Observation of spinon Anderson localization in a spin-1/2 antiferromagnetic Heisenberg chain

Shiyan Li

Fudan University

April 2013, IAS, Tsinghua

Outline:

1. Ultra-low-temperature heat transport measurement
2. Some examples of heat transport by magnetic excitations
3. Anderson localization of spinons in a spin-1/2 antiferromagntic Heisenberg chain
4. Unveiling the quantum critical point of an Ising chain in a transverse field
5. Summary

1. Ultra-Iow-temperature heat transport measurement

${ }^{3} \mathrm{He}-{ }^{4} \mathrm{He}$ dilution fridge
$\mathrm{T} \rightarrow 7 \mathrm{mK} ; \mathrm{H} \rightarrow 17 \mathrm{~T}$

$$
\kappa=\alpha \frac{\dot{\mathrm{Q}}}{\Delta \mathrm{~T}}
$$

Heat transport: A tool to probe low-lying quasiparticles

$$
\begin{gathered}
\kappa=\kappa_{\text {electrons }}+\kappa_{\text {phonons }}+\kappa_{\text {magnon }}+\kappa_{\text {spinons }} \ldots \\
\kappa=1 / 3 \mathrm{C} \mathrm{~V} \mathrm{l}
\end{gathered}
$$

FERMIONS (Electrons)

$$
\kappa \propto \mathrm{C}_{\mathrm{e}} \propto \mathrm{~T}
$$

BOSONS (Phonons)

$$
\kappa \propto \mathrm{C}_{\mathrm{ph}} \propto \mathrm{~T}^{3}
$$

$$
\kappa / \mathrm{T}=\mathrm{A}+\mathrm{BT}^{2}
$$

2. Some examples of heat transport by magnetic excitations

Example 1: AF magnon heat transport in $\mathrm{Nd}_{2} \mathrm{CuO}_{4}$

Spin-flop transition in $\mathrm{H} \perp \mathrm{c}$

Switch on acoustic magnons

First observation of $\kappa \sim \top^{3} \mathrm{AF}$ magnon heat transport

Example 2: FM magnon heat transport in YIG

Transmission of electrical signals by spin-wave interconversion in a magnetic insulator

Y. Kajiwara ${ }^{1,2}$, K. Harii ${ }^{1}$, S. Takahashi ${ }^{1,3}$, J. Ohe ${ }^{1,3}$, K. Uchida ${ }^{1}$, M. Mizuguchi ${ }^{1}$, H. Umezawa ${ }^{5}$, H. Kawai ${ }^{5}$, K. Ando ${ }^{1,2}$, K. Takanashi ${ }^{1}$, S. Maekawa ${ }^{1,3}$ \& E. Saitoh ${ }^{1,2,4}$

$$
\mathrm{Y}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}(\mathrm{YIG})
$$

typical ferrimagnet
Y. Kajiwara et al., Nature 464, 262 (2010)

Specific heat:
 FM magnon in YIG single crystal

At not very low $T: E=D k^{2}$

$$
\begin{aligned}
C_{m}(T) & =\frac{15 \zeta(5 / 2) k_{B}^{2.5} T^{1.5}}{32 \pi^{1.5} D^{1.5}} \\
\kappa_{m}(T) & =\frac{\zeta(3) k_{B}^{3} L T^{2}}{\pi^{2} \hbar D}
\end{aligned}
$$

$0.77 \mathrm{~K}<\mathrm{T}<2.5 \mathrm{~K}: \mathrm{C}=6.7 \mathrm{~T}^{1.5}+2.3 \mathrm{~T}^{3}$ $\mathrm{T}<0.77 \mathrm{~K}$: dipole-dipole correction
B. Y. Pan, S. Y. Li et al., arXiv:1302.6739

Thermal conductivity: FM magnon in YIG single crystal

Magnon gap in field: $\Delta=g \mu_{B} H$

$$
\kappa_{\mathrm{m}}=\kappa(0 \mathrm{~T})-\kappa(4 \mathrm{~T})
$$

If no corrections: $\kappa_{m} \sim T^{2}$
Our result suggests the corrections of defects and dipole-dipole interaction are needed.
B. Y. Pan, S. Y. Li et al., arXiv:1302.6739

Example 3: Spinon heat transport in spin liquids

Spin liquids in frustrated magnets
 Leon Balents ${ }^{1}$
 New magnetic ground state!

