two inequivalent (i.e. not connected through a reciprocal-
lattice vector) momenta q = K,K 0. Here, the band structure is given by the mass-
less Dirac particle dispersion. Note also that any diagonal part (/ I) in the Hamil-
tonian H0 of (96) only shifts the Dirac-like cone in energy and thereby eliminates
particle-hole symmetry. In order to open up a gap (E ⇠ ±vF

p
�q2 +m2) without

the inclusion of many-body interaction e↵ects, the diagonal entries of H0 must in-
volve di↵erent signs. This requirement can for example be achieved by a staggered
sublattice potential (m�z) with �z = ±1 for the di↵erent sublattices or by a spa-
tially varying magnetic field with zero net flux (m⌧z�z), where ⌧z = ±1 describes
the states at K and K 0. Here, the former term only breaks inversion symmetry
and leads to a trivial insulator, whereas the latter term breaks time-reversal sym-
metry and gives rise to a quantum Hall insulator [190]. Furthermore, another way
of opening a gap in (97) is to include intrinsic spin-orbit coupling (msz⌧z�z) with
sz = ±1 for di↵erent spins and leads to the quantum spin Hall insulator as discov-
ered by Kane and Mele [191]. As we shall see, many-body interaction are another
way to open a gap in graphene, e.g. via the chiral d-wave superconducting state as
explained in the following.
For the doped case, we find that the band structure features two van-Hove sin-

gularities (VHS) at x = 3/8 and x = 5/8 (see Fig. 33c). Constraining ourselves
without loss of generality to the electron-doped case, the x = 5/8 electron-like
Fermi surface is shown in Fig. 33b. As depicted, this is the regime of largely en-
hanced density of states which we investigate in the following. For t2 = t3 = 0
(red curve in Fig. 33), the VHS coincides with the partial nesting of di↵erent sec-
tions of the Fermi surface with Q = (0, 2⇡/

p
3), (⇡,⇡/

p
3), and (⇡,�⇡/

p
3). For

a realistic band structure estimate of graphene with finite t2 and t3 [181] (black
curve in Fig. 33), this gives an important shift of the perfect nesting position ver-
sus the VHS and a↵ects the many-body phase found there. We assume Coulomb
interactions represented by a long range Hubbard Hamiltonian [192]

Hint = U0

X

i

ni,"ni,# +
1

2
U1

X

hi,ji,�,�0

ni,�nj,�0 +
1

2
U2

X

hhi,jii,�,�0

ni,�nj,�0 , (97)

2.3. The renormalization group and its functional formulation
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Figure 2.10: Left panel: Interaction vertex labeled with the spin convention (upper diagram).
Below, the loop contributions to the flow of the interaction vertex including the particle-
particle-diagram (a), the crossed particle-hole-diagram (b) and the direct particle-hole dia-
grams (c). Right panel: Patching of the Brillouin zone as employed e.g. in (Golor et al., 2014)
to describe the bilayer Hubbard model on the square lattice.

Importantly, this approximation scheme amounts to an infinite-order summation of one-
loop particle-particle and particle-hole of second order in the effective interactions allow-
ing for an unbiased investigation of competing correlations. Therefore one has to analyze
the components of Vk(p̃1, p̃2, p̃3, o4) that grow large as one approaches a critical scale kc.
Explicitely, the functional RG flow for the coupling function is given by (Salmhofer and
Honerkamp, 2001)

d

dk
Vk(p1, p2, p3, b4) = ⌧⇤

PP + ⌧⇤
PH,d

+ ⌧⇤
PH,cr , (2.17)

with the particle-particle channel

⌧PP,k(p1, p2, p3, b4) = � 1

ABZ

Z
d~p

X

b,b0

h
Vk(p1, p2, p, b0)Lk(p, qPP )Vk(p, qPP , p3, b4)

i
,

the direct particle-hole channel

⌧PH,d,k(p1, p2, p3, b4) = � 1

ABZ

Z
d~p

X

b,b0

h
�2Vk(p1, p, p3, b

0)Lk(p, qPH,d)Vk(qPH,d, p2, p, b4)

+ Vp(p, p1, p3, b
0)Lk(p, qPH,d)Vk(qPH,d, p2, p, b4)

+ Vk(p1, p, p3, b
0)Lk(p, qPH,d)Vk(p2, qPH,d, p, b4)

i
,

and the crossed particle-hole channel

⌧PH,cr,k(p1, p2, p3, b4) = � 1

ABZ

Z
d~p

X

b,b0

h
Vk(p, p2, p3, b

0)Lk(p, qPH,cr)Vk(p1, qPH,cr, p, b4)
i
,

where ~qPP = �~p + ~p1 + ~p2 and ~qPH,d = ~p + ~p1 � ~p3, ~pPH,cr = ~p + ~p2 � ~p3 are the wavevectors
of the second loop line with band index b0. The frequency of the second line is fixed by

19

Honerkamp & Salmhofer (2001,2003) 
Kuroki et al. (2008) 
Wang et al. (2009,2010) 
Thomale et al. (2011,2013) 
Raghu et al. (2008) 
Scherer et al. (2011,2012) 
Lichtenstein et al. (2014) 
…

‣ exhibits AF, F, CDW, CDW3, dSC, sSC, fSC, QSH, cBO, sBO…



fermion FRG: key features

• Disovery tool for many-body instabilities in correlated many-fermion systems

‣ treats all fermionic fluctuation channels on equal footing

‣ infinite-order resummation of  all fermionic 1-loop diagrams

‣ unbiased identification of leading instability in presence of competing correlations

‣ due to truncations/approximations: qualitative (not quantitative) tool

• Challenge: discretization of 

‣ long-range Coulomb tail: sufficient resolution 

of wave-vector dependence required!

‣ FS patching: vertex function depends on  

three wave-vector variables - expensive!

‣ cubic scaling with patch points ~ N3

3

and analytical studies8–12,14 for the spinless case, how-
ever, have found a suppression of the QAH in favor for
a charge-modulated (CM) density wave phase with finite
wavevector transfer �K − �K ′. Here, for the case of spin-
1/2 fermions, we shall thoroughly investigate the fate of
the QSH and CM states upon inclusion of the onsite and
nearest-neighbor interactions U and V1.

III. FUNCTIONAL RENORMALIZATION

We investigate the quantum many-body instabilities
of the model (1) by means of the functional renormal-
ization group (fRG) approach28 for the one-particle ir-
reducible vertices of a correlated fermion systems, see
Refs. 29,30 for recent reviews. The multi-patch fRG
scheme employed here allows for an unbiased identifica-
tion of the leading instabilities in the presence of com-
peting correlations31–34 by successively integrating out
fermion degrees of freedom starting from an initial en-
ergy scale ⇤0 corresponding to the bandwidth down to
the infrared ⇤ → 0. We now set up the fRG approach in
a nutshell and give more details in App. A.

