Nematic quantum paramagnet in spin-1 square lattice models

Fa Wang(王垈) Peking University

Ref.: arXiv:1501.00844

Acknowledgments

- Prof. Dung-Hai Lee, UC Berkeley
- Prof. Kivelson, Stanford
- Discussions with Prof. Tao Xiang, IOP CAS

Outline

- Motivation
- Theory
- Numerical results
- Summary

• Fe-based high Tc superconductors(FeSC): [Hosono et al'08]

- Fe-based high Tc superconductors(FeSC)
 - Common structure: X-Fe₂-X tri-layer
 (X=As, P, Se, Te), Fe square lattice.

 Nominally Fe²⁺ (3d⁶), low-spin state would be spin-1 with orbital degeneracy (in tetragonal phase)

- Typical FeSC materials
 - Parent compounds have stripe AFM order, which breaks 4-fold rotation symmetry
 - Magnetism can be explained by J₁-J₂ and related models
 [Yildirim'08 ...; review Dai'15]

$$J_1 \sum_{\langle ij \rangle} \boldsymbol{S}_i \cdot \boldsymbol{S}_j + J_2 \sum_{\langle \langle ij \rangle \rangle} \boldsymbol{S}_i \cdot \boldsymbol{S}_j$$

- Typical FeSC materials
 - Tetragonal to orthorhombic (*a*≠*b*) structural transition (breaking of 4-fold rotation C₄ symmetry)
 at or slightly above AFM order temperature

Chu et al. Science 329, 824 (2010)

Fernandes et al. Nat.Phys.'14

- Typical FeSC materials
 - lattice distortion is small (~10⁻³), electronic
 properties has significant
 C₄ breaking: nematicity

- driving force of nematicity? ^B
 [review Fernandes et al'14]
 - orbital order: n_{xz}≠n_{yz},
 [Singh'08, Kontani&Onari'12]?
 - magnetic correlation
 [Fang et al'08, Xu et al.'08]? ...

- Atypical FeSC: FeSe
 - Superconducting without doping [Tc~8K]
 - No magnetic order
 - Has orthorhombic structural transition [Tc~90K]
 - Pressure can induce AFM order
 [Bendele et al'12, Terashima et al'15]

03/25/15@IASTU

T.Terashima et al. arXiv:1502.03548

Motivation: theoretical

- Long-standing question: nature of nonmagnetic phase for square J₁-J₂ Heisenberg model
 - There is a nonmag phase between Neel and stripe AFM [Chandra&Doucot'88]

Nature of spin-1/2 case still under debate:
 gapped spin liquid [Jiang&Yao&Balents'12]
 valence bond solid(VBS) or gapless [Gong et al.'14]

Motivation: theoretical

- DMRG for spin-1 J_{1x}-J_{1y}-J₂ model [Jiang et al'09]
 - Nonmag phase for $0.525 < J_2/J_1 < 0.555$

Motivation: questions to answer

Neel

no magnetic

order

stripe AFM

 J_2/J_1

- Nature of nonmag phase of spin-1 square lattice J₁-J₂ Heisenberg model A: nematic quantum paramagnet (break C_{4} only)
- Nature of phase transitions to magnetic orders A: possibly Landau-forbidden continuous quantum phase transition to Neel
- Relevance of this nonmag phase to FeSe A: might be driving force of nematicity in FeSe

Outline

- Motivation
- Theory
- Numerical results
- Summary

Theoretical treatment: argument

- Haldane's argument [Haldane'88]
 - Disordering Neel order will proliferate monopole of Neel order parameter $n(r) \sim (-1)^{x+y} S(r)$
 - monopole: skyrmion # changing event in space-time, monopole charge is the change of skyrmion number
 - skyrmion number: number of times the unit vector *n*(*r*) wraps around Bloch sphere

$$\frac{1}{4\pi} \int \int \mathrm{d}x \mathrm{d}y \, \boldsymbol{n} \cdot (\partial_x \boldsymbol{n} \times \partial_y \boldsymbol{n})$$

