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LaserMirror

Lense

atoms

ultracold quantum gases

atoms trapped by laser in harmonic confinement
➡ cooled to very low temperatures⇠ 100 nK

➡ experimental accessible: 
➡ interaction strength tunable

• transport coefficients (viscosity, spin diffusion...)
• responses, correlations 

• density

condensed matter system with well controlled Hamiltonian

e.g.
H =

X

p

✏pĉ
†
pĉp + g

X

k,k0,q

ĉ†k0�qc
†
k+qĉkĉk0

low scattering energies: contact interactions 

quantum simulator of Hamiltonians
&

testground for few and many-body theories
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ultracold quantum gases

cold atoms as quantum simulators

SHERSON ET AL., NATURE 467 (2010)

MOTT-SUPERFLUID TRANSITION

BAKR ET AL. SCIENCE 329 (2010)

QUANTUM GAS MICROSCOPE

BAKR ET AL. SCIENCE 329 (2010)
IMAGE: CUAWEB.MIT.EDU - GREINER GROUP

‣ Mott-Insulator to Superfluid transition
optical lattices / single-site detection:
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ultracold quantum gases

cold atoms as quantum simulators

SHERSON ET AL., NATURE 467 (2010)

MOTT-SUPERFLUID TRANSITION

BAKR ET AL. SCIENCE 329 (2010)

‣ unitary Fermi gas / BEC-BCS crossover
‣ ...

Van Houcke et al. Nature Phys. 8 (2012)

Equation of state

ZWIERLEIN (MIT)UNITARY FERMI GAS

QUANTUM GAS MICROSCOPE

BAKR ET AL. SCIENCE 329 (2010)
IMAGE: CUAWEB.MIT.EDU - GREINER GROUP

‣ Mott-Insulator to Superfluid transition
optical lattices / single-site detection:

Feshbach resonances:
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This talk: Impurity physics

some medium

impurity

Quantum impurities Paradigm of condensed matter physics

‣ appear in many flavors in condensed matter physics

‣ relatively simple system from many-body perspective: allow to advance theory in 
‘controlled way’

‣ system on the verge from few- to many-body physics
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This talk: Impurity physics

non-interacting

‣ impurity physics appears also naturally in:

RF drive

TWO-LEVEL SYSTEM

no interactions: ‣ coherent Rabi oscillations

quantum optics, quantum dots, NV centers, 
atomic clocks, cavity QED...

non-interacting
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no interactions:

finite interactions:

interaction with bath
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‣ coherent Rabi oscillations
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This talk: Impurity physics

non-interacting

‣ impurity physics appears also naturally in:

interaction shift

RF drive

TWO-LEVEL SYSTEM

no interactions:

finite interactions:

interaction with bath

‣ decoherence of Rabi oscillations

‣ coherent Rabi oscillations

quantum optics, quantum dots, NV centers, 
atomic clocks, cavity QED...

‣ level shifts 
‣ line broadening 
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This talk: Impurity physics

non-interacting

‣ impurity physics appears also naturally in:

RF drive

TWO-LEVEL SYSTEM

no interactions:

finite interactions:

interaction with bath

‣ decoherence of Rabi oscillations

‣ coherent Rabi oscillations

Theoretical challenge: Calculate properties of impurity (strongly) coupled to environment

quantum optics, quantum dots, NV centers, 
atomic clocks, cavity QED...

‣ level shifts 
‣ line broadening 
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Impurity experiments with ultracold atoms

↑-atoms
ideal Fermi gas

[in continuum]
Fermi polaron

Mainly studied experimentally:

mobile impurity
↓-atom

strongly coupled

Question: What is the spectrum of the impurity?

THEORY REPULSIVE BRANCH PHYSICS: CUI, ZHAI, PRA 81 (2010), RS, ENSS, PRA  83 (2011), MASSIGNAN, BRUUN, EPJD 65 (2011)
REVIEW: MASSIGNAN, ZACCANTI, BRUUN  REP. PROG. PHYS. 77, 034401 (2014)
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FIGURE B.6: As discussed in Chapter 4, for small occupation of the minority species in the initial
state, the rf response is accurately described by A↓(ω,q = 0) and can be compared to the exper-
imental rf response. (a) Polaron spectral function A↓(ω,q = 0) versus dimensionless, inverse
scattering length for a Feshbach resonance of width kF r ∗ = 0.95. Both panels show the same
spectral function. In the lower panel the plot range is chosen so that the molecule-hole contin-
uum is saturated at unitary in order to mimic the high power rf pulse used in the experiment
[64]. (b) Experimental rf response of an resonance of the same width kF r ∗ = 0.95. (upper
panel) Low power rf spectrum. (lower panel) High power rf spectrum which allows to access
the final state spectral function in regions of small weight. The experimental figures in (b) are
taken from [64] with the courtesy of Grimm et al..

to cross the threshold to the onset of saturated ferromagnetism: again, the Stoner transition
defies a quantum simulation with cold atoms.

Finally, we compare our results to experimental data. The polaron problem has been stud-
ied experimentally in [64]. In the following we calculate the polaron spectral function for
parameters as appropriate for this experiment [64], where a mixture of 6Li and 40K atoms
had been prepared with a Fermi energy of the majority 6Li atoms of εF = h × 44kHz. This
corresponds to a Fermi wave vector kF = 1/2850a0. Furthermore, the width of the resonance
is r ∗ = 2700a0 so that kF r ∗ ≈ 0.95. In the experiment [64] the mixture in the initial state
was strongly spin-imbalanced. In this case, the rf pulse addresses only the low momentum

spectral function

Impurity experiments with ultracold atoms

↑-atoms
ideal Fermi gas

[in continuum]
Fermi polaron

Mainly studied experimentally:

mobile impurity
↓-atom

strongly coupled

Question: What is the spectrum of the impurity?

‣ novel functional renormalization group method for 
non-perturbative RG flows of spectral functions

RS, ENSS, PRA  83 (2011)

THEORY REPULSIVE BRANCH PHYSICS: CUI, ZHAI, PRA 81 (2010), RS, ENSS, PRA  83 (2011), MASSIGNAN, BRUUN, EPJD 65 (2011)
REVIEW: MASSIGNAN, ZACCANTI, BRUUN  REP. PROG. PHYS. 77, 034401 (2014)
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to cross the threshold to the onset of saturated ferromagnetism: again, the Stoner transition
defies a quantum simulation with cold atoms.

Finally, we compare our results to experimental data. The polaron problem has been stud-
ied experimentally in [64]. In the following we calculate the polaron spectral function for
parameters as appropriate for this experiment [64], where a mixture of 6Li and 40K atoms
had been prepared with a Fermi energy of the majority 6Li atoms of εF = h × 44kHz. This
corresponds to a Fermi wave vector kF = 1/2850a0. Furthermore, the width of the resonance
is r ∗ = 2700a0 so that kF r ∗ ≈ 0.95. In the experiment [64] the mixture in the initial state
was strongly spin-imbalanced. In this case, the rf pulse addresses only the low momentum

spectral function

Impurity experiments with ultracold atoms

↑-atoms
ideal Fermi gas

[in continuum]
Fermi polaron

Mainly studied experimentally:

mobile impurity
↓-atom

strongly coupled

Question: What is the spectrum of the impurity?

1

regime of weak attractive interactions1

‣ energy shift of coherent level

‣ novel functional renormalization group method for 
non-perturbative RG flows of spectral functions

RS, ENSS, PRA  83 (2011)

THEORY REPULSIVE BRANCH PHYSICS: CUI, ZHAI, PRA 81 (2010), RS, ENSS, PRA  83 (2011), MASSIGNAN, BRUUN, EPJD 65 (2011)
REVIEW: MASSIGNAN, ZACCANTI, BRUUN  REP. PROG. PHYS. 77, 034401 (2014)
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to cross the threshold to the onset of saturated ferromagnetism: again, the Stoner transition
defies a quantum simulation with cold atoms.

Finally, we compare our results to experimental data. The polaron problem has been stud-
ied experimentally in [64]. In the following we calculate the polaron spectral function for
parameters as appropriate for this experiment [64], where a mixture of 6Li and 40K atoms
had been prepared with a Fermi energy of the majority 6Li atoms of εF = h × 44kHz. This
corresponds to a Fermi wave vector kF = 1/2850a0. Furthermore, the width of the resonance
is r ∗ = 2700a0 so that kF r ∗ ≈ 0.95. In the experiment [64] the mixture in the initial state
was strongly spin-imbalanced. In this case, the rf pulse addresses only the low momentum

spectral function

Impurity experiments with ultracold atoms

↑-atoms
ideal Fermi gas

[in continuum]
Fermi polaron

Mainly studied experimentally:

mobile impurity
↓-atom

strongly coupled

Question: What is the spectrum of the impurity?

1

2

regime of weak attractive interactions1

‣ energy shift of coherent level

regime of strong attractive interactions2

‣ novel functional renormalization group method for 
non-perturbative RG flows of spectral functions

RS, ENSS, PRA  83 (2011)

THEORY REPULSIVE BRANCH PHYSICS: CUI, ZHAI, PRA 81 (2010), RS, ENSS, PRA  83 (2011), MASSIGNAN, BRUUN, EPJD 65 (2011)
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imental rf response. (a) Polaron spectral function A↓(ω,q = 0) versus dimensionless, inverse
scattering length for a Feshbach resonance of width kF r ∗ = 0.95. Both panels show the same
spectral function. In the lower panel the plot range is chosen so that the molecule-hole contin-
uum is saturated at unitary in order to mimic the high power rf pulse used in the experiment
[64]. (b) Experimental rf response of an resonance of the same width kF r ∗ = 0.95. (upper
panel) Low power rf spectrum. (lower panel) High power rf spectrum which allows to access
the final state spectral function in regions of small weight. The experimental figures in (b) are
taken from [64] with the courtesy of Grimm et al..

to cross the threshold to the onset of saturated ferromagnetism: again, the Stoner transition
defies a quantum simulation with cold atoms.