Table 1| Some experimental materials studied in the search for QSLs

Material	Lattice	S	$\Theta_{\mathrm{cw}}(\mathrm{K})$	R^{*}	Status or explanation
κ-(BEDT-TTF) $\mathrm{Cu}_{2}(\mathrm{CN})_{3}$	Triangular \dagger	$1 / 2$	$-375 \ddagger$	1.8	Possible QSL
$\mathrm{EtMe}_{3} \mathrm{Sb}\left[\mathrm{Pd}(\text { dmit })_{2}\right]_{2}$	Triangular \dagger	$1 / 2$	$-(375-325) \ddagger$	$?$	Possible QSL
$\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{7}(\mathrm{OH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (volborthite)	Kagomé \dagger	$1 / 2$	-115	6	Magnetic
$\mathrm{ZnCu}_{3}(\mathrm{OH})_{6} \mathrm{Cl}_{2}$ (herbertsmithite)	Kagomé	$1 / 2$	-241	$?$	Possible QSL
$\mathrm{BaCu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}(\mathrm{OH})_{2}$ (vesignieite)	Kagomé \dagger	$1 / 2$	-77	4	Possible QSL
$\mathrm{Na}_{4} \mathrm{Ir}_{3} \mathrm{O}_{8}$	Hyperkagomé	$1 / 2$	-650	70	Possible QSL
$\mathrm{Cs}_{2} \mathrm{CuCl}_{4}$	Triangular \dagger	$1 / 2$	-4	0	Dimensional reduction
$\mathrm{FeSc}_{2} \mathrm{~S}_{4}$	Diamond	2	-45	230	Quantum criticality

Quantum-spin-liquid states in the

 two-dimensional kagome antiferromagnets $\mathrm{Zn}_{x} \mathrm{Cu}_{4-x}(\mathrm{OD})_{6} \mathrm{Cl}_{2}$

Neutron scattering

Magnetic and non-magnetic phases of a quantum spin liquid

$\mu \mathrm{SR}, \mathrm{NMR}$

 κ-(BEDT-TTF) $\mathrm{Cu}_{2}(\mathrm{CN})_{3}$

Spinon excitation in a 2D QSL detected by heat transport

Sung-Sik Lee, Patrick Lee and T. Senthil, PRL 98, 067006 (2007)
Prediction: $\kappa \sim \mathrm{T}$, like electrons in a metal

Heat transport:
 A tool to probe spinons

No κ_{0} / T : are spinons gapped?
M. Yamashita et al., Nature Physics 5, 44 (2008)

Heat transport:
 A tool to probe spinons

Significant κ_{0} / T : evidence for spinons in a spin-liquid candidate.
M. Yamashita et al., Science 328, 1246 (2010)

3, Anderson localization of spinons in a spin- $1 / 2$ antiferromagntic Heisenberg chain

The model of spin-1/2 AF Heisenberg chain can be exactly solved, and the excitations are called spinon.

SrCuO_{2} :

Spin-charge seperation by ARPES

B. J. Kim et al., Nature Phys. 2, 397 (2006)

N. Hlubek et al., Phys. Rev. B 81, 020405(R) (2010)

T. Y. Guan, S. Y. Li et al., unpublished

Cu Benzoate: an ideal spin-1/2 Heisenberg chain

$\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}: ~ \mathrm{~J} \sim 18.6 \mathrm{~K}, \mathrm{~J}$ < 50 mK no order down to 50 mK

Cu Benzoate: an ideal spin-1/2 Heisenberg chain

D. C. Dender et al., PRL 79, 1750 (1997)

Field-Induced Gap in $S=1 / 2$ Antiferromagnetic Chains
Masaki Oshikawa ${ }^{1}$ and Ian Affleck ${ }^{1,2}$

Field-induced gap in Cu benzoate and other $S=\frac{1}{2}$ antiferromagnetic chains Ian Affleck

Sine-Gordon low-energy effective theory for copper benzoate
Fabian H. L. Eßler

Effects of the Dzyaloshinskii-Moriya Interaction on Low-Energy Magnetic Excitations in Copper Benzoate