Example of $q_m = 1$ monopole

Theoretical treatment: argument

- Haldane's argument [Haldane'88,Read&Sachdev'89]
 - monopole configurations contribute non-trivial Berry phase to the path integral, which depends on monopole spatial position and spin length *S*.
 - Spin-1/2: must proliferate q_m=0 mod 4 monopoles, skyrmion #=0,1,2,3 mod 4 sectors become degenerate, break translation/rotation symmetry: (columnar) VBS

Phase factor for charge $q_m = 1$ monopoles

Theoretical treatment: argument

- Haldane's argument applied to spin-1
 - monopole Berry phase (for charge q_m=1)

Proliferation of q_m=0 mod 2 monopoles,
 skyrmion number=0,1 mod 2 sectors are degenerate,
 breaks C₄, but not translation: nematic paramagnet.

Theoretical treatment: parent Hamiltonian

 Parent Hamiltonian of nematic quantum paramagnet (due to Prof. Kivelson)

$$H_K = K \sum_{\langle jik \rangle} P_3(\boldsymbol{S}_i + \boldsymbol{S}_j + \boldsymbol{S}_k)$$
$$P_3(\boldsymbol{S}) = \frac{1}{720} \boldsymbol{S}^2 (\boldsymbol{S}^2 - 2) (\boldsymbol{S}^2 - 6) = \begin{cases} 1, \text{total spin}=3; \\ 0, \text{otherwise} \end{cases}$$

- Horizontal/vertical AKLT chains are two ground states

- Background: "deconfined quantum critical point" for spin-1/2 square lattice model [Tanaka&Hu'05, Senthil et al'06]
 - Landau-forbidden continuous quantum phase transition from Neel AFM(n) to columnar VBS[$v=(v_x,v_y)$]
 - O(5) nonlinear sigma model with WZW term and anisotropy

$$S_{\frac{1}{2}}[\hat{\phi}] = S_{O(3) \times C_{4v}}[\hat{\phi}] - 2\pi \frac{3}{8\pi^2} \int u^2 x \tau \, \epsilon^{abcdf} \phi_a \partial_x \phi_b \partial_y \phi_c \partial_\tau \phi_d \partial_u \phi_f.$$

$$\hat{\phi} \propto (n_x, n_y, n_z, v_x, v_y) \qquad v_x \sim (-1)^x (\mathbf{S}_{(x,y)} \cdot \mathbf{S}_{(x+1,y)} - \mathbf{S}_{(x,y)} \cdot \mathbf{S}_{(x-1,y)})$$

$$S_{O(3) \times C_{4v}} = \int d^2 x d\tau \, \left(\frac{1}{2g_n} |\partial_\mu n|^2 + \frac{1}{2g_v} |\partial_\mu v|^2\right) + \dots$$

- Field theory for possible continuous transition from nematic paramagnet to Neel state
 - Will also be a Landau-forbidden continuous transition
 - Neel AFM has C₄, breaks spin rotation symmetry; nematic paramagnet breaks C₄, has spin rotation.
- View spin-1 as two ferromagnetic coupled spin-1/2 $S_1[\hat{\phi}^{(1)}, \hat{\phi}^{(2)}] = S_{\frac{1}{2}}[\hat{\phi}^{(1)}] + S_{\frac{1}{2}}[\hat{\phi}^{(2)}] + \int d^2x d\tau \left(J_n \boldsymbol{n}^{(1)} \cdot \boldsymbol{n}^{(2)} + J_v \boldsymbol{v}^{(1)} \cdot \boldsymbol{v}^{(2)}\right).$ Denote the end of the table as the second s
 - Depending on sign of J_n , J_v , this may described transitions between different pairs of phases

• Field theory for possible continuous transition from nematic paramagnet to Neel state

 $S_1[\hat{\phi}^{(1)}, \hat{\phi}^{(2)}] = S_{\frac{1}{2}}[\hat{\phi}^{(1)}] + S_{\frac{1}{2}}[\hat{\phi}^{(2)}] + \int \mathrm{d}^2 x \mathrm{d}\tau \, \left(J_n \boldsymbol{n}^{(1)} \cdot \boldsymbol{n}^{(2)} + J_v \boldsymbol{v}^{(1)} \cdot \boldsymbol{v}^{(2)}\right).$