Finally, we compare our results to experimental data. The polaron problem has been stud-
ied experimentally in [64]. In the following we calculate the polaron spectral function for
parameters as appropriate for this experiment [64], where a mixture of 6Li and 40K atoms
had been prepared with a Fermi energy of the majority 6Li atoms of εF = h × 44kHz. This
corresponds to a Fermi wave vector kF = 1/2850a0. Furthermore, the width of the resonance
is r ∗ = 2700a0 so that kF r ∗ ≈ 0.95. In the experiment [64] the mixture in the initial state
was strongly spin-imbalanced. In this case, the rf pulse addresses only the low momentum

spectral function

Impurity experiments with ultracold atoms

↑-atoms
ideal Fermi gas

[in continuum]
Fermi polaron

Mainly studied experimentally:

mobile impurity
↓-atom

strongly coupled

Question: What is the spectrum of the impurity?

1

3

2

regime of weak attractive interactions1

‣ energy shift of coherent level

regime of strong attractive interactions2

emergent effective repulsive interactions3

‣ single state has split into two branches

‣ novel functional renormalization group method for 
non-perturbative RG flows of spectral functions

RS, ENSS, PRA  83 (2011)

THEORY REPULSIVE BRANCH PHYSICS: CUI, ZHAI, PRA 81 (2010), RS, ENSS, PRA  83 (2011), MASSIGNAN, BRUUN, EPJD 65 (2011)

‣ repulsive branch: ferromagnetic transition CF. WORK BY TIN-LUN HO, AND MASSIGNAN, YU, BRUUN, PRL 110 (2013)

REVIEW: MASSIGNAN, ZACCANTI, BRUUN  REP. PROG. PHYS. 77, 034401 (2014)
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Experimental observation
our proposal: inverse radio-frequency [rf] spectroscopy RS, ENSS, PRA  83 (2011)

KOHSTALL ET AL., NATURE 485 (2012)

RF spin flip

(a)
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experiment

RS, ENSS, PRA  83 (2011)
MASSIGNAN, BRUUN, EPJD 65 (2011)

RS, PHD THESIS (2013)

KOHSTALL ET AL., NATURE 485 (2012)

theory

THREE SPATIAL DIMENSIONS

experiment
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theory
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experiment

RS, ENSS, PRA  83 (2011)
MASSIGNAN, BRUUN, EPJD 65 (2011)

RS, PHD THESIS (2013)

KOHSTALL ET AL., NATURE 485 (2012)

theory

THREE SPATIAL DIMENSIONS

experiment

TWO SPATIAL DIMENSIONS

KOSCHORRECK ET AL., NATURE 
485 (2012)

RS, ENSS, PIETILA, DEMLER, 
PRA  85, 021602 (2012)

experiment

theory

energy

eff. mass

inverse interaction strength
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Bose gas / superfluid

impurity

what happens if medium is Bose gas?

Bose polaron

Our recent work: The Bose Polaron

Wednesday, October 29, 14



electron

ion lattice
phonon

bath

Fröhlich Hamiltonian

low-energy 
description

lattice polaron Froehlich polaron

electron

FRÖHLICH, ADV. PHYS. 3, 325 (1954)

impurityphonons impurity-phonon interaction

a paradigm condensed matter model:

A cond-mat motivation: The Froehlich polaron

Wednesday, October 29, 14



The Fröhlich polaron
Fröhlich Hamiltonian FRÖHLICH, ADV. PHYS. 3, 325 (1954)

‣ impurity dressed by phonon cloud becomes the ‘Fröhlich polaron’

‣ enhanced effective mass, renormalized energy SEE E.G. MILLER ET AL. PHYS. REV. 127 (‘62)
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The Fröhlich polaron
Fröhlich Hamiltonian FRÖHLICH, ADV. PHYS. 3, 325 (1954)

‣ impurity dressed by phonon cloud becomes the ‘Fröhlich polaron’

‣ enhanced effective mass, renormalized energy SEE E.G. MILLER ET AL. PHYS. REV. 127 (‘62)

self-localization?
m⇤ =

m

1� ↵/6
1

large

perturbation theory:

Wednesday, October 29, 14



The Fröhlich polaron
Fröhlich Hamiltonian FRÖHLICH, ADV. PHYS. 3, 325 (1954)

‣ impurity dressed by phonon cloud becomes the ‘Fröhlich polaron’

‣ enhanced effective mass, renormalized energy SEE E.G. MILLER ET AL. PHYS. REV. 127 (‘62)

‣ strong interactions: variational wave function 
LANDAU, PEKAR, JETP 18 (1948); FEYNMAN, COHEN, PHYS. REV. 102 (1956)

self-localization?
m⇤ =

m

1� ↵/6
1

large

perturbation theory:

“Landau Pekar polaron”

‣ yields energy smaller than pert. theory at strong coupling, further evidence of self-localization 

‣ describes localized particle
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The Fröhlich polaron
Fröhlich Hamiltonian FRÖHLICH, ADV. PHYS. 3, 325 (1954)

‣ impurity dressed by phonon cloud becomes the ‘Fröhlich polaron’

‣ enhanced effective mass, renormalized energy SEE E.G. MILLER ET AL. PHYS. REV. 127 (‘62)

‣ strong interactions: variational wave function 
LANDAU, PEKAR, JETP 18 (1948); FEYNMAN, COHEN, PHYS. REV. 102 (1956)

self-localization?
m⇤ =

m

1� ↵/6
1

large

perturbation theory:

“Landau Pekar polaron”

‣ yields energy smaller than pert. theory at strong coupling, further evidence of self-localization 

‣ describes localized particle

Let’s do quantum simulation!Realizable with ultracold atoms!

superfluid + strong interactions:
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The Bose polaron with ultracold atoms

impurity in Bose gas: Bose polaron

bosons
impurity

e.g. take strongly imbalanced mixture of ultracold atoms CF. GENERAL CASE: B. LIU, J.HU INT. J. MOD. PHYS, 26 (2012)
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The Bose polaron with ultracold atoms

impurity in Bose gas: Bose polaron

bosons
impurity

weakly interacting BEC: Bogoliubov approximation for BEC

mean-field fluctuations

e.g. take strongly imbalanced mixture of ultracold atoms CF. GENERAL CASE: B. LIU, J.HU INT. J. MOD. PHYS, 26 (2012)
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The Bose polaron with ultracold atoms

impurity in Bose gas: Bose polaron

bosons
impurity

weakly interacting BEC: Bogoliubov approximation for BEC

mean-field fluctuations

e.g. take strongly imbalanced mixture of ultracold atoms

"Fröhlich term"

at weak coupling: Fröhlich Hamiltonian

MF energy shift

 ELECTRON IN BEC:  PFAU GROUP [STUTTGART] - BALEWSKI ET AL., NATURE 502 (2013)

CF. GENERAL CASE: B. LIU, J.HU INT. J. MOD. PHYS, 26 (2012)
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Bose poloron at strong coupling

"Fröhlich terms"

strong effective phonon-impurity interaction wanted
HEISELBERG ET AL., PRL 85 (2000)
CUCCHIENTTI, TIMMERMANS, PRL 96 (2006)
KALAS, BLUME, PRA 73 (2006)
WANG, PRL 96 (2006)
ENSS, ZWERGER, EPJB 68 (2009)
TEMPERE, OBERTHALER ET AL., PRB 80 (2009)

CASTEELS ET AL., PRA 83,84,86 (2011)
CASTEELS, CAUTEREN, TEMPERE,DEVREESE, LASER PHYS. 21 (2011)
CASTEELS, TEMPERE, DEVREESE, PRA 84 (2011)
CASTEELS, TEMPERE, DEVREESE, PRA 86 (2012)
DASENBROOK, KOMNIK, PRB 87 (2013)
BLINOVA, BOSHIER, TIMMERMANS, PRA 88 (2013)
SHASHI, GRUSDT, ABANIN, DEMLER, PRA 89, 053617 (2014)
GRUSDT, SHCHADILOVA, RUBTSOV, DEMLER, 1410.2203 (2014)
...

