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Scientific Program 

July 4 

9:00-9:15 Registration 
9:15-9:30 Opening  

9:30-10:30 Eun-Ah Kim (Cornell) 
Learning Quantum Emergence with AI 

10:30-11:00 Break 
11:00-12:00 Giuseppe Carleo (Flatiron Institute) 

Neural-Network Quantum States:  
from Condensed Matter to Quantum Computing 

  
2:00-3:00 Kieron Burke (UC Irvine) 

Creating New Density Functionals with Machine-learning 
3:00-4:00 Lexing Ying (Stanford) 

Solving PDEs with Deep Learning 
4:00-4:30 Break 
4:30-5:30 Gábor Csányi (Cambridge) 

A New Dawn of Interatomic Potentials 

 

July 5 

9:30-10:30 Hans J. Briegel (Innsbruck) 
Machine learning for the autonomous design 

of quantum physics experiments 
10:30-11:00 Break 
11:00-12:00 Evert van Nieuwenburg (Caltech) 

How Confused is My Network? 
  

2:00-3:00 Matthias Rupp (FHI Berlin) 
Machine Learning for Interpolation of Electronic Structure Calculations 

3:00-4:00 José Miguel Hernández-Lobato (Cambridge) 
Advances in Machine Learning for Molecules 

4:00-4:30 Break 
4:30-5:30 Lei Wang (Institute of Physics, CAS) 

Neural Network Renormalization Group 
5:30-6:30 Poster Session 
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July 6 

9:30-10:30 Fakher F. Assaad (Wuerzburg) 
Monte Carlo Simulations of Quantum Matter 

10:30-11:00 Break 
11:00-12:00 Huitao Shen (MIT) 

Boosting Quantum Monte Carlo Simulations with Machine Learning 

  
2:00-3:00 Jim Halverson (Northeastern) 

Reinforcement Learning and the String Landscape 
3:00-4:00 Daniel Roberts (Facebook AI Research) 

Why is AI hard and Physics Simple? 
4:00-4:30 Break 
4:30-5:30 Yizhuang You (UCSD) 

Machine Learning Holography 

5:30-6:30 Discussion and Concluding 
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Titles and Abstract of the Talks 

 

July 04, Wednesday 

 
 

 

Learning Quantum Emergence with AI  

 

Eun-Ah Kim, Cornell 

 
I will discuss 1) using machine learning to learn from big data on quantum materials (STM), 2) 
interpreting what machine learned in obtaining a phase diagram from simulation of topological 
quantum phase transition. 
 

 

Neural-Network Quantum States:  

from Condensed Matter to Quantum Computing 

 

Giuseppe Carleo, Flatiron Institute 

 

Machine-learning-based approaches, routinely adopted in cutting-edge industrial applications, are 

being increasingly adopted to study fundamental problems in science. Very recently, their 

effectiveness has been demonstrated also for many-body physics. 

 

In this seminar I will present recent applications to the quantum realm. First, I will discuss how a 

systematic machine learning of the many-body wave-function can be realized. This goal has been 

achieved in [1], introducing a variational representation of quantum states based on artificial neural 

networks. This representation can be used to study both ground-state and unitary dynamics, with 

controlled accuracy. I will then show how a similar representation can be used for applications directly 

relevant to ultra-cold atoms and quantum computing. In this context, I will discuss both Quantum State 
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Tomography of highly-entangled states [2], and a novel approach for the classical simulation of large 

quantum circuits [3]. 

 

[1] Carleo, and Troyer  —  Science 355, 602 (2017). 

[2] Torlai, Mazzola, Carrasquilla, Troyer, Melko, and Carleo  —  Nature Physics 14, 447-450 (2018).  

[3] Jonsson, and Carleo — In preparation (2018)  

 

 

 

Creating New Density Functionals with Machine-learning 

 

Kieron Burke, UC Irvine 

This talk is designed to be accessible to folks with a wide variety of backgrounds.  In the first half, I 
will discuss the growing interest in data-enabled chemistry, including a special issue of the journal of 
chemical physics on the topic[2]. In the second part, I will briefly review density functional theory and 
why it is important to many branches of modern physical science[3].  And in the third half, I will show 
how, in collaboration with computer scientists at TU Berlin, we have used a specific type of machine-
learning, called kernel ridge regression, to find more accurate and powerful approximate density 
functionals than any made by humans[1].  Lastly,  I will describe work in collaboration with Steve 
White, using DMRG to train a machine-learned functional to do strongly correlated systems. 
 
References:  
 
1. By-passing the Kohn-Sham equations with machine learning Felix Brockherde, Leslie Vogt, Li Li, 
Mark E Tuckerman, Kieron Burke, Klaus-Robert Muller, Nature Communications 8, 872 (2017). 
 
