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Motivation

1. Experimental search for 
Majorana fermions in 
solid-state devices

2. Recent theoretical progress 
on Anderson localization in 
quantum wires in the unitary 
symmetry class (using 
Efetov's nonlinear 
supersymmetric sigma model)

from V.Mourik et al, Science 336, 1003 (2012)
first report of a Majorana fermion:
InSb wire (spin-orbit) + magnetic field
+ proximity-induced superconductivity 

M.Skvortsov, P.Ostrovsky, 
JETP Lett.  85, 72 (2007);
D.I., P.Ostrovsky, M.Skvortsov,
PRB 79, 205108 (2009). 

How would a Majorana fermion localize in a disordered wire?



Plan of the talk

1. Anderson localization in a quasi-1D disordered wire
  (in the unitary symmetry class: broken time-reversal 
  symmetry)

2. Interpretation in terms of Mott hybridization

3. Application to Normal metal – Superconductor junctions
  (including topological superconductors with Majorana 
  fermions)



Anderson localization: introduction

1. Free particle: 3. Quantum interference:

2. Classical diffusion:

4. Localization corrections:

In 1 and 2 dimensions, interference suppresses the diffusion
completely at arbitrary strength of disorder: the particle stays in a 
finite region of space (localization) [Mott, Twose '61; Berezinsky 
'73; Abrahams, Anderson, Licciardello, Ramakrishnan '79]



One-dimensional models

Particle on a line (strictly 1D): Thick wire (quasi 1D):

[Berezinsky technique:
equations on the probability
distribution of the scattering
phase (exact results available)]

[Efetov's supersymmetric
nonlinear sigma model]

– localization length

– mean free path

Rescaled to the localization length   , localization looks similar
in the two models. Which properties are universal?



Quantitative description of localization

In the normal wire, localization is not visible in the average
of a single Green's function: 

Averaging two Green's functions (TWO types of averages):

1.

(correlations of local density
of states)

2. 

(dynamic response function)

            decays at the length 
scale  of a mean free path 



Correlation functions: formal definitions

(averaging is over disorder realizations)

1. LDOS correlations: 

2. Dynamic response function: 

● length unit: localization length
● energy unit:       = level spacing at  length
              = Thouless energy at length 

– diffusion constant
– 1D density of states



Available analytical results

strictly 1D (S1D) 

quasi-1D unitary
(Q1D-U): broken 
time-reversal 
symmetry

quasi-1D orthogonal
(Q1D-O): preserved 
time-reversal 
symmetry

single-wave-function
statitics 

[Gor'kov, Dorokhov, 
Prigara '83]

??? 

??? 

??? 

this
work

universality of
statistics
[Gogolin '76,
Kolokolov '95,
Mirlin '00] 

(assuming Gaussian white-noise disorder and
quasiclassical regime              )  



Structure of correlations in 1D
[Gor'kov, Dorokhov, Prigara '83]

qualitatively explained by Mott hybridization argument [Mott '70]  

–  Mott length scale  

will be compared
with our sigma-model
results in Q1D  



Mott argument 
(wave function hybridization)

1. At short distances (            ), the two eigenfunctions have the
same profile (single localized wave function)

2. Hybridization is important as long as the splitting  



Details of the sigma-model calculations:
action



Details of the sigma-model calculations:
transfer-matrix formalism



Details of the sigma-model calculations:
separation of variables

Fermionic part: compact, can be solved perturbatively in 

Bosonic part: non-compact, expansion contains both powers
and logarithms of

For calculation, we assume      real positive, then analytically 
continue



Details of the sigma-model calculations:
matching Legendre and Bessel

asymptotics in the bosonic sector



Results of the sigma-model calculations

The leading asymptotics is
the same as in S1D: single-
wave-function correlations
at small x and erf(...) at 
large x.