- With $J_n < 0$, $J_v > 0$, low energy configs are $n^{(1)}=n^{(2)}=n$, $v^{(1)}=-v^{(2)}=v$, in terms of $\Phi=(n,v)$, action has WZW with doubled coefficient $S_1[\hat{\phi}] = \cdots - 2 \times 2\pi \frac{3}{8\pi^2} \int u^2 x \tau \, \epsilon^{abcdf} \phi_a \partial_x \phi_b \partial_y \phi_c \partial_\tau \phi_d \partial_u \phi_f.$
- v is not observable[antisym. w.r.t. exchange of (1)(2)] observable $v'=(v_1,v_2)$, are bilinears of v,

$$v_1' = \frac{v_x^2 - v_y^2}{\sqrt{v_x^2 + v_y^2}}, \quad v_2' = \frac{2v_x v_y}{\sqrt{v_x^2 + v_y^2}}$$

- Field theory for possible continuous transition from nematic paramagnet to Neel state
 - In terms of Φ'=(n,v'), the action has WZW term similar to the spin-1/2 case

 $S_{1}[\hat{\phi}'] = S_{O(3) \times Z_{2} \times Z_{2}}[\hat{\phi}'] - 2\pi \frac{3}{8\pi^{2}} \int du d^{2}x d\tau \,\epsilon^{abcdf} \phi_{a}' \partial_{x} \phi_{b}' \partial_{y} \phi_{c}' \partial_{\tau} \phi_{d}' \partial_{u} \phi_{f}'.$ - v_{1}' is the nematic order parameter: momentum=0, changes sign under $C_{4} (v_{x} \rightarrow v_{y} \rightarrow -v_{x})$,

- If anisotropy disfavors v'_2 , theory reduces to O(3)*Z2 NL σ M with $\Theta(=\pi)$ -term of 4-component $\Omega=(n,v'_1)$,

$$S = \dots + i \frac{\Theta}{2\pi^2} \int d^2 x d\tau \ \epsilon^{abcd} \Omega_a \partial_x \Omega_b \partial_y \Omega_c \partial_\tau \Omega_d$$

Outline

- Motivation
- Theory
- Numerical results
- Summary

Numerical results

- Exact diagonalization of J₁-J₂ model:
 - Hint of nematic paramagnet from singlet and spin gap: large spin gap, vanishingly small singlet gap.

Numerical results

- Exact diagonalization J₁-J₂ model:
 - Hint of phase transitions from ground state fidelity susceptibility, fidelity is $F_0(\alpha, \alpha + \delta \alpha) \equiv |\langle \psi_0(\alpha) | \psi_0(\alpha + \delta \alpha) \rangle|$

Numerical results

- Interpolating between parent Hamiltonian(λ =1) and J₁-J₂ model at J₂/J₁=0.5 (λ =0):
 - DMRG of Jiang et al'09: $J_2/J_1=0.5$ should be Neel ordered
 - No strong sign of phase transition in small size ED:

Outline

- Motivation
- Theory
- Numerical results
- Summary

Discussion: possible relevance to FeSe

- Caveat: itinerant electrons in FeSe, may change universality [Xu et al'08]; orbital degrees of freedom ignored.
- NMR did not see low energy magnetic fluctuations above Ts~90K [Buchner et al'14], it was thus argued that the nematicity is not magnetismdriven.

Discussion: possible relevance to FeSe

 Recent ARPES see momentum-dependent splitting of xz/yz orbitals, cannot be simple ferro-orbital order (xz,yz have different onsite potential) [Coldea et al'15; Ding et al'15; Zhang et al.'15]

Ding, et al. arXiv:1503.01390

Discussion: possible relevance to FeSe

Recent neutron scattering found low energy magnetic fluctuations at stripe wavevector [Jun Zhao et al'15]

Summary

- Nonmagnetic phase of spin-1 J_1 - J_2 Heisenberg model on square lattice is nematic quantum paramagnet Neel stripe A
 - According to Haldane-type argument & numerics

- Possible Landau-forbidden continuous transition to Neel
- Magnetic fluctuation may still be the driving force of nematicity in FeSe, although it has no magnetic order and no very-low-energy spin fluctuation
 - Drive FeSe to Neel order?

Thank you!