2. Special Topic in Data-enabled Chemistry, https://aip.scitation.org/toc/jcp/148/24 
 
3. DFT in a nutshell Kieron Burke, Lucas O. Wagner, Int. J. Quant. Chem. 113, 96-101 (2013) 
 

 

Solving PDEs with Deep Learning 

 

Lexing Ying, Stanford 
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In this talk, I will discuss some recent work on using deep neutral networks in solving high 

dimensional PDE problems. Examples include homogenization, density functional theory, and 

molecular dynamics.  

 

 

A New Dawn of Interatomic Potentials  

 

Gábor Csányi, Cambridge 

 

I will show our recent work on data driven interatomic potentials. The goal of this research programme 

is to construct analytic functions that accurately reproduce the Born-Oppenheimer potential energy 

surface of condensed phase materials. Much progress has been made by an increasing number of 

groups over the last few years, mostly by borrowing approaches and attitudes from the field of 

machine learning - even though the mathematical context is rather different. Accurate potentials have 

been published by us for carbon, silicon, boron, tungsten, iron, that cover a wide range of atomic 

environments, and for many other materials by other groups. These potentials are beginning to be used 

in materials science applications.    

 

Recent References:    

 

1) Bartók, AP and De, S and Poelking, C and Bernstein, N and Kermode, JR and Csányi, G and 

Ceriotti, M (2017) Machine learning unifies the modeling of materials and molecules. Sci Adv, 3. 

e1701816   

 

2) Deringer, VL and Csányi, G (2017) Machine learning based interatomic potential for amorphous 

carbon. Physical Review B, 95. ISSN 2469-9950   

 

3) Dragoni, D and Daff, TD and Csanyi, G and Marzari, N (2018) Achieving DFT accuracy with a 

machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron. 

Physical Review Materials, 2. ISSN 2475-9953   

 

4) Deringer, VL and Pickard, CJ and Csányi, G (2018) Data-Driven Learning of Total and Local 

Energies in Elemental Boron. Phys Rev Lett, 120. 156001   

 

5) Caro, MA and Deringer, VL and Koskinen, J and Laurila, T and Csányi, G (2018) Growth 
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Mechanism and Origin of High sp^{3} Content in Tetrahedral Amorphous Carbon. Phys Rev Lett, 

120. 166101   

 

 

July 05, Wednesday 
 

 

Machine learning for the autonomous design  

of quantum physics experiments 

 

Hans J. Briegel, Innsbruck 

 

In this talk, I will discuss the use of artificial learning agents in quantum physics laboratories, as well 

as the use of quantum information in machine learning and artificial-agent design. I will focus on the 

model of projective simulation (PS) [1], which employs random-walk processes in the agent's memory 

for learning and decision-making. Projective simulation has been applied, e.g., in autonomous robotic 

playing [2] and in the design of quantum experiments [3]. The PS model can be naturally quantized, 

allowing for a quantum speed-up of the agent's decision process [4]. I will review some recent results 

of our research on (classical and) quantum-enhanced learning agents [5], including applications in 

quantum optical experiments and quantum foundations. 

 

Literature:  

1) H. J. Briegel and G. De las Cuevas (2012) Projective simulation for artificial intelligence, Scientific 

Reports 2, 400. 

2) S. Hangl, E. Ugur, S. Szedmak, and J. Piater (2016) Robotic playing for hierarchical complex skill 

learning, Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference, pp. 2799 – 

2804. 

3) A. Melnikov, H. Poulsen Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H. J. Briegel 

(2018) Active learning machine learns to create new quantum experiments, PNAS 115, 1221.  

4) G. Paparo, V. Dunjko, A. Makmal, M. A. Martin-Delgado, and H. J. Briegel (2014) Quantum 

speed-up for active learning agents, Phys. Rev. X 4, 031002. 

5) V. Dunjko, J. M. Taylor, and H. J. Briegel  (2016) Quantum-enhanced machine learning, Phys. Rev. 

Lett. 117, 130501. 
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How Confused is My Network? 

 

Evert van Nieuwenburg, Caltech 

 
 In this contribution I will discuss the 'learning by confusion' method, and its extension to 
'discriminative cooperative networks'. Both of these methods rely on the ability to order physics data 
along one or multiple tuning parameters; a feature not always possible in non-physics data-sets. In the 
second part, I will consider the use of recurrent neural networks to construct a phase diagram from 
dynamics of observables. 
 

 

Machine Learning for Interpolation of Electronic Structure Calculations 

 

Matthias Rupp, FHI Berlin 

 

Systematic computational study, discovery and design of novel molecules and materials requires 

accurate simulations on the atomic scale. While numerical approximations to the electronic structure 

problem enable this in principle, their applicability is severely limited by their high computational cost. 

In high-throughput settings, machine learning can reduce these costs significantly by interpolating 

between reference calculations. Effectively, the problem of solving a complex equation such as the 

electronic Schrödinger equation for many related inputs is mapped onto a nonlinear statistical 

regression problem. I will provide an introduction to kernel-based machine learning approaches for the 

accurate and rapid interpolation of electronic structure calculations. For such approaches, a numerical 

representation of atomistic systems that supports interpolation is crucial. Using our recently introduced 

many-body tensor representation, I will present empirical evidence for accurate predictions of ab initio 

formation enthalpies on diverse datasets of molecules and crystal structures. 

