Strong coupling ansatz for the 1D Fermi gas in a harmonic potential

Jesper Levinsen
Monash University, Melbourne
Collaboration with
Pietro Massignan (ICFO Barcelona)
Georg Bruun (Aarhus University)
Meera Parish (Monash University)
arXiv: 1408.7096
(to appear in Science Advances)

Two fundamental quantum systems

- Particles in one dimension is a fundamental problem of strongly correlated systems
- Interactions are enhanced due to the particles' restricted motion
- Special role played by particle statistics
- Many such systems amenable to exact solutions, such as Bethe ansatz

- The harmonic oscillator is a fundamental model of quantum physics
- In the absence of interactions, we know the exact ground state
- No Bethe-ansatz solution for 1D fermions in a harmonic potential

Model

- Two species (spins) of fermions with short-range interactions

$$
\mathcal{H}=\sum_{i=0}^{N}\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{1}{2} m \omega^{2} x_{i}^{2}\right]+g \sum_{i<j} \delta\left(x_{i}-x_{j}\right)
$$

- Consider a single tube in an optical lattice

At low collision energies, the 3D interactions become effectively 1D:

$$
g=\frac{2 \sqrt{2} \hbar^{2}}{m l_{\perp}}\left(\frac{\sqrt{2} l_{\perp}}{a}-\zeta(1 / 2)\right)^{-1}
$$

Olshanii PRL 1998

Ultracold fermions in Heidelberg

The 1D harmonic oscillator was realized in a recent series of experiments with two-component fermions in the group of S. Jochim

- Fermionization of two distinguishable fermions

Zürn et al, PRL 2012

Exact solution: Busch et al, Foundations of Physics 1998

Wavefunctions in the Tonks-Girardeau limit:

Ultracold fermions in Heidelberg

Tunneling experiment:

Zürn et al, PRL 2012

So far experiments with a single impurity and up to 5 majority atoms

Wentz et al, Science 2013

The single impurity problem

Inspired by the experiment, we focus on the

- single impurity problem
- in a 1D geometry
- in an external harmonic potential
- in the vicinity of the Tonks-Girardeau limit of infinite repulsion

We show that this problem can be solved essentially exactly for any number of majority particles

The Tonks-Girardeau limit

$1 / g$

For N spin-up fermions and 1 spin-down fermion there are $N+1$ degenerate wavefunctions in the TG limit

- \# of ways to order the impenetrable particles

- \# of degenerate wavefunctions which are everywhere proportional to the fermionized wavefunction:

$$
\psi_{0}(\mathbf{x})=\mathcal{N}_{N}\left(\prod_{0 \leq i<j \leq N} x_{i j}\right) e^{-\sum_{k=0}^{N} x_{k}^{2} / 2}
$$

- Such wavefunctions all have the same kinetic energy and vanishing interaction energy

Basis functions for an impurity in the TG limit

Example: N=3 majority particles

$$
\phi_{0}=\sqrt{ }
$$

$$
\psi_{0}(\mathbf{x})=\mathcal{N}_{N}\left(\prod_{0 \leq i<j \leq N} x_{i j}\right) e^{-\sum_{k=0}^{N} x_{k}^{2} / 2}
$$

$$
\phi_{1}=\sqrt[n]{+} \sqrt{ } \sqrt{+} \sqrt{ }
$$

$\phi_{3}=\sqrt{M}$

Few-body problem

For a single impurity problem and N majority fermions

$$
N=2:
$$

$$
\begin{aligned}
& \phi_{0}=\mathcal{N}_{2} x_{12} x_{01} x_{02} e^{-\left(x_{0}^{2}+x_{1}^{2}+x_{2}^{2}\right) / 2}, \\
& \phi_{1}=\mathcal{N}_{2} x_{12}\left(\left|x_{01}\right| x_{02}+x_{01}\left|x_{02}\right|\right) e^{-\left(x_{0}^{2}+x_{1}^{2}+x_{2}^{2}\right) / 2}, \\
& \phi_{2}=\mathcal{N}_{2} x_{12}\left|x_{01} x_{02}\right| e^{-\left(x_{0}^{2}+x_{1}^{2}+x_{2}^{2}\right) / 2} .
\end{aligned}
$$