Subleading terms in     are different. At

in Q1D-U

in S1D



Universality in two-point correlations

1.  Is short-distance part universal?  – yes

2.  Is Mott-length-scale part universal? – yes

3. Are finite-     corrections universal? – no

Sigma-model calculations for                in Q1D-U against
S1D results:



Summary 1 (localization in normal wires)

1.  We have obtained a perturbative expansion in      (including
     log corrections) of the correlations of local density of states
     in Q1D wires in the unitary symmetry class

2.  We have confirmed the universal properties of S1D / Q1D-U
     localization
        – for the single-wave-function statistics (known results)
        – at the Mott length scale (new, but expected)
     and studied non-universal corrections in     (new result) 

3.  Possible extensions of the method ?
        – dynamical response function               ?
        – orthogonal symmetry class?
     These problems are technically more complicated with a
     sigma model, but: some progress is possible with the
     Mott hybridization argument ! 



Improving Mott argument:
hybridization with log-normal tails

Assuming log-normal distribution of tails with one-parameter scaling

→  reproduces the leading terms of the Q1D-U calculation
and suggests new results for               and for Q1D-O case



Log-normal Mott, exact results,
and new conjectures



Summary 2  (Mott hybridization 
with log-normal tails)

1. Hybridization of log-normally distributed tails:
    an easy approximation to study localized states
    (much simpler than exact methods)
 
2.  New results (conjectures) for quantum wires 
     in the orthogonal symmetry class and for the 
     dynamical response function

     Possible extensions:

        – away from one-parameter scaling (strong disorder)
        – to higher dimensions
        – to wires with a finite number of channels (crossover
           from             to                )
        – to contacts between Anderson insulators and 
           superconductors



  

Localization in SN junctions
(three symmetry classes: B,C,D)

S

0 L
x

N

quasi-1D topological superconductor:
time-reversal and spin-rotation 
symmetries broken, B symmetry class

disordered normal wire: time-reversal 
and  spin-rotation symmetries broken, 
A (unitary) symmetry class

Majorana fermion:
Class B:

Classes 
C and D: S N

conventional 
superconductor
(class CI)

disordered normal wire: time-reversal symmetry
broken, spin-rotation symmetry either 
preserved (→ NS junction of class C)
or broken (→ NS junction of class D)



  

Superconducting proximity
vs. localization in the case of a 
broken time-reversal symmetry

– At the quasiclassical level, no proximity effect 
   if the time-reversal symmetry is broken 

– Localization helps: proximity survives at the length scale
   and at the energy scale      (around the Fermi level)

– Due to Andreev reflection, one-point average
   already exhibits localization

– Calculation is performed along the same lines of the
   sigma model as in the normal-wire case. Interface with
   the superconductor becomes a boundary condition for
   the sigma model



  

Results in the Majorana case (class B): 
RMT limit

1. Short-wire limit (            ):

where     is the level spacing in the wire

– known result from the random-matrix theory (RMT)

delta-function at 
zero energy
= Majorana level

level
repulsion



  

Results in the Majorana case (class B): 
long-wire limit

2. Long-wire limit (            ):

where the (average) profile of the Majorana state is

and the Mott length is



  

Long-wire limit: interpretation

Majorana
profile

“erf” component

total average
density of states

Majorana

x

ª(x)

"

{"0

Can be explained in terms
of the “Mott hybridization” 
of the Majorana state with
localized states in the wire



  

Results for classes C and D
(long-wire limit)

one half of the 
Mott length

no feature at Mott scale 
(no level repulsion between
any level and its Andreev reflection)

these results are obtained by a direct calculation with
boundary conditions corresponding to C and D symmetry 
classes – and then explained in terms of Mott hybridization



  

Summary 3 (NS junctions)

● An analytic solution for the localization of a Majorana
 fermion in a disordered NS junction

● Most probably, our results in the                 limit are
 also universally valid for wires with orthogonal 
 and symplectic symmetries and for wires with a finite
 number of channels (assuming weak disorder)

● The same approach is applicable to symmetry classes
 C and D : it describes the proximity effect in the localized
 regime (in wires with broken time-reversal symmetry)

● The results of the sigma-model calculations can be 
 interpreted in terms of Mott hybridization of localized states
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