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Motivation: experimental

● Fe-based high Tc superconductors(FeSC):
[Hosono et al'08]



 03/25/15@IASTU

Motivation: experimental

● Fe-based high Tc superconductors(FeSC)
– Common structure: 

X-Fe2-X tri-layer
(X=As, P, Se, Te), 
Fe square lattice.

– Nominally Fe2+ (3d6), 
low-spin state would 
be spin-1 
with orbital degeneracy 
(in tetragonal phase)
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Motivation: experimental

● Typical FeSC materials
– Parent compounds have 

stripe AFM order,
which breaks 4-fold 
rotation symmetry

– Magnetism can be explained 
by J1-J2 and related models
[Yildirim'08 …; review Dai'15] 

LaFeAsO
Cruz et al. Nature'08
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Motivation: experimental

● Typical FeSC materials
– Tetragonal to orthorhombic (a≠b) structural transition

(breaking of 4-fold rotation C4 symmetry) 
at or slightly above AFM order temperature

Fernandes et al. Nat.Phys.'14Chu et al. Science 329, 824 (2010)
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Motivation: experimental

● Typical FeSC materials
– lattice distortion is small

(~10-3), electronic 
properties has significant 
C4 breaking: nematicity

– driving force of nematicity? 
[review Fernandes et al'14]

● orbital order: nxz≠nyz, 
[Singh'08, Kontani&Onari'12]? 

● magnetic correlation 
[Fang et al'08, Xu et al.'08]? ...

Ba(Fe,Co)As, Chu et al. Science 329,824(2010).
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Motivation: experimental

● Atypical FeSC: FeSe
– Superconducting without doping [Tc~8K]

– No magnetic order

– Has orthorhombic structural 
transition [Tc~90K]

– Pressure can induce AFM order 
[Bendele et al'12,
Terashima et al'15]

T.Terashima et al. arXiv:1502.03548
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Motivation: theoretical

● Long-standing question: nature of nonmagnetic 
phase for square J1-J2 Heisenberg model

– There is a nonmag phase between Neel and stripe AFM
[Chandra&Doucot'88]

– Nature of spin-1/2 case still under debate:
gapped spin liquid [Jiang&Yao&Balents'12]
valence bond solid(VBS) or gapless [Gong et al.'14] 
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Motivation: theoretical

● DMRG for spin-1 J1x-J1y-J2 model [Jiang et al'09]

– Nonmag phase for 0.525 < J2/J1 < 0.555
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Motivation: questions to answer

● Nature of nonmag phase 
of spin-1 square lattice 
J1-J2 Heisenberg model
A: nematic quantum paramagnet (break C4 only)

● Nature of phase transitions to magnetic orders
A: possibly Landau-forbidden continuous quantum 
phase transition to Neel

● Relevance of this nonmag phase to FeSe
A: might be driving force of nematicity in FeSe
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Theoretical treatment: argument

● Haldane's argument [Haldane'88]
– Disordering Neel order will proliferate 

monopole of Neel order parameter

– monopole: skyrmion # changing 
event in space-time, monopole charge 
is the change of skyrmion number

– skyrmion number: number of times 
the unit vector n(r) wraps around 
Bloch sphere

τ

Example of q
m
=1 monopole
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Theoretical treatment: argument

● Haldane's argument [Haldane'88,Read&Sachdev'89]
– monopole configurations contribute non-trivial Berry 

phase to the path integral, which depends on monopole 
spatial position and spin length S.

– Spin-1/2: must proliferate qm=0 mod 4  monopoles,
skyrmion #=0,1,2,3 mod 4 sectors become degenerate,  
break translation/rotation symmetry: (columnar) VBS

singlet (valence bond)
Phase factor for charge 
q

m
=1 monopoles
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Theoretical treatment: argument

● Haldane's argument applied to spin-1

– monopole Berry phase (for charge qm=1)

– Proliferation of  qm=0 mod 2 monopoles,
skyrmion number=0,1 mod 2 sectors are degenerate,
breaks C4, but not translation: nematic paramagnet.