$\psi_{0}=\phi_{0}, \psi_{1}=\sqrt{\frac{3}{8}} \phi_{1}, \psi_{2}=\sqrt{\frac{1}{8}}\left(\phi_{0}-3 \phi_{2}\right) \quad$ all fixed by spin and parity

- Guan et al provided a solution for any N, but already for $N=3$ this did not match the result of recent numerics:

Gharashi, Blume PRL 2013

$$
\tilde{\psi}_{0}=\phi_{0}, \tilde{\psi}_{1}=\sqrt{\frac{1}{5}} \phi_{1}, \tilde{\psi}_{2}=\frac{1}{2}\left(\phi_{0}-\phi_{2}\right), \quad \tilde{\psi}_{3}=\sqrt{\frac{1}{20}}\left(\phi_{1}-5 \phi_{3}\right)
$$

not all fixed by spin and parity

Strong-coupling ansatz

Inspired by the 3- and 4-body solutions we propose an ansatz:

> For any N, the l'th wavefunction is a superposition of the basis functions with at most l absolute values

- Idea: cusps in the wavefunction reduce kinetic energy at finite repulsion let us introduce these gradually
- Advantage: the problem is reduced to Gram-Schmidt orthogonalization
$N=3$:

$$
\psi_{0}=\phi_{0}, \quad \psi_{1}=\sqrt{\frac{1}{5}}\left(1.00188 \phi_{1}-0.00941 \phi_{3}\right), \quad \psi_{2}=\frac{1}{2}\left(\phi_{0}-\phi_{2}\right), \quad \psi_{3}=\sqrt{\frac{1}{20}}\left(0.99246 \phi_{1}-4.99996 \phi_{3}\right) .
$$

3-body: Guan et al PRL 2009
4-body: Gharashi, Blume PRL 2013
$\left|\left\langle\psi_{l} \mid \tilde{\psi}_{l}\right\rangle\right|$ exceeds 0.999993

4-body spectrum in TG limit

- For the four-body problem, our ansatz works very well

Perturbation theory in the TG limit

- We can also perform exact calculations in the TG limit, using the Hellmann-Feynman theorem

$$
\mathcal{H}=\sum_{i=0}^{N}\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{1}{2} m \omega^{2} x_{i}^{2}\right]+g \sum_{i<j} \delta\left(x_{i}-x_{j}\right)
$$

$$
\begin{aligned}
\mathcal{C} & =-\left.\frac{d E}{d\left(g^{-1}\right)}\right|_{g \rightarrow \infty}=-\left.\left\langle\frac{\partial \mathcal{H}}{\partial\left(g^{-1}\right)}\right\rangle\right|_{g \rightarrow \infty} \equiv \frac{\langle\Psi| \mathcal{H}^{\prime}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle} \\
\mathcal{H}_{l n}^{\prime} & =\left\langle\phi_{l}\right| \mathcal{H}^{\prime}\left|\phi_{n}\right\rangle=\lim _{g \rightarrow \infty} g^{2} \sum_{i=1}^{N} \int d \mathbf{x} \delta\left(x_{i 0}\right) \phi_{l} \phi_{n} \\
& =\left.\left.\sum_{i=1}^{N} \int d \mathbf{x} \delta\left(x_{i 0}\right) \frac{\partial \phi_{l}}{\partial x_{i 0}}\right|_{-} ^{+} \frac{\partial \phi_{n}}{\partial x_{i 0}}\right|_{-} ^{+}
\end{aligned}
$$

This multidimensional integral cannot be calculated combinatorially

- We are limited to $N<10$

Comparison between exact solution and ansatz

- Wavefunction overlap of exact and ansatz solutions exceed 0.9997 for all states up to $N=8$

Inset: Girardeau's ansatz, PRA 2010

- Ground state wavefunction appears to extrapolate to an overlap ~ 0.9999

An approximate symmetry?