Consider the fermionic action corresponding to the
model Hamiltonian, Eq. (1), given by

S[ ̄, ] = −( ̄,G
−1
0
 ) + V [ ̄, ] . (4)

The first term is the quadratic part with the free prop-
agator G0(!n,k, b) = 1�(i!n − ✏b(k)) including Matsub-
ara frequency !n and wavevector k. Here, we work in
the band basis providing diagonalization of the quadratic
part of the Hamiltonian H0 with single-particle energies
✏b(k) and band index b. The fermionic propagator is di-
agonal with respect to the spin quantum number. The in-
teraction term V [ ̄, ] in Eq. (4) is quartic in the fermion
fields and can be inferred from the interaction part of the
Hamiltonian, Eq. (3) by introducing Grassmann fields for
the operators and transforming to the band basis in line
with the diagonalization of H0. This adds a non-trivial
momentum dependence to the coupling function.

In the fRG, the bare propagator is regularized by an
infrared momentum cuto↵, with energy scale ⇤,

G0(!n,k, b)→ G
⇤

0
(!n,k, b) = ✓

⇤

" (✏b(k))
i!n − ✏b(k)

. (5)

Here ✓
⇤

" is a smoothened step function with softening
length " cutting o↵ modes with energies �✏b(k)� � ⇤.
The modified propagator G

⇤

0
is then used to set up the

functional integral representation for the e↵ective action
�⇤, which is now scale dependent and generates the one-
particle irreducible vertex functions �(2i)⇤. The RG flow
is generated upon variation of ⇤ generating a hierarchy
of flowing vertex functions and integration towards the
infrared ⇤ → 0 reproduces the full e↵ective action �, see
Apps. A and B. For our analysis we use a standard trun-
cation that has proven to be suitable for analyzing in-
stabilities in two-dimensional correlated fermion systems.
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FIG. 2: Left panel: Sketch of the BZ with patches and patch
points with Na = 4 and Nr = 4. Right panel: Numbering of
angular and radial patches according to the patching scheme.

In this truncation the flow of all n-point functions with
n ≥ 6 and also self-energy feedback are neglected. This
amounts to following the RG-scale dependence of the ef-
fective interaction vertex V

⇤ which carries a multi-index
k gathering Matsubara frequencies ! as well as wavevec-
tors k and the band index b. As the most singular part of
this quantity comes from the zero Matsubara frequency
and we are interested in instabilities, we will also neglect
the frequency dependence in the following. Then, the
flow equation of the e↵ective interaction vertex V

⇤ reads

d

d⇤
V

⇤ = �pp + �ph,d + �ph,cr . (6)

with a contribution �pp from the particle-particle loop,
the direct particle-hole loop �ph,d and the crossed
particle-hole loop �ph,cr. All these contributions are bi-
linears in the scale-dependent vertex function V

⇤ and
include a loop-momentum integration. We give explicit
expressions for the flow equation in App. C.

A. Multi-patch scheme & momentum resolution

The wavevector dependence of the interaction ver-
tex is approximated in a multi-patch scheme. To this
end, the Brillouin zone (BZ) is divided into N patches
and each patch is equipped with a representative patch
point, see Fig. 2 for a pictorial representation. Then,
a given wavevector k is projected onto its closest patch
point ⇡(k). The patching discretization implemented in
this work is shown in Fig. 2. A single patch is com-
posed of all the wavevectors having the smallest dis-
tance to the corresponding representative patch point.
We then solve Eq. (6) for the projected vertex func-
tion V

⇤(⇡(k1),⇡(k2),⇡(k3),⇡(k4)) which additionally
depends on the band indices bi of the external legs of
the four-fermion vertex. The fourth wavevector is de-
termined by momentum conservation and is subject to
an approximation in our scheme by allocating it to its
closest patch point.

For the half-filled honeycomb lattice, the Fermi level
is located at the K,K

′ points where the density of states
vanishes linearly. For the unbiased determination of the

V (�p, �p0, �p+ �q)



Channel decomposition

• Singular contributions produced for specific transfer momenta 

‣ parametrize coupling function by decomposition into single channel coupling functions

Figure 1. Diagrammatic representation of the right-hand side of Eq.(3), with particle-particle (top

left), crossed particle-hole (top right) and direct particle-hole (bottom) diagrams.

set to zero. The remaining dependences on external momenta are dealt with by means of

the Truncated Unity scheme[17], a highly scalable formalism based on channel-decomposed

flows[18, 19, 34–39]. Since the singular contributions to the flow are produced for specific

transfer momenta between external legs in the one-loop diagrams of Fig. 1, the coupling

function V can be well parametrized by a decomposition into single-channel coupling func-

tions

V
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each picking up a corresponding dependence on each of the three respective transfer momenta

appearing in the diagrams. V
(0) is the initial bare interaction and stays constant, whereas

the �s are generated during the flow according to
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The strong dependence on transfer momenta (first argument) is then kept as if e↵ectively
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‣ Φ generated during flow:
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transfer momenta

‣ strong dependence on transfer momentum is kept as if carried by exchange boson

‣ weak dependences captured by expansion in form factors: �SC
l,k,k0 ⇡

X

m,n

fm(k)fn(k
0)Pm,n(l)

strong variable weak variable

bosonic 
propagator

Treating the wavevector dependence: 
Channel decomposition 
 Instead of one function of three variables, use three functions ΦSC/C/D of 
(basically) one ’strong‘ variable  

‘weak variables‘, 
captured by 
smooth form 
factors fm(k)

Husemann, Salmhofer, Giering, 
Eberlein & Metzner , Maier 
&CH ... Karrasch et al. 

Husemann & Salmhofer (2008)

‣ rewrite flow in term of three bosonic propagators P(l), C(l), D(l)



functional RG: interaction vertex
• employ full-HD wavevector resolution of interaction vertex

  

Implementation: BZ Mesh for transfer momenta

PP channel PH channel

3217 transfer momenta 3661 transfer momenta 

Ordering vectors expected at the Γ point and K,K' points

‣ efficient calculations on a large number of multi-core CPUs

‣ Brillouin zone mesh for transfer momenta:

‣ expand weak momentum dependencies in basis of lattice harmonics

transfer momenta
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HD-fRG calculations - results
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FIG. 7. E↵ect of strain on the electronic instabilities of the
model with cRPA interaction parameters. The horizontal axis
denotes an artificial screening length set at the n-th neighbor’s
bond distance. The black regions marked with white crosses
represent the semimetallic behavior. Filled white circles indi-
cate an instability towards a SDW-AFM, with corresponding
critical scales encoded in the background color. Grey regions
are expected to stay semimetallic, but unfortunately we can-
not flow down to low enough scales for those points. See text
for further details.