 03/25/15@IASTU

Theoretical treatment: parent Hamiltonian

● Parent Hamiltonian of nematic quantum paramagnet 
(due to Prof. Kivelson)

– Horizontal/vertical AKLT chains are two ground states
● AKLT state [Affleck et al'87]:
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Theoretical treatment: field theory

● Background: “deconfined quantum critical point” 
for spin-1/2 square lattice model [Tanaka&Hu'05, 
Senthil et al'06]
– Landau-forbidden continuous quantum phase transition 

from Neel AFM(n) to columnar VBS[v=(vx,vy)]

– O(5) nonlinear sigma model with WZW term and 
anisotropy
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Theoretical treatment: field theory

● Field theory for possible continuous transition from 
nematic paramagnet to Neel state
– Will also be a Landau-forbidden continuous transition

● Neel AFM has C4, breaks spin rotation symmetry;
nematic paramagnet breaks C4, has spin rotation.

– View spin-1 as two ferromagnetic coupled spin-1/2

– Depending on sign of Jn, Jv, this may described 
transitions between different pairs of phases
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Theoretical treatment: field theory

● Field theory for possible continuous transition from 
nematic paramagnet to Neel state

– With Jn < 0, Jv > 0, low energy configs are
n(1)=n(2)=n, v(1)=-v(2)=v, in terms of Φ=(n,v), action has 
WZW with doubled coefficient

– v is not observable[antisym. w.r.t. exchange of (1)(2)]
observable v'=(v1,v2), are bilinears of v,
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Theoretical treatment: field theory

● Field theory for possible continuous transition from 
nematic paramagnet to Neel state
– In terms of Φ'=(n,v'), the action has WZW term similar 

to the spin-1/2 case

– v'1 is the nematic order parameter: 
momentum=0, changes sign under C4 (vx →vy → -vx),

– If anisotropy disfavors v'2, theory reduces to O(3)*Z2 
NLσM with Θ(=π)-term of 4-component Ω=(n,v'1), 
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Numerical results

● Exact diagonalization of J1-J2 model:

– Hint of nematic paramagnet from singlet and spin gap:
large spin gap, vanishingly small singlet gap.
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Numerical results

● Exact diagonalization J1-J2 model:

– Hint of phase transitions from ground state fidelity 
susceptibility, fidelity is 
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Numerical results

● Interpolating between parent Hamiltonian(λ=1) and 
J1-J2 model at J2/J1=0.5 (λ=0):

– DMRG of Jiang et al'09: J2/J1=0.5 should be Neel ordered

– No strong sign of phase transition in small size ED:
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Discussion: possible relevance to FeSe

● Caveat: itinerant electrons in FeSe, 
may change universality [Xu et al'08];
orbital degrees of freedom ignored.

● NMR did not see low energy 
magnetic fluctuations above 
Ts~90K [Buchner et al'14],
it was thus argued that the 
nematicity is not magnetism-
driven.



 03/25/15@IASTU

Discussion: possible relevance to FeSe

● Recent ARPES see momentum-dependent splitting 
of xz/yz orbitals, cannot be simple ferro-orbital 
order (xz,yz have different onsite potential)
[Coldea et al'15; Ding et al'15; Zhang et al.'15]

Ding, et al. arXiv:1503.01390
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Discussion: possible relevance to FeSe

● Recent neutron scattering found low energy 
magnetic fluctuations at stripe wavevector
[Jun Zhao et al'15]
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Summary

● Nonmagnetic phase of spin-1 J1-J2 Heisenberg 
model on square lattice is nematic quantum 
paramagnet
– According to Haldane-type

argument & numerics

– Possible Landau-forbidden continuous transition to Neel

● Magnetic fluctuation may still be the driving force 
of nematicity in FeSe, although it has no magnetic 
order and no very-low-energy spin fluctuation
– Drive FeSe to Neel order?
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Thank you!
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