$1 / g$

- We find an unexpected approximate relation (correct to within 3% for N up to 8):

$$
\mathcal{C}_{l} \sim l(l+1)
$$

- This spectrum is intimately related to our ansatz

Harmonic Heisenberg model

- In the TG limit, we can write the Hamiltonian as a Heisenberg model:

$$
\mathcal{H} \simeq E_{0}-\frac{\mathcal{H}^{\prime}}{g}=E_{0}+\frac{\mathcal{C}_{N}}{g} \sum_{i=0}^{N-1}\left[J_{i} \mathbf{S}^{i} \cdot \mathbf{S}^{i+1}-\frac{1}{4} J_{i}\right]
$$

Matveev PRL 2004
Volosniev et al, Nat Comm 2014 Deuretzbacher et al, PRA 2014

- Within our ansatz, using the approximate spectrum, we can calculate the nearest neighbour exchange constants

$$
J_{i}=\frac{-\left(i-\frac{N-1}{2}\right)^{2}+\frac{1}{4}(N+1)^{2}}{N(N+1) / 2}
$$

i is a particle index, not a site index

Wavefunctions in the ground state manifold

- We can solve the harmonic Heisenberg model exactly for the single impurity. The result is the family of discrete Chebyshev polynomials, known from approximation theory

$$
\left|\tilde{\psi}_{l}\right\rangle=\eta_{l}^{(N)} \sum_{i=0}^{N} \sum_{n=0}^{l}(-1)^{n}\binom{l+n}{n}\binom{N-n}{N-l}\binom{i}{n}\left|\downarrow_{i}\right\rangle
$$

The ground state wavefunction is a signalternating Pascal's triangle

$$
\begin{aligned}
& \left|\tilde{\psi}_{N}\right\rangle=\binom{2 N}{N}^{-1 / 2} \sum_{i=0}^{N}(-1)^{i}\binom{N}{i}\left|\psi_{i}\right\rangle \\
& \left.1 \begin{array}{l}
1 \\
1
\end{array}\right) \\
& 13^{2} 1 \\
& 144641
\end{aligned}
$$

Approaching the many-body limit

Contact of the ground state wavefunction

- Approaches McGuire + LDA

McGuire, J. Mat. Phys. 1965
Astrakharchik, Brouzos PRA 2013

Probability distribution of the impurity in the ground state wavefunction using LDA

$$
P_{N}(i) \simeq\left|\left\langle\downarrow_{i} \mid \tilde{\psi}_{N}\right\rangle\right|^{2}=\binom{2 N}{N}^{-1}\binom{N}{i}^{2} \quad P_{N}\left(x_{0}\right) \simeq\left(\frac{2}{\pi}\right)^{3 / 2} e^{-8 x_{0}^{2} / \pi^{2}} \quad P_{\mathrm{NI}}\left(x_{0}\right)=e^{-x_{0}^{2}} / \sqrt{\pi}
$$

Residue approaches zero as required by orthogonality catastrophe

Breathing modes

- Shift of energies in higher manifolds can be calculated using a dynamical SO $(2,1)$ symmetry
- In the absence of a harmonic potential, the system is scale invariant in the TG limit
- The introduction of the harmonic potential leads to an algebra with $S O(2,1)$ commutation relations

Pitaevskii and Rosch, PRA 1997

$$
\delta E_{1}=\left(1+\frac{3}{4 E_{0}}\right) \delta E_{0}
$$

In the TG limit, the breathing modes form a tower of modes separated by twice the harmonic oscillator frequency. Away from TG limit this is $\delta E_{1}-\delta E_{0}=3 \delta E_{0} / 4 E_{0}$

Conclusions and outlook

- We proposed a strong coupling ansatz for a single impurity immersed in a 1D Fermi gas in a harmonic potential
- Wavefunction overlaps with exact states exceed 0.9997 for all up to $N=8$
- We obtained an approximate $l(l+1)$ spectrum
- No small parameter - "weakly broken" symmetry?
- We obtained the model within which our approximation is exact
- Harmonic Heisenberg model - valid for any number of particles
- For the $2+2$ problem, wavefunction overlap is $\gtrsim 0.99998$ when comparing with numerics
- The ground state manifold is formed from the discrete Chebyshev polynomials
- Mappings from fermions to bosons? $\mathrm{SU}(N)$ magnetism? Higher dimensions?

Acknowledgements

Georg Bruun Aarhus University

Pietro Massignan
ICFO Barcelona
Meera Parish
Monash University

arXiv:1408.7096
(to appear in Science Advances)

Thank you!

