Cuprate high- T_c superconductivity: Insights from a model system

北京大学量子材料科学中心

Outline

Introduction

- HTSC and the cuprates
- Spectroscopic methods applied to the high- T_c problem
- □ Model system HgBa₂CuO_{4+δ}

Topics:

- 1. The neutron resonant mode
- 2. Pseudogap magnetism
- 3. Energy $2\Delta_{sc}$ and above
- **Summary**

$T_{\rm c}$ over the years

Cuprates: crystal and electronic structure

Doiron-Leyraud *et al.*, *Nature* **447**, 565 (2007)

Cuprates: crystal and electronic structure

RAPID COMMUNICATIONS

PHYSICAL REVIEW B

VOLUME 34, NUMBER 11

1 DECEMBER 1986

d-wave pairing near a spin-density-wave instability

D. J. Scalapino, E. Loh, Jr.,* and J. E. Hirsch[†] Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (Received 23 June 1986)

We investigate the three-dimensional Hubbard model and show that paramagnon exchange near a spin-density-wave instability gives rise to a strong singlet *d*-wave pairing interaction. For a cubic band the singlet $(d_{x^2-y^2} \text{ and } d_{3z^2-r^2})$ channels are enhanced while the singlet (d_{xy}, d_{xz}, d_{yz}) and triplet *p*-wave channels are suppressed. A unique feature of this pairing mechanism is its sensitivity to band structure and band filling.

Unconventional SC near AF instability

Uemura, Nature Materials 8, 253 (2009)

Some important questions

Q: What's the pairing symmetry?

 \Box Q: What causes the pseudogap above T_c ?

Q: Is there a competing order other than AFM?

Q: Which bosonic modes are important?

Q: What's the minimal microscopic model?

Outline

Introduction

- HTSC and the cuprates
- Spectroscopic methods applied to the high- T_c problem
- **D** Model system HgBa₂CuO_{4+ δ}

Topics:

- 1. The neutron resonant mode
- 2. Pseudogap magnetism
- 3. Energy $2\Delta_{sc}$ and above

D Summary

ARPES

Doiron-Leyraud et al., Nature 447, 565 (2007)

Hashimoto et al., Nat. Phys. 6, 414 (2010)

STM/STS

Bi2212

•-X - y

1.2

1.5

Optical conductivity

Raman scattering

Le Tacon et al., Nat. Phys. 2, 537 (2006)

Neutron scattering

(Resonant) X-ray scattering

Some important questions

Q: What's the pairing symmetry?

A: *d*-wave.

- \Box Q: What causes the pseudogap above T_c ?
 - A: There is evidence for both pre-formed pairs and competing order.
- Q: Is there a competing order other than AFM?
 - A: CDW, SDW, intra-unit-cell order are all possible.
- Q: Which bosonic modes are important?
 - A: Both magnetic excitations and phonons are prominent.

(Which one is the "pairing glue" is a separate question!)

- Q: What's the minimal microscopic model?
 - A: Single-band models are accepted as there is no strong violation.

Outline

Introduction

- HTSC and the cuprates
- Spectroscopic methods applied to the high- T_c problem
- **D** Model system HgBa₂CuO_{4+ δ}
- **D** Topics:
 - 1. The neutron resonant mode
 - 2. Pseudogap magnetism
 - 3. Energy $2\Delta_{sc}$ and above
- **J** Summary

$T_{\rm c}$ over the years

Model system HgBa₂CuO_{4+ δ}

- Single layer, tetragonal
- □ Single Cu site, flat Cu-O sheet
- Doping disorder confined to far away from the Cu-O sheets
- \Box Highest T_c (max. 97 K) among single-layer compounds

Challenges from the synthesis

Zhao, et al., Adv. Mater. 18, 3243 (2006)

Pure and big single crystals

Work since 2008

Neutron scattering

Properties of neutron

Raman scattering

Optical ellipsometry

Outline

Introduction

- HTSC and the cuprates
- Spectroscopic methods applied to the high- $T_{\rm c}$ problem
- **D** Model system HgBa₂CuO_{4+ δ}

Topics:

- 1. The neutron resonant mode
- 2. Pseudogap magnetism
- 3. Energy $2\Delta_{sc}$ and above

D Summary

The neutron resonant mode

Hayden et al., Nature 429, 531 (2004)

Resonant mode in Hg1201

Yu, YL et al., PRB 81, 064518 (2010)

Resonant mode in Hg1201

Yu, YL et al., PRB 81, 064518 (2010)

Resonant mode in Hg1201

❑ We confirmed the universal presence of the resonant mode
❑ Sign-changing ∆_{sc} connected by **q**_{res}: as expected from *d*-wave

Coherence factor:
$$\frac{1}{2} \left(1 - \frac{\Delta(k)\Delta(k+q^*)}{\mathcal{E}(k)\mathcal{E}(k+q^*)} \right)$$

Eschrig et al., Adv. Phys. 55, 47 (2006)

Conventional wisdom: $E_r \propto T_c$

Superconducting gap: Δ_{sc}

Universal E_r - Δ_{sc} scaling

 $\Box \Delta$ is not proportional to T_c in underdoped systems

One should consider both resonant modes in bilayer systems

Yu, YL et al., Nature Physics 5, 873 (2009)

Implication

Unexpected from a simple RPA excitonic picture

$$\chi(q,\omega) = \frac{\chi_0(q,\omega)}{1 + J(q)\chi_0(q,\omega)}$$

Implies a much deeper connection between magnetic fluctuations (entire spectrum) and superconductivity

Yu, YL et al., Nature Physics 5, 873 (2009)

Outline

Introduction

- HTSC and the cuprates
- Spectroscopic methods applied to the high- $T_{\rm c}$ problem
- **D** Model system HgBa₂CuO_{4+ δ}