1. cRPA parameters with strain

Setting t
0 and µ to zero on our model parameters, we

employ a cRPA interaction profile and study the e↵ect
of finite strain ⌘ on the system’s many-body instabilities.
The concrete values used are the same as in Refs. 11 and
13 We find that long-ranged cRPA interaction profiles
give rise to an antiferromagnetic SDW instability for a
strain larger than a critical value, see Fig. 7. The critical
strain necessary to induce the instability converges with
respect to the inclusion of yet longer ranged Coulomb
tails, staying at 6% for profiles ranging up to the 105-
th neighbor and a corresponding � = 1/r105 . Impor-
tantly, we observe that this type of interaction profiles
does not give rise to other leading instabilities, but the
AF-SDW, i.e. no charge ordering tendencies dominate
the phase diagram. We have checked that our results are
robust with respect to denser wave-vector meshes, the
inclusion of a fifth form-factor shell, or the use of a fifth
order ODE solver. The dominance of the AF-SDW or-
dering tendency agrees well with findings from the QMC
simulations on a qualitative level. Based on our earlier
considerations within the honeycomb-Hubbard model, cf.
Sec. IVA, we expect that our approach overestimates the
e↵ects from fermionic fluctuations and therefore gives rise
to an underestimated critical strain. This expectation
agrees with the result from the QMC calculations where
for the cRPA parameters no semi-metal insulator transi-
tion could be observed for strains up to 18%.

We note, that there is some ambiguity in the initial-
ization procedure, relating to which channel contains the
on-site Hubbard contribution: The most neutral or un-
biased choice is to assign 1/3 of it to each of the three
channels, resulting in the phase diagram presented here.
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FIG. 8. E↵ect of strain on the electronic instabilities of the
model with Ohno interaction parameters. The horizontal axis
denotes an artificial screening length set at the n-th neighbor’s
bond distance. The black regions marked with white crosses
represent the semimetallic behavior. Filled white circles indi-
cate an instability towards a SDW-AFM, with corresponding
critical scales encoded in the background color. Grey regions
are expected to stay semimetallic, but unfortunately we can-
not flow down to low enough scales for those points. See text
for further details.

However, other formally equivalent ways to initialize the
onsite term are expected to yield similar results, and we
consider them as a consistency check. If the onsite Hub-
bard U is fully assigned to the magnetic channel, one
introduces some bias towards magnetism and obtains a
critical strain of 3% for the longer ranged profiles. In
contrast, if U is fully assigned to the charge channel in-
stead, a critical strain of 10% is obtained for long ranged
profiles. A more detailed discussion of this issue can be
found in App. B. The qualitative picture that the cRPA
interaction profile gives rise to an AF-SDW transition
beyond a critical strain is nevertheless the same, inde-
pendent of initialization.

2. Ohno formula and strain

Next, setting again t
0 and µ to zero on our model pa-

rameters, we study Ohno interaction profiles with finite
strain ⌘ which remained elusive to the QMC calculations.
We set the unstrained values in Eq. (8) to U/t = 3.0, and
choose ✏ so that V1/t = 2.0, then proceed analogously
to the previous subsection, cf. Fig. 8. The choice of a
slightly smaller U than in cRPA is purposely done for
contrast, keeping a similarly strong non-local tail. Also
note that under strain, the cRPA parameters tend faster
towards a localized interaction than the Ohno parame-
ters. This leads to a considerably larger critical strain
for this interaction profile as compared to the strained
cRPA parameters. In fact, the critical strain necessary
to induce an instability converges to 11% when including
up to the 105-th neighbor in the interaction. Also, in
this case no leading instability other than the AF-SDW
appears. Our results are as well robust respect to the
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FIG. 7. E↵ect of strain on the electronic instabilities of the
model with cRPA interaction parameters. The horizontal axis
denotes an artificial screening length set at the n-th neighbor’s
bond distance. The black regions marked with white crosses
represent the semimetallic behavior. Filled white circles indi-
cate an instability towards a SDW-AFM, with corresponding
critical scales encoded in the background color. Grey regions
are expected to stay semimetallic, but unfortunately we can-
not flow down to low enough scales for those points. See text
for further details.

1. cRPA parameters with strain

Setting t
0 and µ to zero on our model parameters, we

employ a cRPA interaction profile and study the e↵ect
of finite strain ⌘ on the system’s many-body instabilities.
The concrete values used are the same as in Refs. 11 and
13 We find that long-ranged cRPA interaction profiles
give rise to an antiferromagnetic SDW instability for a
strain larger than a critical value, see Fig. 7. The critical
strain necessary to induce the instability converges with
respect to the inclusion of yet longer ranged Coulomb
tails, staying at 6% for profiles ranging up to the 105-
th neighbor and a corresponding � = 1/r105 . Impor-
tantly, we observe that this type of interaction profiles
does not give rise to other leading instabilities, but the
AF-SDW, i.e. no charge ordering tendencies dominate
the phase diagram. We have checked that our results are
robust with respect to denser wave-vector meshes, the
inclusion of a fifth form-factor shell, or the use of a fifth
order ODE solver. The dominance of the AF-SDW or-
dering tendency agrees well with findings from the QMC
simulations on a qualitative level. Based on our earlier
considerations within the honeycomb-Hubbard model, cf.
Sec. IVA, we expect that our approach overestimates the
e↵ects from fermionic fluctuations and therefore gives rise
to an underestimated critical strain. This expectation
agrees with the result from the QMC calculations where
for the cRPA parameters no semi-metal insulator transi-
tion could be observed for strains up to 18%.

We note, that there is some ambiguity in the initial-
ization procedure, relating to which channel contains the
on-site Hubbard contribution: The most neutral or un-
biased choice is to assign 1/3 of it to each of the three
channels, resulting in the phase diagram presented here.
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FIG. 8. E↵ect of strain on the electronic instabilities of the
model with Ohno interaction parameters. The horizontal axis
denotes an artificial screening length set at the n-th neighbor’s
bond distance. The black regions marked with white crosses
represent the semimetallic behavior. Filled white circles indi-
cate an instability towards a SDW-AFM, with corresponding
critical scales encoded in the background color. Grey regions
are expected to stay semimetallic, but unfortunately we can-
not flow down to low enough scales for those points. See text
for further details.

However, other formally equivalent ways to initialize the
onsite term are expected to yield similar results, and we
consider them as a consistency check. If the onsite Hub-
bard U is fully assigned to the magnetic channel, one
introduces some bias towards magnetism and obtains a
critical strain of 3% for the longer ranged profiles. In
contrast, if U is fully assigned to the charge channel in-
stead, a critical strain of 10% is obtained for long ranged
profiles. A more detailed discussion of this issue can be
found in App. B. The qualitative picture that the cRPA
interaction profile gives rise to an AF-SDW transition
beyond a critical strain is nevertheless the same, inde-
pendent of initialization.