Wednesday, October 29, 14

http://arxiv.org/find/cond-mat/1/au:+Grusdt_F/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Grusdt_F/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Shchadilova_Y/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Shchadilova_Y/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Rubtsov_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Rubtsov_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Demler_E/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Demler_E/0/1/0/all/0/1


Bose poloron at strong coupling

"Fröhlich terms"

strong effective phonon-impurity interaction comes at a prize
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Bose poloron at strong coupling

"Fröhlich terms"

How to achieve large, positive scattering length        ?
1. way: large microscopic repulsion 

rr

for infinite repulsion

not sufficient:
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Bose poloron at strong coupling

"Fröhlich terms"

How to achieve large, positive scattering length        ?
1. way: large microscopic repulsion 

rr

for infinite repulsion

2. way: use resonance [here shape resonance, cold atoms: typ. Feshbach resonance]

B

a

increasing attraction

1/a

Econtinuum

bound state

�B =
~2

ma2

not sufficient:
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rr
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Bose poloron at strong coupling

"Fröhlich terms"

How to achieve large, positive scattering length        ?
1. way: large microscopic repulsion 

rr

for infinite repulsion

2. way: use resonance [here shape resonance, cold atoms: typ. Feshbach resonance]

B

a

arbitrarily large          possible

increasing attraction

1/a

Econtinuum

bound state

�B =
~2

ma2

not sufficient:

Wednesday, October 29, 14



Bose poloron at strong coupling

"Fröhlich terms"

‘mean-field replacement’ invalid!

strong effective phonon-impurity interaction comes at a prize

1. microscopic attraction needed 

r
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Bose poloron at strong coupling

"Fröhlich terms"

‘mean-field replacement’ invalid!

strong effective phonon-impurity interaction comes at a prize

1. microscopic attraction needed 

r

2. pairing fluctuations become relevant
MF approach & Fröhlich Hamiltonian becomes invalid

in RG language: Froehlich: weak coupling RG fixed point
                      cold atoms at Feshbach resonance: strong coupling RG fixed point

SIMILAR RG ANALYSIS FOR BOSE-FERMI MIXTURE: B. LIU, J.HU INT. J. MOD. PHYS, 26 (2012)

Wednesday, October 29, 14



Our work: Bose polaron from a truly attractive model

simple quantum field-theory approach

assume homogeneous, weakly interacting BEC

mean-field fluctuations

Bogoliubov approximation for bosons: keep all terms up to quadratic in    , 

Unlike previous approaches, we keep pairing fluctuations "Fröhlich terms"

RATH, RS, PRA 88 (2013)

bosons
impurity

attractive interaction
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The Question

What is the spectrum of the model?

interaction with bath

non-interacting

IMPURITY

condensed matter/
pure Froehlich model

energy reduction 
via interaction w/ phonons

do cold atoms forget underlying microscopic physics?

predicts sharp quasi-particle excitation

MFT
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non-interacting

IMPURITY

condensed matter/
pure Froehlich model

energy reduction 
via interaction w/ phonons

do cold atoms forget underlying microscopic physics?

predicts sharp quasi-particle excitation

MFT

Quantity to address this question in quantum field theory: 

(gives access to radio-frequency response etc...)Spectral function 
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T-matrix approximation
impurity spectral function                                       from Dyson equation

= + ⌃ 

self-energy

full Green’s function:

SEE ALSO FOR FERMIONS: RS, ENSS, PRA  83 (2011)

A
pol

(�,p) = �2 ImGR(�,p)

⌃ = �� + �� self-energy:

depleted bosons

resummed perturbation theory

�� = + �� T-matrix equation:

boson

impurity

prerequisite: recover exact two-body solution [unlike previous works]

Bog. quasiparticle

condensate
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Result for momentum resolved spectral function
6

Although it remains the stable ground state, the at-
tractive polaron loses spectral weight in favor of a sec-
ond feature which emerges at positive energies [cf. Figs. 4
and 5]. This “high-energy excitation” absorbs most of the
spectral weight lost by the attractive polaron. Its positive
energy indicates that it corresponds to a quasiparticle
interacting with the Bose gas via an effective repulsion,
hence it is coined the repulsive Bose polaron in the follow-
ing. The appearance of this repulsive branch has strong
similarities to the “upper branch” present in the case of
a two-component Fermi gas [60–62] and in particular the
repulsive Fermi polaron [8, 63, 64]. Similarly to the lat-
ter case, the repulsive Bose polaron exists only at positive
interspecies coupling and becomes a well-defined quasi-
particle only for moderate to small values of the interac-
tion constant a

� 

as can be seen from its width � shown
in Fig. 4 (c). The appearance of the repulsive polaron
suggests a simple physical picture where the impurity in-
teracts with the bosons via a positive scattering length,
resulting in a positive interaction energy. Indeed, we find
that the energy of the repulsive polaron is well approx-
imated by the mean field result E

rep

⇡ g

� 

⇢0 wherever
the quasiparticle peak is well defined. This picture, how-
ever, neglects the physical origin of the positivity of the
scattering length which is the presence of a bound state
in the spectrum. Indeed, as a

� 

increases towards the
Feshbach resonance, the corresponding lifetime rapidly
becomes so short that a detailed experimental study of
strongly repulsive polarons will be a major challenge.

In Appendix A we argue that when crossing the Fes-
hbach resonance, there is actually a smooth crossover of
the ground state from a polaronic to a bound molecule
state, a picture which emerges naturally when consider-
ing the problem using a two-channel model instead of
the one-channel model discussed here. Essentially, this
crossover, which stands in clear contrast to the case of
the Fermi polaron [54, 55, 65, 66], finds its origin in a
hybridization of the molecular and the polaronic state
due to the presence of the condensate [67]. This intu-
itive picture is corroborated by the fact that the effective
mass of the attractive polaron crosses over from ↵m

�

,
the mass of a single impurity, to (↵+ 1)m

�

which is the
mass of a molecule made up of the impurity and one bo-
son [cf. Fig. 5 (b)].

The behavior of the quasiparticles as a function of mo-
mentum, shown in Fig. 3, is qualitatively different on
the two sides of the Feshbach resonance. For a

� 

> 0,
the attractive polaron’s momentum dependent effective
mass increases with increasing momentum and its dis-
persion eventually follows the dispersion of the molecu-
lar state which reflects the polaron-to-molecule crossover
also in the momentum domain. The onset of the scatter-
ing continuum happens at p

2
/2↵m

�

for p < ↵

p
m

�

g

��

n

(within the considered approximation, this statement
is exact and reflects Landau’s critical velocity, cf. Ap-
pendix C) and crosses over to a molecule-like dispersion
⇠ p

2
/2(↵ + 1)m

�

for larger momenta. The “dispersion
law” of the continuum onset is determined by the on-

n�1/3p

⌦
/⌦

0

(a)

n�1/3p

⌦
/⌦

0

(b)

FIG. 3: Impurity spectral function A

pol

(⌦,p) as a function
of frequency and momentum for (a) n

1/3
a

�1
� = 1 and (b)

n

1/3
a

�1
� = �5. In both graphs, n

1/3
a�� = 0.1. Solid line:

free impurity dispersion. Dashed line: free molecule like dis-
persion. Dash-dotted line: dispersion according to the effec-
tive mass of the attractive polaron at p = 0. For positive
a� , the attractive polaron peak gradually bends away from
its dispersion at vanishing momentum, reflecting an increase
in the momentum-dependent effective mass. At negative a� ,
the effective mass stays approximately constant as a function
of momentum.

B

a
Feshbach resonance

almost “standard” repulsive polaron 
‣ at positive energy
‣ enhanced effective mass
‣ finite lifetime!
‣ largely reduced quasi-particle weight

two coherent quasi-particle excitations!unlike condmat:
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Feshbach resonance

almost “standard” repulsive polaron 
‣ at positive energy
‣ enhanced effective mass
‣ finite lifetime!
‣ largely reduced quasi-particle weight

“new” attractive polaron
‣ actual ground state at negative energies!

‣ interacts attractively with BEC
‣ enhanced effective mass

‣ cannot be found in Fröhlich approaches

two coherent quasi-particle excitations!unlike condmat:
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Energy spectrum for impurity at rest

5

with the full retarded impurity Green’s function

G

R

 

(⌦,p) =

1

⌦� p

2

2m 
� ⌃

 

(⌦,p) + i0

+
(16)

as obtained from Dyson’s equation depicted in Fig. 1 (a).
Using our conventions, the spectral function fulfills the
sum rule (2⇡)

�1
´
d⌦A

pol

(⌦,p) = 1 where the integra-
tion extends over all frequencies. As we already did up to
here, we will suppress the superscript R in the following
and the retardedness of propagators will be implied by
the use of the real frequency argument ⌦ ⌘ ! + µ

 

.
The excitation spectrum contained in the impurity

spectral function Eq. (15) is determined by the analytical
structure of the Green’s function Eq. (16) in the complex
frequency plane. While branch cuts correspond to an
incoherent continuum of excitations, poles are linked to
the existence of well-defined quasiparticles that can be
characterized by a small set of key quantities [41]: (i)
The quasiparticle dispersion relation E(p) is defined as
the solution of

E(p)� p

2

2m

 

� Re⌃
 

[E(p), p] = 0 , (17)

where in the isotropic case considered here quantities de-
pend only on the magnitude of the momentum p = |p|
(From here on the symbol p denotes the magnitude of
momentum and not the four-momentum). (ii) The (mo-
mentum dependent) spectral weight is given by

Z(p) =

1

1� @⌦Re⌃
 

[⌦, p]

�

�

�

�

⌦=E(p)

. (18)

(iii) The decay width is obtained from

�(p) = �Z(p) Im⌃

 

[E(p), p] (19)

and (iv) the momentum dependent effective mass reads

m

⇤
(p) =

p

@

p

E(p)

=

1/Z(p)

1
↵

+

1
p

@

p

Re⌃
 

[⌦, p]|
E(p)

. (20)

Eqs. (17)–(20) provide an accurate description of the
quasiparticle properties as long as the poles of the
Green’s function G

 

(⌦, p) in the complex frequency
plane are close to the real axis. If this condition is
violated, the interpretation of the poles as well-defined
quasiparticles starts to break down and the preciseness
of Eqs. (17)–(20) depends on how well one satisfies the
assumption that Im⌃

 

remains constant across the width
of the quasiparticle peak as well as the smallness of the
decay width compared to the quasiparticle energy.