J. Z. Zhao, ${ }^{1}$ X. Q. Wang, ${ }^{1,2,3}$ T. Xiang, ${ }^{1,2}$ Z. B. Su, ${ }^{1,2}$ and L. Yu ${ }^{1,2}$

Cu Benzoate:

spinon specific heat Cs $\sim \mathbf{T}$

D. C. Dender et al., PRL 79, 1750 (1997)

B. Y. Pan, S. Y. Li et al., arXiv:1208.3803

Cu Benzoate:

thermal conductivity

$\kappa=\mathrm{Cvl}$
$\mathrm{H}=0 \mathrm{~T}$
$\kappa_{\mathrm{s}} \sim \mathrm{C}_{\mathrm{s}} \sim \mathrm{T}$
$\mathrm{H}=7 \mathrm{~T}$
$\kappa_{\text {mag }} \sim \mathrm{C}_{\text {mag }}$
B. Y. Pan, S. Y. Li et al., arXiv:1208.3803

Cu Benzoate:
 spinon thermal conductivity

B. Y. Pan, S. Y. Li et al., arXiv:1208.3803

Anderson localization:

a fundermental physics of waves

Absence of Diffusion in Certain Random Lattices

P. W. Anderson
Bell Telephone Laboratories, Murray Hill, New Jersey
(Received October 10, 1957)

Anderson localization of waves in disordered systems originates from interference in multiple elastic scattering.

Anderson localization:
 Light

Localization of light in a disordered medium

Nature 390, 671 (1997)

Statistical signatures of photon localization

Nature 404, 850 (2000)

Transport and Anderson localization in disordered

 two-dimensional photonic latticesNature 446, 52 (2007)

Anderson localization:

Ultrasound

LETTERS

Localization of ultrasound in a
 three-dimensional elastic network

HEFEI HU1*, A. STRYBULEVYCH¹, J. H. PAGE ${ }^{1 \dagger}$, S. E. SKIPETROV² AND B. A. VAN TIGGELEN²

${ }^{1}$ Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
${ }^{2}$ Université Joseph Fourier, Laboratoire de Physique et Modélisation des Milieux Condensés, CNRS, 25 Rue des Martyrs, BP 166, 38042 Grenoble, France
*Present address: Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA
${ }^{\dagger}$ e-mail: jhpage@cc.umanitoba.ca

Direct observation of Anderson localization of matter

 waves in a controlled disorderNature 453, 891 (2008)
Anderson localization of a non-interacting
Bose-Einstein condensate
Nature 453, 895 (2008)

Three-Dimensional Anderson

Localization of Ultracold Matter

Anderson localization:

Spinon

First observation of Anderson localization of magnetic excitations. 1D system is the best place for Anderson localization to occur.
B. Y. Pan, S. Y. Li et al., arXiv:1208.3803

Spin liquid:

Spinons

$E t M e_{3} \mathrm{Sb}\left[\mathrm{Pd}(\mathrm{dmit})_{2}\right]_{2}: \quad$ dmit-131

M. Yamashita et al., Science 328, 1246 (2010) S. Yamashita et al., Nat. Commun. 2, 275 (2011)

Spin liquid:

Spinons

$$
\kappa-(\mathrm{BEDT}-\mathrm{TTF})_{2} \mathrm{Cu}_{2}(\mathrm{CN})_{3}
$$

No $\kappa_{0} / \mathrm{T}: \quad$ Gapped? Localized?
M. Yamashita et al., Nature Physics 5, 44 (2008)
S. Yamashita et al., Nature Physics 4, 459 (2008)

4. Unveiling the quantum critical point of an Ising chain in a transverse field

Quantum Phase Transition: big issue in condensed matter physics

Heavy-fermion
systems

QPT occurs at zero temperature, tuned by nonthermal parameters: chemical doping, magnetic field, pressure ...

Gegenwart, Si, \& Steglich, Nature Phys. 4, 186 (2008)

Quantum Phase Transition: big issue in condensed matter physics

Cuprates
D. M. Broun, Nature Phys. 4, 170 (2008)

Quantum Phase Transition: big issue in condensed matter physics

Iron pnictides

Paglione \& Greene, Nature Phys. 6, 645 (2010)

TFIC: a relatively simple model undergoing QPT

Hamitonian:

$$
H=-J \sum_{i}\left(\hat{\sigma}_{i}^{z} \hat{\sigma}_{i+1}^{z}-h \hat{\sigma}_{i}^{x}\right)
$$

The Ising chain in a transverse field (TFIC): one of the most-studied model in condensed matter physics.

By using the Jordan-Wigner transfermation, the spins can be transformed to noninteracting spinless fermions, and this model can be exactly solved.