2. Ohno formula and strain

Next, setting again t
0 and µ to zero on our model pa-

rameters, we study Ohno interaction profiles with finite
strain ⌘ which remained elusive to the QMC calculations.
We set the unstrained values in Eq. (8) to U/t = 3.0, and
choose ✏ so that V1/t = 2.0, then proceed analogously
to the previous subsection, cf. Fig. 8. The choice of a
slightly smaller U than in cRPA is purposely done for
contrast, keeping a similarly strong non-local tail. Also
note that under strain, the cRPA parameters tend faster
towards a localized interaction than the Ohno parame-
ters. This leads to a considerably larger critical strain
for this interaction profile as compared to the strained
cRPA parameters. In fact, the critical strain necessary
to induce an instability converges to 11% when including
up to the 105-th neighbor in the interaction. Also, in
this case no leading instability other than the AF-SDW
appears. Our results are as well robust respect to the

• longer-ranged bare interactions:

  

Results: Longer ranged bare interactions + strain

‣ strain:

4

2. Ohno interpolation formula

In the context of biaxially strained graphene it was
suggested in Ref. 5, that the Coulomb interaction can be
modelled by the Ohno interpolation formula6

V (rij , ✏) =
Uq

1 +
�
✏

U
e2 rij

�2 , (7)

where V (0) = U and ✏ is a variable screening and for
large distances r ! 1 approaches V (r) ! e

2
/(✏ r). The

screening parameter ✏ can generally be tuned in the in-
tervall ✏ 2 [0,1), where ✏ ! 1 results in a purely
local onsite interaction V (rij ,1) = U �ij . Further,
✏ = 0 is the limit of a constant (non-local) interaction
V (rij , 0) = U and ✏ = 1 represents the case of benzene7.
Ref. 5 argues that employing the values for the interac-
tion parameters U and V1 as given for phenalenyl (3H
– C13H9) molecule from the quantum-chemistry-Pariser-
Parr-Pople (QC-PPP) method provide an upper bound
for the Hubbard U and the interaction potential V (r),
see Ref. 8. The transformation matrix for the interaction
profile as given by the QC-PPP method is not positive
definite, therefore it was not accessible to the QMC meth-
ods promoted in Ref. 8. In this work, we explicitly study
this type of interaction profile, including variations of it
to explore the possible ground states of graphene taking
account for the fact that the interaction parameters are
only known approximately, anyway.

A finite strain ⌘ can be included using a strategy sug-
gested in Ref. 4 by replacing r ! (1 + ⌘)r in V (r) and
t ! t0e

�3.37⌘. where ⌘ is the relative amount of strain,
e.g., ⌘ = 0.18 for 18% strain. The QC-PPP method is de-
signed to describe small system sizes and larger systems
are expected to show stronger screening and therefore a
smaller V (r). We therefore interpret these parameters
as providing an upper limit for a realistic choice of the
interaction profile and note that extrapolation to larger
systems has to be interpreted cautiously. The QC-PPP
parameters are likely to give rise to orders di↵erent from
AF-SDW.

III. METHOD

To study the quantum many-body instabilities, we
employ a fermionic functional Renormalization Group
approach9 which describes the evolution of the one-
particle irreducible (1PI) vertex functions upon inte-
grating out high-energy fermionic modes. In a stan-
dard level-2 truncation, together with the neglect of self-
energies and frequency dependences, the interacting sys-
tem is described by an e↵ective two-particle interaction
/ V

b1,b2,b3,b4
⌦ (~k1,

~k2,
~k3)c

†
b4,~k4,�

c
†
b3,~k3,�0cb2,~k2,�cb1,~k1,�0 de-

pending on four band indices and three momenta in the
presence of translational and SU(2) invariance. The ad-
ditional dependence on an auxiliary energy scale ⌦ fol-

lows from the inclusion of a soft frequency cuto↵10 to
regularize infrared divergences, with ⌦ serving as flow
parameter in the fRG flow equation for the two-particle
coupling function V

d

d⌦
V

b1...4
⌦ (~k1,

~k2,
~k3) = T b1...4

pp (~k1,
~k2,

~k3)+

+ T cr, b1...4
ph (~k1,

~k2,
~k3) + T d, b1...4

ph (~k1,
~k2,

~k3) (8)

involving contributions from particle-particle (Tpp), and
from direct (T d

ph) and crossed (T cr
ph) particle-hole loops.

The initial condition for the flow is given by the mi-
croscopic bare coupling V⌦0 , provided that the starting
scale ⌦0 is several orders of magnitude bigger than the
bandwidth. Instabilities towards ordered states become
manifest as divergences of given coupling components in
the flow to lower energies. The nature of the symmetry-
broken ground state is encoded by the diverging com-
ponents, and the scale of divergence provides an upper
estimate for the critical scale ⌦c.

The numerical implementation of the flow equation
above is dealt with via the TUfRG scheme11, which al-
lows for the high resolution in momentum space neces-
sary to describe the long-ranged bare Coulomb interac-
tion. Briefly put, there are three major modifications
to Eq. (8) leading to the TUfRG flow equations. First,
the two-particle coupling is split into bare part V⌦0 and
three single-channel coupling functions �P

, �D and �C

whose scale derivatives correspond to Tpp, T d
ph and T cr

ph
loops respectively. The three original dependences of
V on external momenta are rearranged in each channel
so that they depend explicitly on the transfer momenta
~l involved in their corresponding loop diagrams. The
e↵ective coupling function may develop strong depen-
dences on either of these transfer momenta, while having
much softer dependences on the remaining non-transfer
momenta ~k,~k

0. Thus, the next modification is to ex-
pand the weak dependences onto a form-factor basis of
lattice harmonics {fn}. That brings each single chan-
nel coupling �B,b1...4

~l,~k,~k0 to a so-called exchange propagator

B
b1...4
m,n (~l), where B = {P, D, C}. Since the weak momen-

tum dependences can be captured with a small number
of form-factors, in practice one is reducing a three mo-
mentum dependent function into a sum of three functions
of a single momentum dependence. The last step is to
insert partitions of unity in the form-factor basis set at
the internal lines of the loops in Eq. (8), which allows to
separate the fermionic Green’s functions and two-particle
couplings in the loop integrals. One then arrives at the

Ohno interaction profile
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FIG. 5. Critical scales vs. the number of considered nearest
neighbor interactions. Inter-lattice terms are marked by tri-
angles, whereas intra-lattice terms are represented by circles.
For inter-lattice terms, a further distinction is made depend-
ing on the location of the leading ordering vector. Blue trian-
gles correspond to charge ordering tendencies with an order-
ing vector close to the �-point, with the point m = 1 being
a standard CDW and the only commensurate case. Green
triangles are ordering tendencies with ordering vectors any-
where in the BZ other than �. Grey points correspond to
semimetallic behavior and the absence of an instability.

lattices, where this rich charge order landscapes may be
physically realized.