We now turn to the analysis of the impurity’s spectral
function A

pol

given by Eqs. (15), (16), and (14). When
choosing ↵ = 1, as done for all plots in this article, we
are left with A

pol

as a function of four quantities: ⌦, p,
a

� 

and a

��

. We choose n

1/3
a

��

= 0.1 for the follow-
ing plots which is actually about one order of magnitude

stronger than what is typical for weakly interacting Bose
gases. While such strong interactions have actually been
reached in experiment [57–59] and do themselves lead to
interesting physics beyond the scope of this article, our
motivation for this large value is quite plain: it turns out
the dependence of the spectral properties on g

��

is very
weak. So, to make this dependence clearly visible in our
plots, we choose this somewhat exaggerated value.

�

n

1/3
a

� 

��1

⌦
/
⌦

0

FIG. 2: Impurity spectral function A

pol

(⌦,p = 0) in the non-
selfconsistent T-matrix approximation with n

1/3
a�� = 0.1.

Solid lines: weak coupling limit (valid for both branches) E ⇠
g� n. Dashed line: energy of the universal dimer in vacuum,
E

dim

⇠ �1/m�a
2
� . Here and in all following plots, zero-

width peaks have been given a small artificial width to be
visible on the graph.

In Fig. 2 we show the impurity spectral function cal-
culated using the NSCT approximation and evaluated at
vanishing momentum as a function of the dimensionless
quantities ⌦/⌦0 and (n

1/3
a

� 

)

�1, where ⌦0 = n

2/3
/m

�

.
The spectral function shows a continuous background for
positive frequencies ⌦ carrying little spectral weight and
is dominated by two sharply peaked features, one at pos-
itive and one at negative ⌦. The sharp feature appearing
at low energies can be interpreted as an attractive po-
laron. It is a sharp quasiparticle excitation giving rise to
a delta peak in the spectral function which carries most
of the spectral weight for large negative values of a

�1
� 

.
In this weak coupling regime we recover the perturba-
tive result for the polaron’s energy which asymptotically
obeys E

att

⇠ g

� 

n. Upon crossing the Feshbach reso-
nance where a

�1
� 

goes over to positive values, the attrac-
tive polaron evolves smoothly into a molecular bound
state which follows the energy of the universal dimer,
E

att

⇠ E

dim

= �a

�2
� 

(↵+ 1)/2↵m

�

.

MFT

bare dimer

scatt. 
continuum

energy of polaron, MFT

beyond MF / self-loc. etc

previous “quantum simulation proposals”

inverse interaction strength
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quasiparticles starts to break down and the preciseness
of Eqs. (17)–(20) depends on how well one satisfies the
assumption that Im⌃

 

remains constant across the width
of the quasiparticle peak as well as the smallness of the
decay width compared to the quasiparticle energy.

We now turn to the analysis of the impurity’s spectral
function A

pol

given by Eqs. (15), (16), and (14). When
choosing ↵ = 1, as done for all plots in this article, we
are left with A

pol

as a function of four quantities: ⌦, p,
a

� 

and a

��

. We choose n

1/3
a

��

= 0.1 for the follow-
ing plots which is actually about one order of magnitude

stronger than what is typical for weakly interacting Bose
gases. While such strong interactions have actually been
reached in experiment [57–59] and do themselves lead to
interesting physics beyond the scope of this article, our
motivation for this large value is quite plain: it turns out
the dependence of the spectral properties on g

��

is very
weak. So, to make this dependence clearly visible in our
plots, we choose this somewhat exaggerated value.
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1/3
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⌦
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FIG. 2: Impurity spectral function A

pol

(⌦,p = 0) in the non-
selfconsistent T-matrix approximation with n

1/3
a�� = 0.1.

Solid lines: weak coupling limit (valid for both branches) E ⇠
g� n. Dashed line: energy of the universal dimer in vacuum,
E

dim

⇠ �1/m�a
2
� . Here and in all following plots, zero-

width peaks have been given a small artificial width to be
visible on the graph.

In Fig. 2 we show the impurity spectral function cal-
culated using the NSCT approximation and evaluated at
vanishing momentum as a function of the dimensionless
quantities ⌦/⌦0 and (n

1/3
a

� 

)

�1, where ⌦0 = n

2/3
/m

�

.
The spectral function shows a continuous background for
positive frequencies ⌦ carrying little spectral weight and
is dominated by two sharply peaked features, one at pos-
itive and one at negative ⌦. The sharp feature appearing
at low energies can be interpreted as an attractive po-
laron. It is a sharp quasiparticle excitation giving rise to
a delta peak in the spectral function which carries most
of the spectral weight for large negative values of a

�1
� 

.
In this weak coupling regime we recover the perturba-
tive result for the polaron’s energy which asymptotically
obeys E

att

⇠ g

� 

n. Upon crossing the Feshbach reso-
nance where a

�1
� 

goes over to positive values, the attrac-
tive polaron evolves smoothly into a molecular bound
state which follows the energy of the universal dimer,
E

att

⇠ E

dim

= �a

�2
� 

(↵+ 1)/2↵m

�

.
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with the full retarded impurity Green’s function

G
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(⌦,p) =

1

⌦� p
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(⌦,p) + i0

+
(16)

as obtained from Dyson’s equation depicted in Fig. 1 (a).
Using our conventions, the spectral function fulfills the
sum rule (2⇡)

�1
´
d⌦A

pol

(⌦,p) = 1 where the integra-
tion extends over all frequencies. As we already did up to
here, we will suppress the superscript R in the following
and the retardedness of propagators will be implied by
the use of the real frequency argument ⌦ ⌘ ! + µ

 

.
The excitation spectrum contained in the impurity

spectral function Eq. (15) is determined by the analytical
structure of the Green’s function Eq. (16) in the complex
frequency plane. While branch cuts correspond to an
incoherent continuum of excitations, poles are linked to
the existence of well-defined quasiparticles that can be
characterized by a small set of key quantities [41]: (i)
The quasiparticle dispersion relation E(p) is defined as
the solution of

E(p)� p

2

2m

 

� Re⌃
 

[E(p), p] = 0 , (17)

where in the isotropic case considered here quantities de-
pend only on the magnitude of the momentum p = |p|
(From here on the symbol p denotes the magnitude of
momentum and not the four-momentum). (ii) The (mo-
mentum dependent) spectral weight is given by

Z(p) =
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�
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(iii) The decay width is obtained from
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and (iv) the momentum dependent effective mass reads
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Eqs. (17)–(20) provide an accurate description of the
quasiparticle properties as long as the poles of the
Green’s function G

 

(⌦, p) in the complex frequency
plane are close to the real axis. If this condition is
violated, the interpretation of the poles as well-defined
quasiparticles starts to break down and the preciseness
of Eqs. (17)–(20) depends on how well one satisfies the
assumption that Im⌃

 

remains constant across the width
of the quasiparticle peak as well as the smallness of the
decay width compared to the quasiparticle energy.

We now turn to the analysis of the impurity’s spectral
function A

pol

given by Eqs. (15), (16), and (14). When
choosing ↵ = 1, as done for all plots in this article, we
are left with A

pol

as a function of four quantities: ⌦, p,
a

� 

and a

��

. We choose n

1/3
a

��

= 0.1 for the follow-
ing plots which is actually about one order of magnitude

stronger than what is typical for weakly interacting Bose
gases. While such strong interactions have actually been
reached in experiment [57–59] and do themselves lead to
interesting physics beyond the scope of this article, our
motivation for this large value is quite plain: it turns out
the dependence of the spectral properties on g

��

is very
weak. So, to make this dependence clearly visible in our
plots, we choose this somewhat exaggerated value.
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FIG. 2: Impurity spectral function A

pol

(⌦,p = 0) in the non-
selfconsistent T-matrix approximation with n

1/3
a�� = 0.1.

Solid lines: weak coupling limit (valid for both branches) E ⇠
g� n. Dashed line: energy of the universal dimer in vacuum,
E

dim

⇠ �1/m�a
2
� . Here and in all following plots, zero-

width peaks have been given a small artificial width to be
visible on the graph.

In Fig. 2 we show the impurity spectral function cal-
culated using the NSCT approximation and evaluated at
vanishing momentum as a function of the dimensionless
quantities ⌦/⌦0 and (n

1/3
a

� 

)

�1, where ⌦0 = n

2/3
/m

�

.
The spectral function shows a continuous background for
positive frequencies ⌦ carrying little spectral weight and
is dominated by two sharply peaked features, one at pos-
itive and one at negative ⌦. The sharp feature appearing
at low energies can be interpreted as an attractive po-
laron. It is a sharp quasiparticle excitation giving rise to
a delta peak in the spectral function which carries most
of the spectral weight for large negative values of a

�1
� 

.
In this weak coupling regime we recover the perturba-
tive result for the polaron’s energy which asymptotically
obeys E

att

⇠ g

� 

n. Upon crossing the Feshbach reso-
nance where a

�1
� 

goes over to positive values, the attrac-
tive polaron evolves smoothly into a molecular bound
state which follows the energy of the universal dimer,
E

att

⇠ E

dim
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�2
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(↵+ 1)/2↵m
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.

