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Hot Jupiter Spin-Orbit Misalighment

~ 70 observed planets with projected
misalignment angle between stellar
spin axis and planet orbital angular
momentum

Possible causes:
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= Primordial disk misalignment (Bate+10; Lai, Foucart & Lin ‘11; Batygin 12,13; Lai '14)
= Ang. Momentum transfer from gravity waves (Rogers & Lin ‘12)

=" High-e migration:

-- Planet-planet interactions/scattering (e.g. Ford & Rasio ‘08, Wu & Lithwick ‘11)
-- Kozai oscillations due to binary companion (Wu & Murray ‘03, Fabrycky & Tremaine ‘07)
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Need minimum inclination of ~ 40
degrees to increase eccentricity



Kozai Mechanism
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Digression:
Secular Dynamics of Planetary Motion
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Kozai-Lidov Oscillations
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Kozai Mechanism
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Corrections to Kozai

= Additional periastron

Distant stellar

precession due to GR, static i

tides, oblateness m

/
= QOctupole-order effects / //
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Figure 2. Results of numerical integrations for initial conditions
mo = 1 Mg, m1 = 1My, mg = 40M 5, a; = 6AU, apz = 100AU,
e1 = 0.001, ea = 0.6, i1 = 64.7°, i5 = 0.3°, wy = 45°, wo = 0°.
The red lines are from the integration of pure Kozai in octupole
order, while the blue lines are the results of integration including

short-range forces.
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Hot Jupiter formation through
Kozai Oscillations + Tide

= Kozai oscillations pump planet into high-e orbit
= Tidal dissipation during high-e phases causes orbital decay

= Combined effects can result in planets in ~ few days orbit from host
star (a hot Jupiter is born!)

Final planet orbit not necessarily aligned with stellar spin axis



The spin in spin-orbit misalighment

During Kozai cycle, planet orbit undergoes large
variation in both eccentricity and inclination relative
to the outer binary axis.



The spin in spin-orbit misalignment

During Kozai cycle, planet orbit undergoes large variation
in both eccentricity and inclination relative to the
outer binary axis.

Question: what happens to stellar spin during this time?
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e Staris spinning - anywhere
from 3 to 30 days. = oblate
- will precess
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e Staris spinning - anywhere
from 3 to 30 days. = oblate
- will precess
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It takes two to tango

Just as the planet torques the star, the star
torques the planet’s orbit — so really we
have mutual precession of Land S



So the ingredients are...

* Kozai: eccentricity
and inclination
oscillations at
frequency w,

e Mutual spin and
orbital precession at
frequency Q




So the ingredients are...

* Kozai: eccentricity
and inclination
oscillations at
frequency w,

e Mutual spin and
orbital precession at
frequency Q

Throw them together -
what happens?
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The precession frequency changes:
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This leads to three qualitatively different regimes...
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This leads to three qualitatively different regimes...
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How to find these regimes:
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Finally, numerics!

Armed with a qualitative understanding of what’s going on, we
can now actually take the Kozai+spin precession ODEs and see
what happens!
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Visualizing the spin behavior

To check whether our predictions for different regime behavior
were correct, we construct surfaces of section: scatter plots of
the variables evaluated at each eccentricity maximum.
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Numerical results for each of the three regimes
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Numerical results for each of the three regimes
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Numerical results for each of the three regimgs/m;.-----
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Numerical results for each of the three regimes
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“Trans-adiabatic”
Predietion: Speculation:
Interesting behavior due

to secular resonance!
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Numerical results for each of the three regim

“Trans-adiabatic”
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Numerical results for each of the three regimes
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Is it chaos?

* |n a chaotic system, the phase space distance
between two initially neighboring trajectories
increases exponentially
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“shadow” trajectory, with slightly different initial

conditions.



Is it chaos?

* |n a chaotic system, the phase space distance
between two initially neighboring trajectories
increases exponentially
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e So, in addition to the “real” trajectory we used to

make the surfaces of section, we also evolve a
“shadow” trajectory, with slightly different initial
conditions.

Quasiperiodic
(not chaotic)




Is it chaos?

* |n a chaotic system, the phase space distance
between two initially neighboring trajectories
increases exponentially

e So, in addition to the “real” trajectory we used to

make the surfaces of section, we also evolve a

“shadow” trajectory, with slightly different initial

conditions.

Chaotic
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More precisely...

0
Sreal Wsshadow

6,=10
max(0) = 2 (unit vectors)



More precisely...
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Toward realism...

We now add in extra orbital
precession terms due to:

— GR

— Static tides in planet

— Planet oblateness (due to
spin)

Does this change the
qgualitative picture?



Toward realism...

We now add in extra orbital
precession terms due to:

— GR

— Static tides in planet
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But it does limit the interesting parameter space...
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Now we’d like to explore this parameter space

 We have seen that the “trans-adiabatic” regime has
both regions of chaos and quasiperiodicity. We
would like to explore this further!