Here, we add a short technical discussion of the RG
flow for a stable semimetal, before going into the study
of strain-induced instabilities. At T = 0 and t

0 = µ = 0,
Coulomb interactions stay unscreened due to the vanish-
ing DOS at the Fermi level. Using the soft frequency
⌦-regulator of Ref. 46, the intra-band particle-hole bub-
ble with zero momentum transfer is suppressed by the
regulator itself when ⌦ is large, whereas for small ⌦ the
vanishing DOS brings it down. The inter-band particle-
hole bubble does not play a qualitatively relevant role for
charge screening50, and thus we focus on the intra-band
components in this discussion. The particle-hole bub-
ble’s behavior in flows with the ⌦-regulator is shown in
App. C. In the TU-fRG flow equations, cf. Eqs. (A5), the
bubbles involved are di↵erentiated respect to ⌦. These
exhibit a sign change at ⌦ ⇡ 0.63t, where the bubble
has an extremum. Thus, the Coulomb interaction expe-
riences screening in the flow for ⌦ > 0.63t, followed by
anti-screening as ⌦ goes to zero, reconstructing the un-
screened bare interaction one had for ⌦ ! 1. This works
out well for single-channel flows with the charge channel
only which is equivalent to RPA. However, in the full
flow with all three channels, the additional contributions
from inter-channel feedback may prevent the neat recon-
struction of the bare interaction, which either saturates
to a screened interaction, or overshoots and becomes fully
unscreened for a finite ⌦. Whether it saturates or over-
shoots depends very sensitively on the choice of param-
eters, and the order of the ODE solver and step size.
Therefore, this e↵ect is most likely a numerical artefact,
since we are attempting to obtain a divergent solution
using explicit ODE solvers, which lack A-stability. It is
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FIG. 6. cRPA and Ohno interaction profiles for � = 1/r103
with 0% and 12% strain.

thus unsurprising that inaccuracies in the inter-channel
feedback, mainly due to form-factor basis truncation,
may lead to more severe accumulated inaccuracies in the
charge screening behavior. The latter mainly happens
near critical values for a magnetic instability in the pres-
ence of long-ranged charge correlations (see grey areas in
the phase diagrams of next section). In such situations
we cannot flow below scales of ⌦ ⇠ 10�3�10�2

t without
encountering numerical overflows in the charge channel,
due to the overestimated anti-screening. For more de-
tails about computational complications we refer to the
appendix.

C. E↵ects of strain

The Brillouin zone meshes used allow to resolve in-
teraction profiles including beyond the 106-th nearest
neighbor. To parameterize the interaction range, instead
of including di↵erent number of neighbors as done in
Sec. IVB, all terms up to the 104-th nearest neighbor are
considered and an artificial screening factor e

��r is mul-
tiplied to the potential to smoothly switch o↵ the long-
range tail at the indicated number of nearest-neighbor
interactions, i.e. � = 1/rn with rn being the distance
to the furthest interaction parameter. Further ranged
profiles are considered whenever critical strain values do
not converge before � = 1/r104 . Strain is accounted for
as described in Sec. II B, with example profiles shown in
Fig. 6. On the last subsection, we study the e↵ect of
including a finite second-nearest-neighbor hopping.

• competing interactions:

‣ successively include more i.a. terms

‣ choose values according to cRPA

‣ different types of charge order



Interaction-induced AFM instablity under strain
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‣ t-t’-Coulomb model with ab initio parameters including effects of strain

‣ SM phase for zero strain (in agreement with experiment and QMC)

‣ finite amount of strain drives system into AFM regime

‣ can explore ab initio interaction profiles inaccessible for QMC (t’ \neq 0 and larger non-local i.a. terms)

H = H0 +Hint & strain



(II) Dirac fermions and critical phenomena

with Bernhard Ihrig, Nikolai Zerf, Luminita Mihaila and Igor Herbut



Effective theory for fermions on the honeycomb lattice

‣ energy: linear & isotropic near K, K’ 

‣ retain only Fourier components around K, K’

‣ action at low-energies corresponding to H0:

H0 = �t

X

~R,i

h
u
†(~R)v(~R+ ~�i) + h.c.

i

S =

Z 1/T

0
d⌧d~x

X

�=±1

 ̄�(~x, ⌧)�µ@µ �(~x, ⌧)

‣ with 8-component spinor:

‣ and γ matrices:

‣ generalize to arbitrary number of pairs of Dirac cones N (for spin-1/2: N=2) 

�0 = I2 ⌦ �z , �1 = �z ⌦ �y , �2 = I2 ⌦ �x

 †
�(~x, ⌧) = T

X

!n

Z ⇤ d~q

(2⇡a)2
ei!n+i~q·~x

h
u†( ~K + ~q,!n), v

†( ~K + ~q,!n), u
†(� ~K + ~q,!n), v

†(� ~K + ~q,!n)
i



Dirac fermions and critical phenomena

➡ (2+1)D fermionic universality classes

- What are their critical exponents?

• emergence of Dirac, Weyl & Majorana quasi-particle excitations in many materials

• gapless Dirac fermions in 2+1 dimensions have quantum critical points

‣ interacting electrons in graphene: charge order/antiferromagnetic order

‣ 3D topological insulators: surface states with emergent SUSY at superconducting QCP

tuning parameter r
rc

Dirac SM ordered phase



Recap: Phase transitions and critical phenomena

• near critical point of continuous phase transition: universality

• order parameter correlation function for large r:

G(~r, t) = h(m(~r)�m)m(~0)�m)i / e�r/⇠(t)

rd�2+⌘

• with correlation length:

order parameter

T

• 3D Ising universality class from complementary methods:

✓ fantastic agreement across complementary methods!

✦ gapless Dirac fermions not in Ising/O(N) universality classes!

Method ν η
conformal bootstrap  0.629971(4)  0.036298(2)

Monte Carlo  0.63002(10)  0.03627(10)

pRG, 4-ε, 6th order  0.6292(5)  0.0362(2)

functional RGs, DE  0.630(5)  0.034(5)

Hasenbusch (2010)

Panzer & Kompaniets (2017)

Kos et al. (2016)

Litim & Zappala (2010)

⇠(t) / |t|�⌫



Effective theory for phase transitions in Dirac systems

• described by simple continuum field theory in D = 2+1 dimensions

‣ Gross-Neveu model:

Herbut (2006)

LGN =  ̄i�µ@µ i + g( ̄i i)
2

- simplest fermionic theory with critical point (quasi-relativistic, no Fermi surface,…)

- perturbative RG to 4th order evaluated in D = 2 + ε 

- example: charge density wave transition of Dirac electrons in graphene

- bosonized version of model…

Gracey, Luthe & Schroeder (2016)

‣ Gross-Neveu-Yukawa model:

- perturbatively renormalizable in D = 4 - ε

✦ both models have critical point in 2 < D < 4 and lie in same universality class 

➡Gross-Neveu universality

LGNY =  ̄i(�µ@µ +
p
y�) +

1

2
�(m2 � @2µ)�+ ��4



Gross-Neveu universality classes

• Gross-Neveu model for 8-component spinor

• critical exponents until ~ 2015:

• no satisfactory agreement has been achieved for fermionic universality classes!

Method 1/ν ηB ηF

2+ε, 3rd order 0.764 0.602 0.081

4-ε, 2nd order 1.055 0.695 0.065

quantum Monte Carlo 1.20(1) 0.62(1) 0.38(1)

functional RG, DE 0.982 0.760 0.032

conformal bootstrap - - -

Gracey (1994)

Rosenstein et al. (1994)

Chandrasekharan & Li (2013)

Janssen & Herbut (2014)



Fermionic universality classes - recent developments

• precision determination of Gross-Neveu universality class seems now within reach:

Chandrasekharan & Li  (2013)

Wang, Corboz & Troyer (2014)

Li, Jiang & Yao (2015)

Hesselmann & Wessel (2016)

Huffmann & Chandrasekharan (2017)

Li,  Vaezi, Mendl, Yao (2017)

Bashkihrov (2013)

Iliesiu et al. (2016, 2017)

‣ conformal bootstrap:

- unprecedented precision for O(N) models

- now extended to fermionic systems

Gracey, Luthe & Schroder (2016)

Mihaila, Zerf, Marquard, Ihrig, Herbut , MMS (2017,2018)

‣ renormalization group approaches:

- progress in application of non-perturbative FRG methods (GRK!)