MFT

bare dimer

scatt. 
continuum

energy of polaron, MFT

beyond MF / self-loc. etc

previous “quantum simulation proposals”

attractive polaron 
‣ stable ground state at all scattering lengths

OBSERVED AT WEAK COUPLING  PFAU GROUP [STUTTGART]: BALEWSKI ET AL., NATURE 502 (2013)

repulsive polaron 

[molecule formation]

‣ self-localization challenging to observe

‣ extremely unstable in strong-coupling regime!

inverse interaction strength

en
er

gy

RATH, RS, PRA 88 (2013)
smooth crossover to molecular state - hybridization 

- different from transition for Fermi polaron -
DISCUSSED IN CONTEXT OF B/F MIXTURES BY 

MARCHETTI, ... PARISH, PRB 78 (2008)

Wednesday, October 29, 14



Self-consistent T-matrix

�� = + �� 

⌃ = �� + �� 

So far: Non-selfconsistent T-matrix approach

bare impurity

Non-self-
consistent T-
matrix

‣ single boson taken out of condensate

BEC
impurity

BEC

impurity

Wednesday, October 29, 14



Self-consistent T-matrix

�� = + �� 

⌃ = �� + �� 

So far: Non-selfconsistent T-matrix approach

bare impurity

Non-self-
consistent T-
matrix

‣ single boson taken out of condensate ‣ equivalent to simple variational wave function

impurity boson excited out of 
condensate

‣ captures very simple ‘entanglement’ between BEC and 
impurity 

BEC
impurity

BEC

impurity
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Selfconsistent T-matrix approach

full Green’s function!

self-consistent 
T-matrix RATH, RS, PRA 88 (2013)

‣  solved numerically using algorithm developed for functional renormalization group approach
     for RG flow of full spectral functions RS, ENSS, PRA  83 (2011)
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Self-consistent T-matrix

�� = + �� 

⌃ = �� + �� 

Selfconsistent T-matrix approach

full Green’s function!

self-consistent 
T-matrix RATH, RS, PRA 88 (2013)

‣  accounts for infinitely many virtual excitations of bosons out of the coherent 
condensate state

Non-selfconsistent: Selfconsistent: ‣ infinite number of bosons 
taken out of condensate -
way beyond product wave 
functions for BEC

‣ single boson taken out of condensate

‣  solved numerically using algorithm developed for functional renormalization group approach
     for RG flow of full spectral functions RS, ENSS, PRA  83 (2011)
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Although it remains the stable ground state, the at-
tractive polaron loses spectral weight in favor of a sec-
ond feature which emerges at positive energies [cf. Figs. 4
and 5]. This “high-energy excitation” absorbs most of the
spectral weight lost by the attractive polaron. Its positive
energy indicates that it corresponds to a quasiparticle
interacting with the Bose gas via an effective repulsion,
hence it is coined the repulsive Bose polaron in the follow-
ing. The appearance of this repulsive branch has strong
similarities to the “upper branch” present in the case of
a two-component Fermi gas [60–62] and in particular the
repulsive Fermi polaron [8, 63, 64]. Similarly to the lat-
ter case, the repulsive Bose polaron exists only at positive
interspecies coupling and becomes a well-defined quasi-
particle only for moderate to small values of the interac-
tion constant a

� 

as can be seen from its width � shown
in Fig. 4 (c). The appearance of the repulsive polaron
suggests a simple physical picture where the impurity in-
teracts with the bosons via a positive scattering length,
resulting in a positive interaction energy. Indeed, we find
that the energy of the repulsive polaron is well approx-
imated by the mean field result E

rep

⇡ g

� 

⇢0 wherever
the quasiparticle peak is well defined. This picture, how-
ever, neglects the physical origin of the positivity of the
scattering length which is the presence of a bound state
in the spectrum. Indeed, as a

� 

increases towards the
Feshbach resonance, the corresponding lifetime rapidly
becomes so short that a detailed experimental study of
strongly repulsive polarons will be a major challenge.

In Appendix A we argue that when crossing the Fes-
hbach resonance, there is actually a smooth crossover of
the ground state from a polaronic to a bound molecule
state, a picture which emerges naturally when consider-
ing the problem using a two-channel model instead of
the one-channel model discussed here. Essentially, this
crossover, which stands in clear contrast to the case of
the Fermi polaron [54, 55, 65, 66], finds its origin in a
hybridization of the molecular and the polaronic state
due to the presence of the condensate [67]. This intu-
itive picture is corroborated by the fact that the effective
mass of the attractive polaron crosses over from ↵m

�

,
the mass of a single impurity, to (↵+ 1)m

�

which is the
mass of a molecule made up of the impurity and one bo-
son [cf. Fig. 5 (b)].

The behavior of the quasiparticles as a function of mo-
mentum, shown in Fig. 3, is qualitatively different on
the two sides of the Feshbach resonance. For a

� 

> 0,
the attractive polaron’s momentum dependent effective
mass increases with increasing momentum and its dis-
persion eventually follows the dispersion of the molecu-
lar state which reflects the polaron-to-molecule crossover
also in the momentum domain. The onset of the scatter-
ing continuum happens at p

2
/2↵m

�

for p < ↵

p
m

�

g

��

n

(within the considered approximation, this statement
is exact and reflects Landau’s critical velocity, cf. Ap-
pendix C) and crosses over to a molecule-like dispersion
⇠ p

2
/2(↵ + 1)m

�

for larger momenta. The “dispersion
law” of the continuum onset is determined by the on-

n�1/3p
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(b)

FIG. 3: Impurity spectral function A

pol

(⌦,p) as a function
of frequency and momentum for (a) n

1/3
a

�1
� = 1 and (b)

n

1/3
a

�1
� = �5. In both graphs, n

1/3
a�� = 0.1. Solid line:

free impurity dispersion. Dashed line: free molecule like dis-
persion. Dash-dotted line: dispersion according to the effec-
tive mass of the attractive polaron at p = 0. For positive
a� , the attractive polaron peak gradually bends away from
its dispersion at vanishing momentum, reflecting an increase
in the momentum-dependent effective mass. At negative a� ,
the effective mass stays approximately constant as a function
of momentum.
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FIG. 8: Polaron spectral function calculated using the self-
consistent scheme discussed in Section IV as a function of
momentum and frequency. The black lines have the same
meaning as in Fig. 3. (a) a

�1
� = 1. Note how the attractive

polaron peak is “annihilated” when it touches the continuum.
(b) a

�1
� = �5. The continuum practically merges with the

peak for higher momenta.

periments permit to measure not only the excitation en-
ergies [37], but also the quasiparticle weight and width.
The latter two can be inferred from a shift in the Rabi
frequency and the damping of Rabi oscillations, respec-
tively [9]. The effective mass may in turn be determined
using momentum-resolved photoemission or Raman spec-
troscopy [7, 36, 38, 76].

It is an interesting question what happens on time
scales longer than those relevant for inverse rf experi-
ments. For instance, the repulsive polaron exhibits a
positive energy which decreases when na

3
� 

is lowered.
Thus, in an experimental situation with a trapped BEC,
the repulsive polaron can minimize its energy by mov-
ing to a region of lower density [15]. The fact that this
tendency towards phase separation happens for any pos-
itive a

� 

is in stark contrast to the case of the repulsive
Fermi polaron. In the latter, phase separation—which
here may also be seen as a transition towards a ferro-
magnetic phase—only happens for interaction strengths
above a critical value due to the competition between ki-
netic and interaction energy [8, 64]. For the Bose polaron,
the process of phase separation is itself in competition
with the tendency towards self-localization accompanied
by a local deformation of the BEC. Concerning the study
of such dynamical phenomena, our calculation can be
seen as the derivation of an effective field theory for the
repulsive Bose polaron which includes quasiparticle prop-
erties such as a finite lifetime and an effective momentum-
dependent interaction. Starting from the corresponding
equations of motion, the time evolution from the initial
out-of-equilibrium state towards self-localization or phase
separation may now be studied. Note that our discus-
sion so far ignores the effects of three-body recombina-
tion due to Efimov physics [77]. Even in our inverse rf
spectroscopy scenario, the latter is not completely sup-
pressed. In the case of the repulsive polaron, one may
however even utilize the Efimov effect to suppress losses
by exploiting the minima in the three-body recombina-
tion which are due to the destructive interference of decay
channels [78]. In fact, it poses an interesting question on
its own how Efimov physics is affected by medium ef-
fects such as the hybridization of the impurity with the
molecular state.

Finally, it would be interesting to investigate the pos-
sibility of an alternative representation of the Bose po-
laron. In the Fermi polaron problem the NSCT approach
leads to equations which are formally equivalent to the
equations obtained from a simple variational wave func-
tion ansatz [53]. This ansatz describes the Fermi polaron
as a bare impurity dressed by a single particle–hole fluc-
tuation. We expect that such a mapping from diagrams
to a variational wave function exists as well in the present
case of the Bose polaron.