Topics:

- 1. The neutron resonant mode
- 2. Pseudogap magnetism
- 3. Energy $2\Delta_{sc}$ and above
- **J** Summary
"Orbital current" order

Spin-polarized neutron scattering

Properties of neutron

charge 0, spin 1/2 magnetic moment (P), energy (E) and momentum (k) scattering due to nuclear and electromagnetic interaction

Spin-flip scattering all comes from electromagnetic interaction

Intra-unit-cell order: initial evidence

Intra-unit-cell order: confirmed in Hg1201

(101) Bragg peak

Intra-unit-cell order: evidence from STM/STS

Lawler et al., Nature 466, 347 (2010)

New excitations in the pseudogap state

Related publications:

YL et al., Nature **468**, 283 (2010)

YL et al., Nat. Phys. 8, 404 (2012)

Coldea et al., PRL 86, 5377 (2001)

Samples

Unusual aspect of the resonance data

Verification of magnetic origin

Almost disperseless excitation

Sample: OP95

Sample: OP95

A second excitation branch

Verification of magnetic origin

T dependence

Q dependence

Connection to signal maxima at (1/2,1/2)

New excitation summary

- Two almost disperseless modes
- Verified to be magnetic
- Set in below ~ 7*
- One energy decreases with doping
- Mysterious Q dependence of intensity
- Connection to AF fluctuations

YL et al., Nature **468**, 283 (2010) YL et al., Nat. Phys. **8**, 404 (2012)

Electron-boson coupling

Electron-boson coupling

Electron-boson coupling

Inverted from high-resolution ARPES data taken by Xingjiang Zhou's group

Yun et al., PRB 84, 104521 (2011)

What are these excitations?

1. Excitations from "orbital currents"?

Two modes, same *T*^{*} as seen by neutron diffraction

Q-dependence, relation to AF fluctuations

See Varma, Nature 468, 184 (2012)

2. Admixture between AF fluctuations and phonons?

Multiple modes, Q-dependence, coincidence with AF fluctuation maxima
Lack of systematic theory

3. Local modes?

Weak dispersion, Q-dependence

Coincidence with AF fluctuation maxima, large spectral weight

See, e.g., Martin et al., PRB 70, 224514 (2004)

Outline

Introduction

- HTSC and the cuprates
- Spectroscopic methods applied to the high- $T_{\rm c}$ problem
- **D** Model system HgBa₂CuO_{4+ δ}

Topics:

- 1. The neutron resonant mode
- 2. Pseudogap magnetism
- 3. Energy $2\Delta_{sc}$ and above
- **J** Summary

Phonon-mediated superconductivity

Lattice vibration

0.2

0.5

(H,H) (r.l.u.)

50

0.8

0

= 93~96k

100

Temperature (K)

150

200

Magnetic fluctuation mediated superconductivity

Desire to form pairs

A feedback effect due to pairing can be expected on the magnetic fluctuations

More "juice" at higher energy

Lipscombe et al., PRL 99, 067002 (2004)

How about correlation between high-energy magnetic excitations and SC as we change temperature and doping?

Raman scattering

Le Tacon et al., Nat. Phys. 2, 537 (2006)

Sugai et al., PRB 68, 184504 (2003)

Samples

Hole concentration

sample surface (50x)

High-energy feedback effect

Enhancement of two-magnon peak when the gap opens

Pre-formed pairs observed around the same temperature

High-energy feedback effect similar to the resonant mode!

YL et al., Phys. Rev. Lett. 108, 227003 (2012)

High-energy feedback effect

Enhancement of two-magnon peak when the gap opens

Pre-formed pairs observed around the same temperature

High-energy feedback effect similar to the resonant mode!

Nd12Ba18Cu2O6

Ba₂Cu₂O₂

Nd₁₂Ba_{1.8}Cu₃O₇ YBa₂Cu₄O₀

YBa₂Cu₂O₄₄

YBa2Cu3O66 INS data

YL et al., Phys. Rev. Lett. 108, 227003 (2012)

Outline

Introduction

- HTSC and the cuprates
- Spectroscopic methods applied to the high- $T_{\rm c}$ problem
- **D** Model system HgBa₂CuO_{4+ δ}
- **D** Topics:
 - 1. The neutron resonant mode
 - 2. Pseudogap magnetism
 - 3. Energy $2\Delta_{sc}$ and above
- Summary

Some important questions

Collaborators

Neutron Scattering

Guichuan Yu (U. Minnesota) <u>Martin Greven (U. Minnesota)</u> Paul Steffens (ILL, Grenoble) Richard A. Mole (FRM-II, Garching) Klaudia Hradil (FRM-II, Garching) Nikola Egentenmeyer (PSI, Villigen) Jorge Gavilano (PSI, Villigen) Victor Balédent (LLB, Saclay) Yvan Sidis (LLB, Saclay) <u>Philippe Bourges (LLB, Saclay)</u>

Raman Scattering

Mathieu Le Tacon (MPI, Stuttgart) Mohammad Bakr (MPI, Stuttgart) Bernhard Keimer (MPI, Stuttgart) Rudi Hackl (WMI, Garching)

Optical Ellipsometry

Yulia Matiks (MPI, Stuttgart) Alexander V. Boris (MPI, Stuttgart)

Theory

Damien Terrade (MPI, Stuttgart) Dirk Manske (MPI, Stuttgart) Alexander Yaresko (MPI, Stuttgart)

Samples and Characterization

Mun K. Chan (U. Minnesota) Lina Ji (U. Minnesota) Neven Barišić (U. Minnesota) <u>Xudong Zhao (U. Minnesota, Jilin Univ.)</u> Toshinao Loew (MPI, Stuttgart) Chengtian Lin (MPI, Stuttgart) Thank you!