- higher-loop calculations adapted from high-energy physics up to 4-loop order!

Vacca & Zambelli (2015) 

Borchardt & Knorr (2016)

Gies, Hellwig, Wipf, Zanusso (2017)

Feldmann, Wipf, Zambelli (2017)

Knorr (2016,2018)

‣ quantum Monte Carlo methods:

- microscopic lattice models with 2nd order phase transition in GN universality class

- sign-problem free formulations



Renormalization group constants — tool chain
• evaluate renormalization group constants Zi for GNY model up to 4-loop order

• tree level:
 � � y

• 1 loop:

• 4 loops: in total 31,671 diagrams!

…

QGRAF

Q2E

EXP

FORM

‣ insert Lagrangian - generates complete set of diagrams with symmetry factors

‣ declare mass scales and Feyman rules

‣ reduce to one-scale integrals by asymptotic expansion

‣ reduce integrals to 19 known master-integrals using Crusher

‣ use tool chain developed for relativistic high-energy physics:



Quantum critical behavior of massless Dirac electrons

2

II. MODELS

A. Gross-Neveu model

The Gross-Neveu (GN) model decribes Dirac fermions
interacting via a four-fermion interaction. It represents
a paradigmatic relativistic and interacting quantum field
theory for spin-1/2 fields. The microscopic action of the
Gross-Neveu model in D-dimensional euclidean space-
time reads

SGN[ ̄, ] =

Z
dDx


 ̄i /@ i +

g

2Nf
( ̄i i)

2

�
, (1)

where g is the coupling constant,  denotes a N = d�Nf

component spinor with Nf the number of fermion flavors
and d� the dimension of the underlying Cli↵ord algebra.
[specify d� ] We note that the model perturbatively renor-
malizable in D = 2 where it becomes asymptotically free
due to the attractive Gaußian fixed point when N > 2.
We will consider the model in 2 < D < 4 dimensions,
where the theory is perturbatively non-renormalizable.
There, the model exhibits a second-order phase transi-
tion providing a finite mass to the fermion fields. The
second-order transition is then described by an interact-
ing renormalization group fixed point of the theory g⇤,
where the theory is also conjectured to be conformal. We
use the notation /@ = �µ@µ with µ, ⌫,= 0, 1, ...D� 1. The
conjugate of the Dirac field is given by  ̄ =  †�0.

The renormalization group functions of the GN model
in D = 2 + ✏ dimensions have been calculated up to
four-loop order in the MS scheme by Gracey, Luthe and
Schröder [3]. From the renormalization group functions,
the critical exponents can then be determined to order
O(✏4). This has been done in Ref. 3 and here, we merely
recall this result as a function of general N , which reads

1

⌫
= ✏+

1

2�N
✏2 �

(N � 3)

2(N � 2)2
✏3

+
6⇣3(11N � 34) + (N � 1)(N + 12)

4(N � 2)3
✏4 +O(✏5) , (2)

⌘� = 2�
N

N � 2
✏+

1�N

(N � 2)2
✏2 +

(N � 1)N

2(N � 2)3
✏3

+
(N � 1) (2⇣3(N(N + 7)� 42)� (N � 9)N + 5)

4(N � 2)4
✏4

+O(✏5) , (3)

⌘ =
N � 1

2(N � 2)2
✏2 �

(N � 6)(N � 1)

4(N � 2)3
✏3

+
(N � 1)((N � 11)N + 25)

8(N � 2)4
✏4 +O(✏5) . (4)

We note that these critical exponents have a pole at
N = 2, which is due to a factor of (N � 2) appearing in
each loop order of the renormalization group functions,
cf. Ref. 3.

B. Gross-Neveu-Yukawa model

An ultraviolet completion of the perturbatively non-
renormalizable GN model in 2 < D < 4 is given in
terms of a simple Gross-Neveu-Yukawa model, where a
real scalar field � has been introduced resulting from a
Hubbard-Stratonovich decoupling of the four-Fermi in-
teraction in the GN model. The Gross-Neveu-Yukawa
(GNY) model Lagrangian reads

LGNY =  ̄i(/@ +
p
y�) i +

1

2
�(m2

� @2)�+ ��4 . (5)

Notably, this model is perturbatively renormalizable in
D = 4 � ✏ dimensions. The scalar field couples to the
fermions with the Yukawa coupling

p
y and has a quartic

coupling �. For 2 < D < 4 it lies in the same universality
class as the purely fermionic GN model.
The renormalization group functions of the GNY

model in D = 4 � ✏ dimensions have also been calcu-
lated up to four-loop order in the MS scheme [4]. Again,
from the renormalization group functions, the critical ex-
ponents can be determined to order O(✏4), however, due
to the presence of two coupling constants in this case,
the resulting expressions are already quite lengthy for
general N . For convenience, we have printed the general
expression up to order O(✏3) in App. A and refer to the
supplemental material, where we have compiled the com-
plete expressions to order O(✏4). We note that the GNY
model does not exhibit a pole in the critical exponents
for N = 2.
Here, we display the particularly important example

N = 8 which is relevant to the case of spin-1/2 fermions
on the honeycomb lattice:

1

⌫
⇡ 2� 0.9524✏+ 0.007225✏2 � 0.09487✏3 � 0.01265✏4 ,

⌘� ⇡ 0.5714✏+ 0.1236✏2 � 0.02789✏3 + 0.1491✏4 ,

⌘ ⇡ 0.07143✏� 0.006708✏2 � 0.02434✏3 + 0.01758✏4 .
(6)

Another important case where severl benchmark results
are available is N = 4, which corresponds to spinless
fermions on the honeycomb lattice. For N = 4, the crit-
ical exponents are

1

⌫
⇡ 2� 0.8347✏� 0.005711✏2 � 0.06030✏3 � 0.09032✏4 ,

⌘� ⇡ 0.4✏+ 0.1024✏2 � 0.06319✏3 + 0.1986✏4 ,

⌘ ⇡ 0.1✏+ 0.01024✏2 � 0.03298✏3 + 0.05065✏4 . (7)

These expansions are asymptotically divergent series at
best. Therefore, a naive extrapolation to D = 3 by in-
serting ✏ = 1 is likely to be far from the actual values of
the critical exponents at least if the series is above the
”optimal” loop-order of the theory. In order to determine
a reliable value, it is necessary to resum the series. This
will be the matter of the following sections.