Momentum 
resolved
Spectral 
function

annihilation of fast 
attractive polaron
at scattering 
threshold

Non-selfconsistent Selfconsistent

momentum 
dependent
Z-factor vanishes!
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‣ for Fermi polaron much smaller deviation!
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FIG. 5: (a) Quasiparticle weights for both branches (the lines
on the upper right of the graph correspond to the repulsive
polaron). (b) Effective mass of the attractive polaron. Pa-
rameters and line styles are as in Fig. 4.

expressed as

m

⇤
=

1� @⌦Re⌃
 

1
↵

� 1
↵+1@⌦Re⌃

 

�

�

�

�

E(p)

=

↵(↵+ 1)

Z + ↵

. (21)

One sees that the effective mass is strictly bounded
by the impurity and the molecule mass and follows a
smooth interpolation between the two as the scatter-
ing length is tuned across the resonance. This nicely
reflects the crossover of the polaron to a molecule de-
scribed in Appendix A. The quasiparticle weight Z and
the effective mass m

⇤ are shown as functions of a

�1
� 

in Fig. 5. One may also determine the momentum at
which the attractive polaron enters the excitation con-
tinuum at small negative a

� 

. In this regime the po-
laron always has an effective mass close to ↵m

�

such that
the polaron dispersion relation is well approximated by
E

att

(p) ⇡ g

� 

n+p

2
/2↵m

�

while the onset of the contin-
uum is exactly at p2/2(↵+1)m

�

(in contrast to the case of
a non-zero g

��

discussed above). Consequently, the two
intersect at p ⇡ p�4⇡(↵+ 1)

2
na

� 

. Finally, the energy
of the attractive polaron may be calculated analytically.
While the resulting expression is cumbersome, it permits
to obtain the leading correction to the universal dimer
energy which at small positive scattering lengths is given

by E

att

⇠ (�1/a

2
� 

� 8⇡a

� 

n)(↵+ 1)/2↵m

�

[93].
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FIG. 6: Spectral function A

pol

(⌦,p) for a�� = 0, all other pa-
rameters are as Fig. 3 (b). Note that here the continuum on-
set coincides with the dashed line indicating the free molecule
like dispersion. The point where the polaron peak acquires a
finite width is shifted accordingly.

The difference in the “dispersion” of the continuum on-
set depending on whether one assumes a finite g

��

or not
is in fact the only qualitative difference that can be seen
in the spectral function [cf. Fig. 6, where, in contrast to
Fig. 3 (b), the continuum onset coincides with the free
molecule dispersion marked by the dashed line]. As a con-
sequence, while there is a visible deviation in the crossing
between the attractive polaron and the continuum onset
at positive a

� 

, the relation (21) between Z and m

⇤ is
satisfied to a good approximation even for g

��

> 0. To
summarize, the influence of g

��

, in particular on quanti-
ties evaluated at vanishing momentum, is almost invisible
in spite of the very large value n

1/3
a

��

= 0.1 used in the
data shown before.

IV. SELFCONSISTENT T-MATRIX
APPROXIMATION

In the NSCT approach the backaction of the impurity
selfenergy is completely neglected since only bare impu-
rity Green’s functions appear on the right-hand side of
the T-matrix equation depicted in Fig. 1 (c). In this Sec-
tion we include this feedback by solving the Bose polaron
problem using a selfconsistent T-matrix approach where
the thin impurity line on the right-hand side of Fig. 1 (c)
becomes bold, i.e., the bare impurity propagator is re-
placed by its dressed counterpart determined by Dyson’s
equation. Motivated by our observation that the inclu-

Suppression of quasi-particle weight

attractive
polaron

RATH, RS, PRA 88 (2013)
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Although it remains the stable ground state, the at-
tractive polaron loses spectral weight in favor of a sec-
ond feature which emerges at positive energies [cf. Figs. 4
and 5]. This “high-energy excitation” absorbs most of the
spectral weight lost by the attractive polaron. Its positive
energy indicates that it corresponds to a quasiparticle
interacting with the Bose gas via an effective repulsion,
hence it is coined the repulsive Bose polaron in the follow-
ing. The appearance of this repulsive branch has strong
similarities to the “upper branch” present in the case of
a two-component Fermi gas [60–62] and in particular the
repulsive Fermi polaron [8, 63, 64]. Similarly to the lat-
ter case, the repulsive Bose polaron exists only at positive
interspecies coupling and becomes a well-defined quasi-
particle only for moderate to small values of the interac-
tion constant a

� 

as can be seen from its width � shown
in Fig. 4 (c). The appearance of the repulsive polaron
suggests a simple physical picture where the impurity in-
teracts with the bosons via a positive scattering length,
resulting in a positive interaction energy. Indeed, we find
that the energy of the repulsive polaron is well approx-
imated by the mean field result E

rep

⇡ g

� 

⇢0 wherever
the quasiparticle peak is well defined. This picture, how-
ever, neglects the physical origin of the positivity of the
scattering length which is the presence of a bound state
in the spectrum. Indeed, as a

� 

increases towards the
Feshbach resonance, the corresponding lifetime rapidly
becomes so short that a detailed experimental study of
strongly repulsive polarons will be a major challenge.

In Appendix A we argue that when crossing the Fes-
hbach resonance, there is actually a smooth crossover of
the ground state from a polaronic to a bound molecule
state, a picture which emerges naturally when consider-
ing the problem using a two-channel model instead of
the one-channel model discussed here. Essentially, this
crossover, which stands in clear contrast to the case of
the Fermi polaron [54, 55, 65, 66], finds its origin in a
hybridization of the molecular and the polaronic state
due to the presence of the condensate [67]. This intu-
itive picture is corroborated by the fact that the effective
mass of the attractive polaron crosses over from ↵m

�

,
the mass of a single impurity, to (↵+ 1)m

�

which is the
mass of a molecule made up of the impurity and one bo-
son [cf. Fig. 5 (b)].

The behavior of the quasiparticles as a function of mo-
mentum, shown in Fig. 3, is qualitatively different on
the two sides of the Feshbach resonance. For a

� 

> 0,
the attractive polaron’s momentum dependent effective
mass increases with increasing momentum and its dis-
persion eventually follows the dispersion of the molecu-
lar state which reflects the polaron-to-molecule crossover
also in the momentum domain. The onset of the scatter-
ing continuum happens at p

2
/2↵m

�

for p < ↵

p
m

�

g

��

n

(within the considered approximation, this statement
is exact and reflects Landau’s critical velocity, cf. Ap-
pendix C) and crosses over to a molecule-like dispersion
⇠ p

2
/2(↵ + 1)m

�

for larger momenta. The “dispersion
law” of the continuum onset is determined by the on-
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FIG. 3: Impurity spectral function A

pol

(⌦,p) as a function
of frequency and momentum for (a) n

1/3
a

�1
� = 1 and (b)

n

1/3
a

�1
� = �5. In both graphs, n

1/3
a�� = 0.1. Solid line:

free impurity dispersion. Dashed line: free molecule like dis-
persion. Dash-dotted line: dispersion according to the effec-
tive mass of the attractive polaron at p = 0. For positive
a� , the attractive polaron peak gradually bends away from
its dispersion at vanishing momentum, reflecting an increase
in the momentum-dependent effective mass. At negative a� ,
the effective mass stays approximately constant as a function
of momentum.
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FIG. 8: Polaron spectral function calculated using the self-
consistent scheme discussed in Section IV as a function of
momentum and frequency. The black lines have the same
meaning as in Fig. 3. (a) a

�1
� = 1. Note how the attractive

polaron peak is “annihilated” when it touches the continuum.
(b) a

�1
� = �5. The continuum practically merges with the

peak for higher momenta.

periments permit to measure not only the excitation en-
ergies [37], but also the quasiparticle weight and width.
The latter two can be inferred from a shift in the Rabi
frequency and the damping of Rabi oscillations, respec-
tively [9]. The effective mass may in turn be determined
using momentum-resolved photoemission or Raman spec-
troscopy [7, 36, 38, 76].

It is an interesting question what happens on time
scales longer than those relevant for inverse rf experi-
ments. For instance, the repulsive polaron exhibits a
positive energy which decreases when na

3
� 

is lowered.
Thus, in an experimental situation with a trapped BEC,
the repulsive polaron can minimize its energy by mov-
ing to a region of lower density [15]. The fact that this
tendency towards phase separation happens for any pos-
itive a

� 

is in stark contrast to the case of the repulsive
Fermi polaron. In the latter, phase separation—which
here may also be seen as a transition towards a ferro-
magnetic phase—only happens for interaction strengths
above a critical value due to the competition between ki-
netic and interaction energy [8, 64]. For the Bose polaron,
the process of phase separation is itself in competition
with the tendency towards self-localization accompanied
by a local deformation of the BEC. Concerning the study
of such dynamical phenomena, our calculation can be
seen as the derivation of an effective field theory for the
repulsive Bose polaron which includes quasiparticle prop-
erties such as a finite lifetime and an effective momentum-
dependent interaction. Starting from the corresponding
equations of motion, the time evolution from the initial
out-of-equilibrium state towards self-localization or phase
separation may now be studied. Note that our discus-
sion so far ignores the effects of three-body recombina-
tion due to Efimov physics [77]. Even in our inverse rf
spectroscopy scenario, the latter is not completely sup-
pressed. In the case of the repulsive polaron, one may
however even utilize the Efimov effect to suppress losses
by exploiting the minima in the three-body recombina-
tion which are due to the destructive interference of decay
channels [78]. In fact, it poses an interesting question on
its own how Efimov physics is affected by medium ef-
fects such as the hybridization of the impurity with the
molecular state.