Presence of scatter is indicative of chaos
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 So we construct “bifurcation” diagrams: we vary
planet mass (x-axis). For each planet mass, we
integrate our ODEs over a long period of time and
record the spin-orbit misalignment at each
eccentricity maximum (y-axis).



Now we’d like to explore this parameter space

 We have seen that the “trans-adiabatic” regime has
both regions of chaos and quasiperiodicity. We
would like to explore this further!

 So we construct “bifurcation” diagrams: we vary
planet mass (x-axis). For each planet mass, we
integrate our ODEs over a long period of time and
record the spin-orbit misalignment at each
eccentricity maximum (y-axis).

e So scatter on the y-axis will be indicative of how
much phase space the stellar spin has explored



“Bifurcation” diagram (stellar spin period: 5 days)
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A Toy Model
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A Toy Model

Periodic Chaotic
0 20 40 60 %0 100 120 140 16 0 20 40 60 80 100 120 140 160
t

I))

Qualitatively similar to “real” system



‘D ivcatian’”, NDiaar
DiItuUul Ld UiVl Ulidgld dam
= Specify Q , and integrate toy-model

equations for 1000 “Kozai cycles”

= Record the spin-orbit and spin-binary angles
at each eccentricity maximum

= Repeat for different values of Q50
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Logistic Map

Tni1 = TTn(1 — xp)
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Spin-orbit angle

Spin-binary angle
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Measuring Chaos

Define a “real” system with set of initial
conditions, and “shadow” system with
initial conditions differing by a small
amount
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Estimate of spin-orbit angle in periodic islands

During a trans-adiabatic cycle,
)st of the change in the spin
oit angle occurs during the
n-adiabatic portion of the cycle

s Oy

7 ~ Qpl sin2(91b) Sin(¢sb — Qplt)

srate up to the point where
'm becomes adiabatic, beyond
h, spin-orbit angle is ~ constant

icted spin-orbit angles in good
ement with values in “islands”




Recap
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Recap

 We have found that the stellar spin exhibits a lot of
interesting behavior during Kozai cycles, and we have
a qualitative understanding of why that is



Bifurcation diagram (stellar spin period: 5 days)
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 We have found that the stellar spin exhibits a lot of
interesting behavior during Kozai cycles, and we have
a qualitative understanding of why that is

e The “trans-adiabatic” regime definitely shows
complex, including chaotic, behavior



Recap

 We have found that the stellar spin exhibits a lot of
interesting behavior during Kozai cycles, and we have
a qualitative understanding of why that is

e The “trans-adiabatic” regime definitely shows
complex, including chaotic, behavior

e Now we’d like to see what, if any, effect this has on
the spin-orbit misalignment of Hot Jupiters
e — so we add in tidal dissipation



Effect of tidal dissipation
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Blurring of regimes
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 As semi-major axis decays, even if the initial
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Blurring of regimes
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 As semi-major axis decays, even if the initial
conditions were in “non-adiabatic” regime, they
will always end up adiabatic
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— Stellar spin always gets a chance to affect things



Variation in final spin-orbit misalignment

e Recall: in a chaotic system, the phase space distance
between two initially neighboring trajectories increases
exponentially

- Things that start out similar end up different



Variation in final spin-orbit misalignment

e Recall: in a chaotic system, the phase space distance
between two initially neighboring trajectories increases
exponentially

- Things that start out similar end up different

e So we do the following:
— Vary initial orbital inclination by £ 0.05°
— S and L always start out parallel
— Record final misalignment angle
— Repeat for different planet masses



Variation in final spin-orbit misalignment
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Here stellar spin period is 3 days, initial orbital inclination 6,,=85+ 0.05°



Now let the star spin down!
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Now let the star spin down!
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Conclusion: a tiny initial spread in inclination leads

to a very large spread in spin-orbit misalignment
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e Stellar spin often does a crazy dance during
Kozai!
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circumstances this happens (“trans-adiabatic”
regime)

e This certainly impacts the final distribution of
spin-orbit misalignments in hot Jupiters
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e Stellar spin often does a crazy dance during
Kozai!

 We can understand qualitatively under what
circumstances this happens (“trans-adiabatic”
regime)

e This certainly impacts the final distribution of
spin-orbit misalignments in hot Jupiters

Thank you!
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Bimodality: has been numerically found before...
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Fig. 2 Histogram of the final distribution of the misalign-
ment angle #p. We have integrated a series of 40000 systems
with the same initial conditions from Table 1 except for the
obliquity #g = 07, and inclination I, which range from +84.3°
to 90°. We observe two pronounced peaks of higher probabil-
ity around fp =~ 53° and fp =~ 109°, which is consistent with
the observations of the Rossiter-McLaughlin anomaly for the
HD 80606 system (Pont et al, 2009).

Correia, Laskar, Farago, & Boué (2011)
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e Stellar spin often does a crazy dance during
Kozai!

 We can understand qualitatively under what
circumstances this happens (“trans-adiabatic”
regime)

e This certainly impacts the final distribution of
spin-orbit misalignments in hot Jupiters

Thank you!