• obtain critical exponents in D = 4 - ε, e.g. for N = 8:

✓results available for all N and coupling to Ising, XY and Heisenberg OP

✓compatible with all previously known results (GNY to order ε2, φ4 to order ε4, 1/N2)

• perturbative expansion is asymptotic series - cannot simply set ε = 1 

‣ employ Padé approximants
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FIG. 4. Interpolation of the three critical exponents ⌫
�1 (inverse correlation-length exponent, left panel), ⌘� (boson anoma-

lous dimension, mid panel) and ⌘ (fermion anomalous dimension, right panel) between D 2 (2, 4) at N = 8. The shown
interpolations polynomial (red line) and two-sided Padé (darkred dashed line) are fixed by the two ✏-expansions at D =2 and
D = 4 in the first four derivatives. As a result, the asymptotic behavior is suppressed even far from these expansion points
at the physical dimension D = 3 and plausible values can be read o↵. It should also be noted that both complementary
approaches for the interpolation are very close to each other and comparable to conformal bootstrap (cBS) [6], lattice MC [11]
and Functional Renormalization group (FRG) [12] calculations. Also note that no point for the fermionic anomalous dimension
has been plotted for MC, since the point with ⌘ ⇡ 0.38(1) is far above the value range of the comparable methods.

the ansatz

2[m/n](D) =
a0 + a1D + · · ·+ amDm

1 + b1D + · · ·+ bnDn
. (13)

To establish the correct interpolation, we demand for the
coe�cients {ai} and {bj} to fit to the ✏-expansions, which
leads to the relations

2(n)[m/n](2) = n!fGN
n or 2(n)[m/n](4) = (�1)nn!fGNY

n .

We show the results of the two-sided Padé interpolation,
for 1/⌫ and the anomalous dimensions for N = 8 in
Fig. 4. We note, that the two-sided Padé interpolation
can also have a pole in the interval D 2 (2, 4) depending
on N . In Fig. 4, we therefore show two specific choices
for the two-sided Padé interpolation, which do not have
a pole in D 2 (2, 4) for N = 8, i.e. we use the approx-
imate 2[4/4] for the 1/⌫ and the ⌘ . For the ⌘� we get
a pole in 2[4/4] and we have therefore switched to 2[3/5].
For N = 8 the two-sided Padé interpolation agrees very
well with the polynomial interpolation in the whole range
of D 2 (2, 4). We also show the results from the two-
sided Padé interpolation and the polynomial interpola-
tion evaluated at D = 3 as a function of the number of
spinor components N in Fig. 2. The two interpolations
agree well for larger N and start to deviate from each
other and the other methods for smaller N . This can be
expected since the interpolation makes use of the series
expansion in 2+ ✏ which exhibits poles in the critical ex-
ponents for N = 2. Close to N = 2 these interpolations
between D = 2 and D = 4 are therefore unreliable.

V. BOREL RESUMMATION

In the analysis of the O(N)-symmetric �4 theories
by means of the epsilon expansion, the Borel resumma-
tion method with conformal mapping was very success-
ful in the determination of accurate critical exponents in
D = 3. For this and other resummation techniques, the
large-order behavior of an asymptotic series is considered,
which has been precisely computed for scalar models in
the minimal subtraction scheme [13, 14]. In fact, for these
models, the renormalization group functions are found to
be asymptotically divergent series in the coupling con-
stant with coe�cients growing factorially [13]. Unfortu-
nately, for the Yukawa models considered in this work,
the precise large-order behavior is not known. However,
even with the knowledge of the large-order behavior as
in the O(N) symmetric scalar models, resummation is
a delicate issue. There, for example, the series written
in terms of the coupling constant in fixed dimensions
D = 2, 3 is known to be Borel summable [15, 16], but
the situation for the epsilon expansion remains unsettled.
Borel summability is therefore often taken as an assump-
tion in the analysis of O(N) symmetric scalar models.
We will also do this, here. Additionally, we assume that
the asymptotic behavior of the GNY model is qualita-
tively the same as the one from the scalar models, i.e.
the epsilon expansions follows a formal power series with
factorially increasing coe�cients, i.e.

fk ⇠ (�a)k�(k + b+ 1) ⇡ (�a)kk!kb (14)

for k large. Here, however, we do not know the parame-
ters a and b, in contrast to the case of scalar models [17].

• use with D = 2 + ε expansion to order ε4 for estimates of critical exponents at D = 2 + 1

‣ employ polynomial interpolation and 2-sided Padé approximants for N = 8:

‣ currently: play around with Borel transfromation/sums, conformal mapping,…

‣ emergent SUSY for N = 2 and complex OP:‣ emergent SUSY for N = 1:

0.34(5)
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Due to the e↵ective relativistic invariance of this model
the dynamical critical exponent is z = 1. Together with
the conventional Ising critical exponent which is known
with great accuracy, this is in stark contrast to numerical
data86,87 and we therefore conjecture that the universal-
ity class of the semi-metallic state to a di↵usive metallic
phase in a 3D Weyl semi-metal is likely to be di↵erent
than the one from the replica limit of the chiral Ising
model.

B. Chiral XY model

In the chiral XY model there are two specific values
for the number of fermion flavors N which are relevant
to condensed-matter applications, i.e. the quantum tran-
sition of surface states in topological insulators as covered
by the choice N = 1/2 and the superconducting transi-
tion in graphene where N = 2. Further, the case N = 2
is relevant to a Kekulé transition in graphene which is
described by a complex Z3 order parameter, however,
exhibits emergent U(1) symmetry at the QCP.

Here, we start with the discussion of N = 1/2 which
has been conjectured to exhibit an emergent supersym-
metry at the QCP. We find the critical exponents

1
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For this case, there is a supersymmetric scaling
relation89, connecting the correlation length exponent
and the subleading exponent, reading

⌫
�1 = 2� ! . (96)

Comparing the above equations, we confirm that this re-
lation is exactly fulfilled order by order in the ✏ expansion.

Further, as in the case of the chiral Ising model, we
provide Padé approximants to obtain estimates for the
critical exponents in D = 2 + 1. These are listet in
Tab. II together with the result from the conformal boot-

TABLE II. Chiral XY universality in D = 3: Inverse correla-
tion length exponent 1/⌫ and anomalous dimensions ⌘� and
⌘ for bosons and fermions, respectively. In this work, we
provide results within the (4� ✏) expansion to order O(✏4).