The minimum single-particle excitation energy, or the energy gap: $\Delta=2 \mathrm{~J}|1-h|$ Quantum critical point: $h=1, \Delta=0$

$\mathrm{CoNb}_{2} \mathrm{O}_{6}$: a rare experimental realization of the TFIC model

Strong easy-axis anisotropy due to CFEs: easy-axis in ac plane, $\pm 31^{\circ}$ to c-axis Intrachain coupling $\mathrm{J}>0$: favors FM ordering along c-axis Interchain coupling J1, $\mathrm{J} 2<0, \mathrm{~J} 1, \mathrm{~J} 2 \ll \mathrm{~J}$: favors AF ordering between chains

$\mathrm{CoNb}_{2} \mathrm{O}_{6}:$ neutron scattering experiments in a transverse field

Elastic scattering in $\mathrm{H} \| \mathrm{b}$: \quad QPT at $\mathrm{H}=5.5 \mathrm{~T}$.
R. Coldea et al., Science 327, 177 (2010)

$\mathrm{CoNb}_{2} \mathrm{O}_{6}$:
 neutron experiments in zero field

Inelastic scattering in $\mathrm{H}=0$ and at 40 mK : a few bound states $m_{1}, m_{2}, m_{3}, \ldots$ (domain-wall quasiparticles)

Our idea: Probe the low-lying magnetic excitation in $\mathrm{CoNb}_{2} \mathrm{O}_{6}$

In a quasi-1D system such as $\mathrm{CoNb}_{2} \mathrm{O}_{6}$ with finite interchain couplings, a complete gap softening is only expected (23) at the location of the 3D magnetic long-range order Bragg peaks, which occur at a finite interchain wave vector $q \perp$ that minimizes the Fourier transform of the antiferromagnetic interchain couplings; the measurements shown in Fig. 4 C were in a scattering plane where no magnetic Bragg peaks occur, so an incomplete gap softening would be expected here, as indeed was observed.

$$
\text { QCP: } \quad \Delta=0
$$

Technical difficulties for neutron scattering to probe the QCP with $\Delta=0$.

Heat transport should be able to detect the
 low-energy quasiparticals near the QCP.

$\mathrm{CoNb}_{2} \mathrm{O}_{6}$:

 Single crystal growth

Floating-zone optical furnace

$\mathrm{CoNb}_{2} \mathrm{O}_{6}$:
 Magnetizations of our sample

The interchain couplings: two 3D transitions

W. Scharf et al., JMMM 13, 121 (1979)
$\mathrm{T}_{\mathrm{N} 1}=2.95 \mathrm{~K}$: incommensurate SDW transition
$\mathrm{T}_{\mathrm{N} 2}=1.97 \mathrm{~K}:$ commensurate AF transition

$\mathrm{CoNb}_{2} \mathrm{O}_{6}$:

$\kappa(H) / T$ in transverse fields $\mathbf{H} \| \mathbf{b}$

1) No significant positive contribution to k / T by magnetic excitations, likely due to low J . The suppression of κ / T is due to the scattering of phonons by these magnetic excitations. 2) At the left of QCP, there are some gapless excitations (AF magnons?).
2) At the QCP, some gapless excitations strongly scatter phonons.
3) At the right of QCP, the gap develops with increasing magnetic field.

Y. F. Dai, S. Y. Li et al., unpublished

Summary

Low-T thermal conductivity and specific heat are nice tools to probe low-lying magnetic excitations in quantum magnets:

1, AFM magnons in 3D $\mathrm{Nd}_{2} \mathrm{CuO}_{4}: \kappa_{m} \sim \mathrm{~T}^{3}$
2, FM magnons in 3D YIG: $C_{m} \sim T^{1.5}+$ correction; $\kappa_{m} \sim T^{2}+$ corrections
3, Spinons is 2D spin liquid: $C_{s} \sim T ; \kappa_{s} \sim T$
4, Spinons in 1D spin-1/2 Heisenberg chain Cu Benzoate: $\mathrm{C}_{\mathrm{s}} \sim \mathrm{T}$ down to $50 \mathrm{mK}, \kappa_{\mathrm{s}} \sim \mathrm{T}$ down to 300 mK , observing Anderson localization of spinons at lower temperature.

5, Quasi-1D Ising chain $\mathrm{CoNb}_{2} \mathrm{O}_{6}$ in a transverse field: the magnetic excitations strongly scatter phonons, which unveils the QCP.

