Stripes developed at the strong limit of nematicity in FeSe film

Wei Li (李渭)

Department of Physics, Tsinghua University

IASTU Seminar, Sep. 19, 2017

Acknowledgements

Tsinghua University

Prof. Qi-Kun Xue, Prof. Xi Chen, Dr. Peng Deng, Zhilin Xu, Dr. Hao Ding

Xue Group members

Stanford University

Prof. Zhi-Xun Shen, Prof. Yan Zhang, Dr. S.-K. Mo, Dr. M. Hashimoto & Dr. Dong-hui Lu

Helpful discussions

Prof. Jiangping Hu, Prof. Hong Yao, Prof. Tao Li

- **1. Techniques and Examples**
- 2. Introduction
- 3. Stripes in FeSe
- 4. Nematicity and Stripes
- 5. Summary and Perspective

Techniques and examples

Molecular beam epitaxy

- In UHV (10⁻¹¹ Torr): to form molecular beam; ultra clean environment
- High purity sources and substrates: Si(99.9999%), Fe(99.996%)
- Precise control of the temperatures: sub & cells
- Reflection high-energy electron diffraction: Monitor the growth rate

Molecular beam epitaxy

Reflection high-energy electron diffraction

Molecular beam epitaxy

A high quality Bi₂Se₃ film and its RHEED oscillation

A STM topographic image

Scanning Tunneling Microscopy

Design and construct materials at atomic scale

- Control the orientation of MBE-grown films
- Construct novel interfaces (doping, proximity...)
- Tune the chemical pressure of the lattice

Li, Wei et al., Nat. Phys. 8, 126 (2012)

Relationship between SC and AFM in K_xFe_{2-y}Se₂(001)

Li, Wei et al., Phys. Rev. Lett. 109, 057003 (2012). Li, Wei et al., Phys. Rev. B 88, 140506(R) (2013).

Symbiotic relationship between SC and AFM in K_xFe_{2-y}Se₂

Li, Wei et al., Phys. Rev. Lett. 109, 057003 (2012). Li, Wei et al., Phys. Rev. B 88, 140506(R) (2013).

Construct novel interfaces

Construct novel interfaces

Interfacial enhancement of superconductivity

Construct novel interfaces

Superconductivity enhancement in bi-layer Ga fluid

Zhang, H. et al., Phys. Rev. Lett. 114, 107003 (2015).

Science 350, 542 (2015).

Design and construct materials at atomic scale

- Control the orientation of MBE-grown films
- Construct novel interfaces (doping, proximity...)
- Tune the chemical pressure of the lattice

Introduction

II Superconductivity enhancement in 1 UC FeSe/STO

II Superconductivity enhancement in 1 UC FeSe/STO

Suppression of superconductivity in multilayer FeSe film?

Tan, S. Y. et al. Nat. Mater. 12, 634 (2013).

II Nematicity in Fe-based superconductors

Phase diagram and lattice symmetry

Nature Physics 5, 555 (2009); Science 327, 181 (2010) ;Science 329, 824 (2010)...

Davis, S. et al. Science 327, 181 (2010). Zhao, J. et al. Nat. Phys. 5, 555-560 (2009).

Fisher, I. et al. Science 329, 824 (2010).

II Nematicity in Fe-based superconductors

Orbital anisotropy in Ba(Fe_{1-x}Co_x)₂As₂

Yi, Ming et al., PNAS 108, 6878 (2011).

FeSe film vs. FeSe single crystal

Suppression of superconductivity in multilayer FeSe film?

• Other competing phases/orders?

Hsu, F. et al. Proc. Natl. Acad. Sci. U.S.A. **105**, 14262 (2008). Watson, M. et al. Phys. Rev. B **91**, 155106 (2015). Zhang, Y. et al. Phys. Rev. B 94, 155153 (2016). Li, W. et al. arxiv: 1509.01892 (2015).

Absence of long-range AFM order at ambient pressure

- Suppression of superconductivity in multilayer FeSe film?
- Other competing AFM phases/orders?

2012).

Stripes in FeSe

- Maze-like C₂ domain walls
- Impurity induced stripes

- Maze-like C₂ domain walls
- Impurity induced stripes

• Along Fe-Fe lattice, ~ 1.9 nm

Bias voltage-dependence of the stripes

- Periodicity is unchanged: Static?
- Phase can change by 180°

Impurity I

Bias voltage-dependence of the stripes

- Periodicity is unchanged: Static?
- Phase can change by 180°
- Not impurity states, quasiparticle inferences?

Impurity II

Charge ordering origin of the stripes

- Stripes: Static and non-dispersive, the competing order?
- QPI: Energy-dependent, d_{yz} hole-like band

Charge ordering origin of the stripes

dl/dV maps in the vicinity of defects

Below Fermi level

Above Fermi level

Li, Wei et al., Nat. Phys.(2017) DOI:10.1038/NPHYS4186

Nematicity and charge ordering

The effects of temperature on stripes and nematicity

- Nematic transition at 120 K
- Charge ordering develops around 60 K ~ 77 K
- Stripes is not sensitive to temperature once formed

Nematicity and charge ordering

Stripes

- **Develops beneath nematicity**
- Not sensitive to temperature Not FS nesting driven
- No fully opened gap in STS

A SDW with a rather small wave vector *q*.

Ku, W. et al. Phys. Rev. Lett. 115, 117001 (2015).

- Competing AFM order under tensile strain
- No AFM at ambient pressure
- Competing order with SC

Stripes develops at the strong limit of nematicity

- Defects further enhance the anisotropy
- Obvious distortion of the impurity state due to interaction with CO
- The distortion is absence in bulk FeSe and FeSe/STO at high temperature

Iron-vacancy in <u>SC</u> FeSe

Song, C. et al. Phy. Rev. Lett. **109**, 137004 (2012) Kasahara, S. et al. PNAS **111**, 16309 (2014).

Summary and perspective

Stripes in FeSe/STO

- Developed at the strong limit of nematicity
- Ground state of nematicity
- Originating from a new emergent SDW
- Developed under negative pressure
- Competing with superconductivity

Tune the strength of nematicity to induce CO?

1UC FeSe/STO?

Thank you