N = 1/2 1/⌫ ⌘� ⌘ !

this work, P[2/2] 1.128 1/3 1/3 0.872

this work, P[3/1] 1.130 1/3 1/3 0.870

conformal bootstrap88 1.090 1/3 1/3 0.910

N = 2 1/⌫ ⌘� ⌘ !

this work, P[2/2] 0.840 0.810 0.117 0.796

this work, P[3/1] 0.841 0.788 0.108 0.780

functional RG56 0.862 0.88 0.062 0.878

Monte Carlo54 1.06(5) 0.71(3) - -

strap approach88 exhibiting good agreement between the
di↵erent methods for N = 1/2. We also note that the re-
sult for the anomalous dimensions ⌘� = ⌘ = 1/3 agrees
exactly with the one-loop result up to O(✏4). This is in
agreement with SUSY non-renormalization theorems90.
For N = 2 the numerical evaluation of the critical ex-

ponents gives

1

⌫
⇡ 2� 1.2✏+ 0.1829✏2 � 0.3515✏3 + 0.5164✏4 ,

⌘� ⇡ 0.6667✏+ 0.1211✏2 � 0.005048✏3 + 0.1938✏4 ,

⌘ ⇡ 0.1667✏� 0.02722✏2 � 0.05507✏3 + 0.04202✏4 ,

! ⇡ ✏� 0.3783✏2 + 0.6271✏3 � 1.853✏4 . (97)

The corresponding Padé approximants are shown in
Tab. II and the full analytical expressions can be found in
App. B. As before, we only give the results for the Padé
approximants P[2/2] and P[3/1] which, in the case of the
chiral XY model, do not show any poles for D 2 {2, 4}
for investigated values of N . In Tab. II, we also provide
the estimates from the functional RG56 and recent quan-
tum Monte Carlo calculations54. Again, the results for
the inverse correlation length exponent agree reasonably
well within the di↵erent RG approaches, however, there
is a rather large di↵erence when compared to the QMC
results. It will be interesting to see estimates from the
conformal bootstrap approach for this case.

C. Chiral Heisenberg model

Finally, we discuss the chiral Heisenberg model for
eight-component spinors, i.e. N = 2, which corresponds
to the field-theoretical formulation of the antiferromag-
netic transition of interacting electrons on the honeycomb
lattice as relevant to graphene and related materials. For
the inverse correlation length exponent, the boson and
fermion anomalous dimension and the subleading expo-

1.15(6) 0.32(2)QMC
FRG 1.166 1 / 3 1 / 3
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TABLE III. Emergent SUSY at N = 1: Comparison of the
resummed critical exponents obtained from the resummation
algorithm (Sec. V) with the results from the polynomial inter-
polation (Sec. III), the two-sided Padé approximations (Sec.
IV) and complementary methods: Functional Renormaliza-
tion Group (FRG) and conformal bootstrap. Slanted numbers
mark values where ⌫ was computed instead of the inverse.

N = 1 ⌫�1 ⌘� ⌘ 
Sec. V 1.415(12) 0.1673(27) 0.1673(27)

conformal bootstrap[10] 1.418 0.164 0.164

functional RG[25] 1.395 0.167 0.167

B. Spinless fermions

For N = 4 we deal again with a metal-insulator tran-
sition on the honeycomb lattice with strong repulsive
interactions, but for spinless fermions with one four-
component spinor. While the correlation-length expo-
nent from the conformal bootstrap is again away from
the other methods, FRG [13], large-N [21, 23] and recent
Monte Carlo simulations [11] converge with the Borel re-
summed estimates from Sec. V. Since the pole of the
Gross-Neveu epsilon-expansions at N = 2 is already ap-
proached the interpolations and two-sided Padé estimates
are less reliable, so we present them only for completeness
in gray font in Tab. II

C. Emergent SUSY

For N = 1 the GNY model in the chiral Ising model
was suggested to be compatible with an emergent super-
symmetry and the criticality is described by the Wess-
Zumino model []. Therefore, the anomalous dimensions
of the boson and the single component spinor have to
coincide already on the level of the epsilon-expansion at
each order, i.e. ⌘ = ⌘ = ⌘�. Consequently, the Borel re-
summation provides the same values for both exponents.
Furthermore, the SUSY implies the following super scal-
ing relation for the critical exponents

1

⌫
=

D � ⌘

2
. (36)

We checked this for the estimates obtained in the Borel
resummation and found that it is hold up in the respec-
tive error bars. Since N = 1 lies beyond the pole at
N = 2, the interpolation and two-sided Padé approxi-
mants are not reasonable anymore and we leave them out
of the analysis. However, the values from the conformal
bootstrap [10] and the functional renormalization [25]
group are very well matched to the Borel summed series,
which we compiled in Tab. III. Note that the correlation-
length exponent for the conformal bootstrap was deter-
mined using the super scaling relation in Eq. (36).

D. Other

In addition to the physical cases, we compare two ad-
ditional N configurations. These have no direct physical
significance but can nevertheless be compared with other
methods. At N = 2 no interpolation to the Gross-Neveu
model is possible and we compare only the Borel resum-
mation with the conformal boostrap and the functional
renormalization group.

VII. CONCLUSIONS

We studied the universality classes of the chiral Ising
models using perturbation series for the critical expo-
nents in 4 � ✏ dimensions to order O(✏4). Employing
various resummation and interpolation techniques known
from the O(N) universality classes, we calculated esti-
mates for the inverse correlation length exponent as well
as the anomalous dimensions of the fermions and bosons.
Further, we compared to other available methods, includ-
ing quantum Monte Carlo simulations, functional renor-
malization group and the conformal bootstrap. In par-
ticular, for the case N = 8, we observe good agreement
of the estimates for the critical exponents from the vari-
ous interpolations and resummations within the pertur-
bative RG series as well as reasonable agreement with
complementary methods. We note that the recently ob-
tained lattice QMC results for the case N = 4 added
significant corrections to previous lattice QMC simula-
tions on smaller lattices. It would be very interesting to
see, whether this is also the case for N = 8 and if im-
proved estimates would fit better to the results suggested
by the various continuum methods.
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OPEN ISSUES

• read, understand and refer to chapter 42 (large-
order behavior of Yukawa theories) in Zinn-Justin’s

TABLE IV. Chiral universality at N = 2: Comparison of the
resummed critical exponents obtained from the resummation
algorithm (Sec. V) with the results from the polynomial inter-
polation (Sec. III), the two-sided Padé approximations (Sec.
IV) and complementary methods: Functional Renormaliza-
tion Group (FRG), conformal bootstrap (cBS), Monte Carlo
(MC) and large N calculations. Slanted numbers mark values
where ⌫ was computed instead of the inverse.

N = 2 ⌫�1 ⌘� ⌘ 
Sec. V 1.276(15) 0.2934(42) 0.1400(39)

conformal bootstrap[10] 0.86 0.320 0.134

functional RG[26] 1.229 0.372 0.131



 — Conclusion & Outlook — 



Summary & conclusions
• Quantum critical behavior of Dirac fermions:

‣ analytical expressions for arbitrary N and other order parameters to order ε4 (D = 4 - ε)

‣ excellent agreement with conformal bootstrap for anomalous dimensions for N = 8

‣ excellent agreement for SUSY cases with N = 1 (Ising OP) and N = 2 (complex OP)

‣ good chance to settle GN critical exponents across different methods, soon!

‣ serious mismatch with current QMC results — what’s up there? anyone?

Mihaila, Zerf, Ihrig, Herbut, MMS (2017)
Zerf, Mihaila, Marquard, Herbut, MMS (2017)
… to appear soon (2018)

• Many-body instabilities of honeycomb electrons:

‣ unbiased determination of leading ordering tendency for arbitrary interaction profiles

‣ Coulomb-tail does not lead to other instabilities than U-driven AF order 

‣ unstrained model compatible with SM behavior and QMC

‣ uniform strain helps to get to AF order Sánchez de la Peña, Lichtenstein, Honerkamp, Scherer (2017)