 

 

Advances in Machine Learning for Molecules 

 

José Miguel Hernández-Lobato, Cambridge 
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In this talk, I will describe two applications of machine learning to molecule data. First, I will focus on 

the problem of efficiently searching chemical space for new molecules with optimal properties. I will 

describe how to use recent advances in deep generative models to obtain continuous representations of 

molecules which allow us to automatically generate novel chemical structures by performing simple 

operations in a latent space. These methods can then be connected with Bayesian optimization 

techniques to accelerate the search for new molecules with optimal properties. In the second part of the 

talk, I will focus on the problem of modeling chemical reactions by predicting electron paths. 

Chemical reactions can be described as the stepwise redistribution of electrons in molecules. As such, 

reactions are often depicted using “arrow-pushing” diagrams which show this movement as a sequence 

of arrows. I will describe an electron path prediction model to learn these sequences directly from data 

and show that the model recovers a basic knowledge of chemistry without being explicitly trained to 

do so. 

 

 

Neural Network Renormalization Group 

 

Lei Wang, Institute of Physics, CAS 

 

Abstract: I will present a variational renormalization group (RG) approach using a deep generative 

model based on normalizing flows. The model performs a hierarchical of change-of-variables 

transformations from the physical space to a latent space with reduced mutual information. 

Conversely, it directly generates statistically independent physical configurations as a form of inverse 

RG flow. The generative model has an exact and tractable likelihood, which allows unbiased training 

and direct access to the renormalized energy function of the latent variables. To train the neural 

network, we employ the probability density distillation of the bare energy function, where the training 

loss provides a variational upper bound of the physical free energy. We demonstrate practical usage of 

the approach by identifying mutually independent collective variables of the Ising model and 

performing accelerated hybrid Monte Carlo sampling in the latent space. I will comment on the 

connection of the present approach to DeepMind's WaveNet, wavelet formulation of RG, and the 

modern pursuit of information preserving RG.  

 

Reference: arXiv:1802.02840  

 

July 06, Wednesday 
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Monte Carlo Simulations of Quantum Matter 

 

Fakher F. Assaad, Wuerzburg 

 

The auxiliary field quantum Monte Carlo approach is a method of choice to unravel emergent 

collective phenomena in a set of many electron systems ranging from the solid state to particle 

physics.  In fact, recent progress in our understanding of the class of models that can be simulated 

without encountering the negative sign problem renders this approach very powerful. There are 

however many challenges,  such as automatic generation of phase diagrams and sampling strategies. In 

this talk,  I will review the approach and place emphasis on how concepts of machine learning can 

enhance the efficiency of the algorithm.  

 

 

Boosting Quantum Monte Carlo Simulations with Machine Learning 

 

Huitao Shen, MIT 

 

Quantum Monte Carlo is a large family of powerful numerical tools to understand the quantum many-

body systems at zero temperature and finite temperatures. It plays an important role in condensed 

matter physics and quantum chemistry. In this talk, we show how to incorporate various machine 

learning techniques to improve the performance of these quantum Monte Carlo algorithms. 

 

 

Reinforcement Learning and the String Landscape 

 

Jim Halverson, Northeastern 

 

String compactifications to four dimensions give rise to a large ensemble of metastable ground states 

with differing physical excitations that are determined in part by the topology and geometry of extra 

dimensions. This is the landscape of string theory. Recently, numerous techniques in data science have 
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been used to study physics that arises in the landscape. In this talk I will focus on the application of 

reinforcement learning to a number of problems, including to the problem of finding small 

cosmological constants. 

 

Why is AI hard and Physics Simple? 

 

Daniel Roberts, Facebook AI Research 

 
We discuss why AI is hard and why physics is simple. In particular, we discuss how physical intuition 
and the approach of high-energy theoretical physics can be brought to bear on the field of artificial 
intelligence, and specifically machine learning. To that end, we suggest that the underlying project of 
machine learning generalizes the project of physics. 
 
To make this point concrete, we focus on the dynamics of gradient descent. First, we interpret gradient 
descent in its continuum limit by giving an action formulation. Next, we discuss a toy model of 
gradient descent in high-dimensional spaces, and we argue that the gradient dynamically converges to 
a very small subspace after a short period of training. A simple argument then implies that gradient 
descent happens mostly in this subspace. We show experimental results indicating that this effect 
occurs realistically in a wide variety of large-scale deep learning scenarios, and we comment on 
possible implications for optimization and learning. 

 

 

Machine Learning Holography 

 

Yi-Zhuang You,  UCSD 

 

There is a profound relation between renormalization group (RG), holographic duality and deep 

learning. An information preserving RG is equivalent to a generative model, and the correspondence 

between the features in the dataset and the generative model that captures these features can be 

considered as a holographic duality. As a concrete example, we focus on the entanglement features of a 

quantum many-body state, and show that how holographic geometry can emerge as a result of deep 

learning the entanglement features. 
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