Finally, it would be interesting to investigate the pos-
sibility of an alternative representation of the Bose po-
laron. In the Fermi polaron problem the NSCT approach
leads to equations which are formally equivalent to the
equations obtained from a simple variational wave func-
tion ansatz [53]. This ansatz describes the Fermi polaron
as a bare impurity dressed by a single particle–hole fluc-
tuation. We expect that such a mapping from diagrams
to a variational wave function exists as well in the present
case of the Bose polaron.
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is the non-selfconsistent T-matrix we ob-
tained in the previous Section, cf. Eqs. (8) and (9). Since
the integrand is known analytically, the frequency inte-
gration and subsequent continuation to real frequencies
may be carried out analytically so that only the momen-
tum integral has to be done numerically.
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FIG. 7: Polaron spectral function calculated using the self-
consistent scheme discussed in Section IV. The black lines are
identical to the ones in Fig. 2. Note how the continuum of
excitations now follows the attractive polaron peak.

The qualitative changes following from this scheme
with respect to the non-selfconsistent one can be seen in
Fig. 7. The continuum onset is pulled to negative energies
and now follows the curve which in the non-selfconsistent
approximation is described by the polaron peak. A sim-
ilar behavior has been found for the molecule spectral
function in a renormalization group study of the Fermi
polaron [8]. This may be seen as a further indication
of the Bose polaron being hybridized with the molecule,
cf. Appendix A. Moreover, we observe a strong suppres-
sion of both the attractive and the repulsive polaron’s
spectral weight. This large suppression, however, does
not come as a surprise. Indeed, by solving Eq. (22) self-
consistently we incorporate more fluctuations which en-
tangle the impurity with the bosons’ degrees of freedom.
This loss of spectral weight in the attractive polaron is
compensated by a transfer of weight to excited contin-
uum states which is facilitated by the reduced excitation
gap as compared to the NSCT approach. The substan-
tial reduction of the quasiparticle weight is accompanied

by changes to the effective mass of a similar magnitude.
In the selfconsistent calculation the effective mass is no
longer related to the quasiparticle weight by the simple
relation (21) and takes values larger than (↵ + 1)m

�

.
However, apart from a small upward shift, it still essen-
tially follows its behavior from the NSCT approximation
[cf. Fig. 5 (b)]. The repulsive polaron is shifted to slightly
higher energies [cf. Fig. 4] while its quasiparticle width
is substantially reduced with respect to the NSCT result
for all but the strongest interspecies interactions.

Further changes can be seen when one considers the
momentum dependence of the impurity spectral function
which is shown in Fig. 8 for two different values of the
interspecies coupling. The most prominent differences
appears for positive values of a�1

� 

[Fig. 8 (a)] where the
attractive polaron peak touches the continuum and dies
out rapidly instead of running parallel to it as it does
in the NSCT approximation. The qualitative behavior
of the repulsive polaron, however, remains unchanged,
showing a smooth interpolation from a very broad peak
at low momenta to a sharp peak with an effective mass of
↵m

�

towards higher momenta. The changes with respect
to the NSCT approach are less pronounced for negative
values of a

�1
� 

[Fig. 8 (b)]. Here one only notices that
when the attractive polaron pole enters the continuum,
the latter is gradually absorbed by the former. Hence,
within the SCT approach, the attractive polaron becomes
subject to damping above a critical momentum for any

interspecies interaction strength.

V . C O N C L U S I O N A N D O U T L O O K

We have determined the excitation spectrum of an im-
purity immersed in a homogeneous BEC. We find that
this spectrum is dominated by two branches, the attrac-
tive and repulsive Bose polaron. The attractive polaron
is a stable quasiparticle at negative energies which exists
for all interspecies couplings. It exhibits a crossover from
a weakly dressed polaron to a molecule as one crosses the
Feshbach resonance. This can be understood in terms of
its hybridization with a molecular state due to the BEC.
The repulsive polaron emerges as a metastable quasipar-
ticle on the a

�1
� 

> 0 side of the Feshbach resonance.
While it is long-lived for small scattering lengths a

� 

,
its lifetime becomes exceedingly small as the Feshbach
resonance is approached. We have shown that because
of the weak dependence of spectral properties on the
boson–boson interaction, the essence of the problem can
already be captured by a simple non-selfconsistent calcu-
lation using a vanishing boson–boson coupling constant.
The most important correction to this simple picture is
given by the multiple excitation of bosons from the con-
densate, which we account for by the selfconsistent in-
corporation of the selfenergy feedback into the T-matrix
equation. We predict various quasiparticle properties of
the attractive and repulsive polaron which can be tested
in future experiments. For instance, radiofrequency ex-

Wednesday, October 29, 14



Proposal for experimental observation
Challenge
‣ Efimov effect + statistics: Bose-Fermi mixtures unstable due to enhanced three-body 

recombination

‣ possible BEC deformation due to large interactions

Resolution: Inverse RF spectroscopy

E.G. 40K/41K MIXTURE AT B=543 G
SEE MIT GROUP: WU ET AL. PRA 84 (2012)

SEE E.G. RS, RATH, ZWERGER, EJB 85 (2012)

strongly interacting
w/ BEC

impurity

weakly interacting
w/ BEC

interaction shift

BEC

RATH, RS, PRA 88 (2013)

EFIMOV IN SPIN-ORBIT BOSONS: SHI, CUI, ZHAI PRL 112 (2014)

10

with the bare Fermi propagator replaced by

G

(1)
 

(⌦,p) =

1

⌦� p

2

2m 
� ⇢0�

NSC

� 

(⌦,p) + i0

+
(24)

where �

NSC

� 

is the non-selfconsistent T-matrix we ob-
tained in the previous Section, cf. Eqs. (8) and (9). Since
the integrand is known analytically, the frequency inte-
gration and subsequent continuation to real frequencies
may be carried out analytically so that only the momen-
tum integral has to be done numerically.

�

n

1/3
a

� 

��1
⌦
/
⌦

0

FIG. 7: Polaron spectral function calculated using the self-
consistent scheme discussed in Section IV. The black lines are
identical to the ones in Fig. 2. Note how the continuum of
excitations now follows the attractive polaron peak.

The qualitative changes following from this scheme
with respect to the non-selfconsistent one can be seen in
Fig. 7. The continuum onset is pulled to negative energies
and now follows the curve which in the non-selfconsistent
approximation is described by the polaron peak. A sim-
ilar behavior has been found for the molecule spectral
function in a renormalization group study of the Fermi
polaron [8]. This may be seen as a further indication
of the Bose polaron being hybridized with the molecule,
cf. Appendix A. Moreover, we observe a strong suppres-
sion of both the attractive and the repulsive polaron’s
spectral weight. This large suppression, however, does
not come as a surprise. Indeed, by solving Eq. (22) self-
consistently we incorporate more fluctuations which en-
tangle the impurity with the bosons’ degrees of freedom.
This loss of spectral weight in the attractive polaron is
compensated by a transfer of weight to excited contin-
uum states which is facilitated by the reduced excitation
gap as compared to the NSCT approach. The substan-
tial reduction of the quasiparticle weight is accompanied

by changes to the effective mass of a similar magnitude.
In the selfconsistent calculation the effective mass is no
longer related to the quasiparticle weight by the simple
relation (21) and takes values larger than (↵ + 1)m

�

.
However, apart from a small upward shift, it still essen-
tially follows its behavior from the NSCT approximation
[cf. Fig. 5 (b)]. The repulsive polaron is shifted to slightly
higher energies [cf. Fig. 4] while its quasiparticle width
is substantially reduced with respect to the NSCT result
for all but the strongest interspecies interactions.

Further changes can be seen when one considers the
momentum dependence of the impurity spectral function
which is shown in Fig. 8 for two different values of the
interspecies coupling. The most prominent differences
appears for positive values of a�1
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[Fig. 8 (a)] where the
attractive polaron peak touches the continuum and dies
out rapidly instead of running parallel to it as it does
in the NSCT approximation. The qualitative behavior
of the repulsive polaron, however, remains unchanged,
showing a smooth interpolation from a very broad peak
at low momenta to a sharp peak with an effective mass of
↵m
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towards higher momenta. The changes with respect
to the NSCT approach are less pronounced for negative
values of a
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[Fig. 8 (b)]. Here one only notices that
when the attractive polaron pole enters the continuum,
the latter is gradually absorbed by the former. Hence,
within the SCT approach, the attractive polaron becomes
subject to damping above a critical momentum for any

interspecies interaction strength.
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We have determined the excitation spectrum of an im-
purity immersed in a homogeneous BEC. We find that
this spectrum is dominated by two branches, the attrac-
tive and repulsive Bose polaron. The attractive polaron
is a stable quasiparticle at negative energies which exists
for all interspecies couplings. It exhibits a crossover from
a weakly dressed polaron to a molecule as one crosses the
Feshbach resonance. This can be understood in terms of
its hybridization with a molecular state due to the BEC.
The repulsive polaron emerges as a metastable quasipar-
ticle on the a

�1
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> 0 side of the Feshbach resonance.
While it is long-lived for small scattering lengths a
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,
its lifetime becomes exceedingly small as the Feshbach
resonance is approached. We have shown that because
of the weak dependence of spectral properties on the
boson–boson interaction, the essence of the problem can
already be captured by a simple non-selfconsistent calcu-
lation using a vanishing boson–boson coupling constant.
The most important correction to this simple picture is
given by the multiple excitation of bosons from the con-
densate, which we account for by the selfconsistent in-
corporation of the selfenergy feedback into the T-matrix
equation. We predict various quasiparticle properties of
the attractive and repulsive polaron which can be tested
in future experiments. For instance, radiofrequency ex-
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FIG. 7: Polaron spectral function calculated using the self-
consistent scheme discussed in Section IV. The black lines are
identical to the ones in Fig. 2. Note how the continuum of
excitations now follows the attractive polaron peak.

