Mapping the electronic structure of each ingredient oxide layer of high- T_c cuprate superconductors

Can-Li Song (宋灿立)

Department of Physics, Tsinghua University

October 28, 2015

Acknowledgements

Leader : Qi-Kun Xue

Colleagues: Xu-Cun Ma, Lili Wang, Xi Chen, Ke He, Shuaihua Ji Students: Yan-Feng Lv, Wen-Lin Wang, Jun-Ping Peng, Hao Ding, Yang Wang, Yong Zhong, Sha Han, Yi-Min Zhang...

Bi-2212 samples: Ruidan Zhong, John Schneeloch, Gen-Da Gu

Bi-2201 samples: Lin Zhao, Xing-Jiang Zhou...

\$\$\$: NSFC & MOST of China

High-*T*_c **Cuprate Superconductors**

Bednorz and Müller, Z. Phys. B 64, 189 (1986) Keimer, Natrue 518, 179 (2015) 0.010 $Ba_{0.75}La_{4.25}Cu_5O_{5(3-v)}$ 300 Τ* 0.008 Strange metal Temperature, T (K) Pseudogap 200 0.006 I SC. onset ρ (Ωcm) Charge $T_{\rm c}$ 100 order 0.004 Spin orde 7.5 A/cm² AF CDW x 2.5 A/cm² Fermi 0.5 A/cm² d-SC T_{SDW} liquid 0.002 0 0.1 \hat{P}_{c2} 0.2 p_{max} p_{min} p_{c1} Hole doping, p Sophisticated phase diagram 20 30 40 50 60 10 T (K)

Unsolved issues of high- T_c superconductors:

- 1) Electron pairing mechanism: spin fluctuation?
- 2) Various sorts of charge orders and their interplay with superconductivity?
- 3) The nature of non-Fermi liquid behavior (strange metal)?
- 4) Pseudogap and its connection with superconductivity as well as broken-symmetry states?

Pseudogap of Cuprates by STM

Renner, PRL 80, 149 (1998) Bi2212UD (b) 4.2 K 46 K (a.u.) 63 K 76 K 81 K Vb/lb 34 K 89 K 98 K 109 K 123 K 151 K 167 K 175 K 182 K 195 K 202 K $T_{c} = 83 \text{ K}$ 293 K $\Delta_n = 44 \text{ meV}$ -200 -100 100 200 0 V (mV)

Spectral depletion at E_F above T_c

Possible Origin for Pseudogap

CDW

1) Precursor pairing

2) A non superconducting related pseudogap, e.g. various broken-symmetry states

Checkerboard

Fluctuating Stripes Static Striped DOS

Hoffman, Science 295, 466 (2002) Parker, Nature 468, 677 (2010) Howald, PRB 67, 014533 (2003) Wise, Nat Phys. 4, 696(2008)

Electronic cluster glass

Kohsaka, Science (2007)

"Nematic" and "Smectic"

Lawler, Nature 466, 7304 (2010)

Strongly correlated electron systems

Structural complexity

Superconducting CuO₂ layer, charge reservoir building layer (for example, BiO/SrO in Bi-2212)

Unattainable CuO₂ layers

Surface-sensitive measurements on the vacuum cleaved BiO planes: the properties of superconducting CuO₂ planes?

Possible path to address the challenges

Atomic-layer-resolved spectral study of cuprates

MBE + LT STM/STS + magnetic field + IBA

IBA on Bi-2212

Deeper and deeper atomic layers of Bi-2212 are exposed with increasing IBA.

- ➢ Contrasting spectral feature between BiO and CuO₂
- > A substantial loss of near-surface oxygen dopants during IBA
- > Asymmetric gap of CuO₂ planes, neither superconducting gap nor pseudogap

A precise control of oxygen stoichiometry!

Robust VHS on SrO planes!

Pseudogap: a property of BiO

2.0 **BiO**_x High 1.5 1 nm dl/dV (arb.units) **Bi-2212** 2 nm 1.0 Low 3 nm 0.5 Height (nm) 0.8 0.4 4 nm 0 0 0 L -200 80 20 40 60 100 200 -100 100 0 Distance (nm) Sample bias (mV)

Pseudogap on MBE-grown BiO_x islands

Spectra of superconducting CuO₂ layers

- Robust two-gap feature on CuO₂
- > The smaller gap becomes invisible near T_c
- $\succ \Delta$ follows a dome-shaped behavior, like $T_{\rm c}$
- $\geq 2\Delta/k_{\rm B}T_{\rm c}=3.8\pm1.0$

Preparation and direct measurements of CuO₂ Superconducting layers are so essential!!!

arXiv: 1508.07460

d-wave Pseudogap in Noncuprate Compounds

Summary and Perspective

> Atomic-layer-resolved electronic structures of cuprates

Pseudogap and VHS: possibly a property of oxygen-doped oxides Real superconducting gap in CuO_2 layer SrO/BiO: VHS and acts carrier reservoir for CuO_2

> Bottom-Up (MBE) & Top-Down (IBA) strategies

Thank You Very Much!