The qualitative changes following from this scheme
with respect to the non-selfconsistent one can be seen in
Fig. 7. The continuum onset is pulled to negative energies
and now follows the curve which in the non-selfconsistent
approximation is described by the polaron peak. A sim-
ilar behavior has been found for the molecule spectral
function in a renormalization group study of the Fermi
polaron [8]. This may be seen as a further indication
of the Bose polaron being hybridized with the molecule,
cf. Appendix A. Moreover, we observe a strong suppres-
sion of both the attractive and the repulsive polaron’s
spectral weight. This large suppression, however, does
not come as a surprise. Indeed, by solving Eq. (22) self-
consistently we incorporate more fluctuations which en-
tangle the impurity with the bosons’ degrees of freedom.
This loss of spectral weight in the attractive polaron is
compensated by a transfer of weight to excited contin-
uum states which is facilitated by the reduced excitation
gap as compared to the NSCT approach. The substan-
tial reduction of the quasiparticle weight is accompanied

by changes to the effective mass of a similar magnitude.
In the selfconsistent calculation the effective mass is no
longer related to the quasiparticle weight by the simple
relation (21) and takes values larger than (↵ + 1)m

�

.
However, apart from a small upward shift, it still essen-
tially follows its behavior from the NSCT approximation
[cf. Fig. 5 (b)]. The repulsive polaron is shifted to slightly
higher energies [cf. Fig. 4] while its quasiparticle width
is substantially reduced with respect to the NSCT result
for all but the strongest interspecies interactions.

Further changes can be seen when one considers the
momentum dependence of the impurity spectral function
which is shown in Fig. 8 for two different values of the
interspecies coupling. The most prominent differences
appears for positive values of a�1

� 

[Fig. 8 (a)] where the
attractive polaron peak touches the continuum and dies
out rapidly instead of running parallel to it as it does
in the NSCT approximation. The qualitative behavior
of the repulsive polaron, however, remains unchanged,
showing a smooth interpolation from a very broad peak
at low momenta to a sharp peak with an effective mass of
↵m

�

towards higher momenta. The changes with respect
to the NSCT approach are less pronounced for negative
values of a

�1
� 

[Fig. 8 (b)]. Here one only notices that
when the attractive polaron pole enters the continuum,
the latter is gradually absorbed by the former. Hence,
within the SCT approach, the attractive polaron becomes
subject to damping above a critical momentum for any

interspecies interaction strength.

V . C O N C L U S I O N A N D O U T L O O K

We have determined the excitation spectrum of an im-
purity immersed in a homogeneous BEC. We find that
this spectrum is dominated by two branches, the attrac-
tive and repulsive Bose polaron. The attractive polaron
is a stable quasiparticle at negative energies which exists
for all interspecies couplings. It exhibits a crossover from
a weakly dressed polaron to a molecule as one crosses the
Feshbach resonance. This can be understood in terms of
its hybridization with a molecular state due to the BEC.
The repulsive polaron emerges as a metastable quasipar-
ticle on the a

�1
� 

> 0 side of the Feshbach resonance.
While it is long-lived for small scattering lengths a

� 

,
its lifetime becomes exceedingly small as the Feshbach
resonance is approached. We have shown that because
of the weak dependence of spectral properties on the
boson–boson interaction, the essence of the problem can
already be captured by a simple non-selfconsistent calcu-
lation using a vanishing boson–boson coupling constant.
The most important correction to this simple picture is
given by the multiple excitation of bosons from the con-
densate, which we account for by the selfconsistent in-
corporation of the selfenergy feedback into the T-matrix
equation. We predict various quasiparticle properties of
the attractive and repulsive polaron which can be tested
in future experiments. For instance, radiofrequency ex-
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Summary

‣Using a field theoretical approach we studied impurity in ultracold BEC close to 
Feshbach resonance

‣ Impurity is dressed by bosonic excitations Bose polaron

‣Spectrum exhibits two distinct quasi-particle branches

➡ attractive polaron
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the next iteration !
(2)
φψ and so on. The process is iterated until

convergence to a numerically stable result is reached. We find
that n ! 10 iterations are typically sufficient. To verify the
numerical stability of the final result, however, we carry on
until up to n = 20 iterations.

From the T matrix !
(n)
φψ in the nth step of this “self-

consistency loop” we calculate the improved, dressed im-
purity Green’s function G

(n)
ψ via Dyson’s equation depicted

in Fig. 1(a). In the numerical solution using imaginary
frequencies, it is of utmost importance to adjust the impurity
chemical potential µψ to a value that guarantees that the
impurity atom does not have a finite occupation in the final
iteration, i.e., one has to satisfy the condition

[
G

(0)
ψ (iω = 0, p; µψ )

]−1 − ρ0!
(n)
φψ (iω = 0, p; µψ ) " 0

(23)

for all p. In fact, if we require Eq. (23) to be an equality with
the choice of µψ = µpol at p = 0, this uniquely determines
the ground-state energy of the attractive polaron via the
basic definition of the chemical potential, µpol = E(Nψ +
1) − E(Nψ ), where Nψ = 1 for the impurity problem; hence
Eatt = µpol. The energies obtained from the self-consistent
T-matrix approach are shown in Fig. 3 along with the results
of the NSCT approximation. Specifically, at unitarity where
changes with respect to the NSCT schema are particularly
strong, we find Eatt/&0 = −6.84(1) while the NSCT approach
yields Eatt/&0 = −5.390. We see that the changes are of the
order of 25% around unitarity.

To study the impact of self-consistency on the excitation
spectrum of the system, we have to perform an analytical
continuation of the impurity Green’s function to real fre-
quencies. Although this is in principle possible, it would
require the analytical continuation from a finite, discrete set of
numerical data which is a mathematically ill-defined problem.
In order to avoid the related complications and yet obtain
fairly precise results, we make use of the observation that by
far the largest effect of self-consistency arises already in the
first iteration [cf. the dotted line in Fig. 3(a)]. Thus we expect
that all major aspects of the impact of self-consistency on the
impurity spectral function are already present at this stage.
The numerical cost of this first iteration is modest. One has to
calculate only the integral appearing in Eq. (9), but with the
bare Fermi propagator replaced by

G
(1)
ψ (&, p) = 1

& − p2

2mψ
− ρ0!

NSC
φψ (&, p) + i0+

(24)

where !NSC
φψ is the non-self-consistent T matrix we obtained in

the previous section; see Eqs. (8) and (9). Since the integrand is
known analytically, the frequency integration and subsequent
continuation to real frequencies may be carried out analytically
so that only the momentum integral has to be done numerically.

The qualitative changes following from this scheme with
respect to the non-self-consistent one can be seen in Fig. 7. The
continuum onset is pulled to negative energies and now follows
the curve which in the non-self-consistent approximation is
described by the polaron peak. A similar behavior has been
found for the molecule spectral function in a renormalization-
group study of the Fermi polaron [8]. This may be seen as

n1/3aφψ

)−1

Ω
/Ω

0

FIG. 7. (Color online) Polaron spectral function calculated using
the self-consistent scheme discussed in Sec. IV. The black lines are
identical to the ones in Fig. 2. Note how the continuum of excitations
now follows the attractive polaron peak.

a further indication of the Bose polaron being hybridized
with the molecule; cf. Appendix A. Moreover, we observe
a strong suppression of both the attractive and the repulsive
polarons’ spectral weight. This large suppression, however,
does not come as a surprise. Indeed, by solving Eq. (22) self-
consistently we incorporate more fluctuations which entangle
the impurity with the bosons’ degrees of freedom. This loss
of spectral weight in the attractive polaron is compensated
by a transfer of weight to excited continuum states, which is
facilitated by the reduced excitation gap as compared to the
NSCT approach. The substantial reduction of the quasiparticle
weight is accompanied by changes to the effective mass of
a similar magnitude. In the self-consistent calculation the
effective mass is no longer related to the quasiparticle weight
by the simple relation (21) and takes values larger than
(α + 1)mφ . However, apart from a small upward shift, it still
essentially follows its behavior from the NSCT approximation
[see Fig. 4(b)]. The repulsive polaron is shifted to slightly
higher energies [see Fig. 3] while its quasiparticle width is
substantially reduced with respect to the NSCT result for all
but the strongest interspecies interactions.

Further changes can be seen when one considers the mo-
mentum dependence of the impurity spectral function, which
is shown in Fig. 8 for two different values of the interspecies
coupling. The most prominent differences appear for positive
values of a−1

φψ [Fig. 8(a)] where the attractive polaron peak
touches the continuum and dies out rapidly instead of running
parallel to it as it does in the NSCT approximation. The
qualitative behavior of the repulsive polaron, however, remains
unchanged, showing a smooth interpolation from a very broad
peak at low momenta to a sharp peak with an effective mass
of αmφ towards higher momenta. The changes with respect to
the NSCT approach are less pronounced for negative values
of a−1

φψ [Fig. 8(b)]. Here one notices only that when the
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➡ repulsive (Fröhlich) polaron

‣We predict finite lifetime of repulsive polaron: 
Quantum simulation of Fröhlich model challenging with ultracold atoms

‣We propose experimental procedure to measure polaron properties via radio-
frequency spectroscopy
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