# Classification of topological insulators using Clifford algebras

#### <mark>理</mark>化学<mark>研</mark>究所

### Akira Furusaki 古崎 昭





#### MOU between Tsinghua Univ. and RIKEN



Prof. Q.-k. Xue

A picture from the signing ceremony on Nov. 13, 2013

RIKEN Center for Emergent Matter Science Director: Yoshinori Tokura



## Plan of this talk

- Introduction
  - Some examples of topological insulators/superconductors
- Table of topological insulators and superconductors
  - 10 Altland-Zirnbauer symmetry classes
  - Time-reversal, particle-hole, and chiral symmetries
- Derivation of the periodic table
  - Dirac Hamiltonian
  - Clifford algebras

**Collaborators:** 

Shinsei Ryu (U Illinois at Urbana-Champaign) Anderas Schnyder (Max Planck Inst. Stuttgart) Andreas Ludwig (UC Santa Barbara)

Schnyder, Ryu, AF, and Ludwig, Phys. Rev. B **78**, 195125 (2008) AIP Conf. Proc. **1134**, 10 (2009) = arXiv:0905.2029 Ryu, Schnyder, AF, and Ludwig, New J. Phys. **12**, 065010 (2010)

#### Takahiro Morimoto (RIKEN)

Morimoto & AF, Phys. Rev. B 88, 125129 (2013); arXiv:1310.5862; a paper in preparation

## Topological insulators

in the broad sense

• band insulators

- free fermions (ignore e-e int.)
- characterized by a topological number (Z or Z<sub>2</sub>)
- gapless excitations at boundaries stable

topologciat insulator (vacuum)



topological numbers (e.g., winding number)

Band structures are topologically equivalent, if they can be continuously deformed into one another without closing the energy gap.

Topological numbers are not changed by continuous deformation.

(discrete number)

## Topological (band) insulators

in the broader sense

band insulators

- free fermions (ignore e-e int.)
- characterized by a topological number (Z or Z<sub>2</sub>)
- gapless excitations at boundaries stable

topologcial insulator (vacuum)

Examples: integer quantum Hall effect,

time reversal  $\rightarrow$  quantum spin Hall insulator, 3D Z<sub>2</sub> topological insulator, .... symmetry 2D 3D



**TKNN number** (Thouless-Kohmoto-Nightingale-den Nijs)  $\sigma_{xy} = -\frac{e^2}{h}C$  **TKNN (1982); Kohmoto (1985)** 

1<sup>st</sup> Chern number

integer valued

 $C = \frac{1}{2\pi i} \int d^{2}k \ \vec{\nabla}_{k} \times \vec{A}(k_{x}, k_{y}) = \text{number of edge modes crossing } \mathbf{E}_{\mathsf{F}}$ bulk-edge correspondence  $\vec{A}(k_{x}, k_{y}) = \langle \vec{k} | \vec{\nabla}_{k} | \vec{k} \rangle \quad \text{Berry connection}$  $\vec{\nabla}_{k} = (\partial_{k_{x}}, \partial_{k_{y}})$ 

۲m

## 2D Quantum spin Hall effect (2D Z<sub>2</sub> TPI)

Kane & Mele (2005, 2006); Bernevig & Zhang (2006)

- time-reversal invariant band insulator
- spin-orbit interaction
- gapless helical edge mode (Kramers' pair)



S<sup>z</sup> is not conserved in general.

Topological index:  $Z \implies Z_2$ 

## 3 dimensional Z<sub>2</sub> Topological insulator

Band insulator

Z<sub>2</sub> topologically nontrivial

• Metallic surface: massless Dirac fermions



an odd number of Dirac cones/surface

Ky Kx EF

Theoretical Predictions made by: Fu, Kane, & Mele (2007) Moore & Balents (2007) Roy (2007)

## Topological superconductors

- BCS superconductors with a fully gapped Fermi surface
- characterized by a topological number
- gapless excitations at boundaries (Dirac or Majorana) stable



non-topological (vacuum)

Examples: p+ip superconductor, <sup>3</sup>He, ...

particle-hole symmetry (BdG Hamiltonian)

## 2D p+ip superconductor <sup>3</sup>He-A thin film, Sr<sub>2</sub>RuO<sub>4</sub>

- (p<sub>x</sub>+ip<sub>y</sub>)-wave Cooper pairing
- Hamiltonian Nambu-spinor  $\begin{pmatrix} c_{\vec{p}} \\ c_{\vec{p}}^{\dagger} \end{pmatrix}$  (spinless fermions)  $H_{\vec{p}} = \begin{pmatrix} \frac{p^2}{2m} - \mu & \frac{\Delta}{p_F} (p_x + ip_y) \\ \frac{\Delta}{p_F} (p_x - ip_y) & \mu - \frac{p^2}{2m} \end{pmatrix} = \vec{d} (\vec{p}) \cdot \vec{\sigma} \qquad \hat{d} = \vec{d} / |\vec{d}| \qquad (p_x, p_y) \mapsto S^2$ wrapping # = 1

p<sub>x</sub>-ip<sub>y</sub>

• Majorana edge state



### Majorana zeromode in a quantum vortex



If there are 2N vortices, then the ground-state degeneracy =  $2^{N}$ .

1D p-wave superconductor (Kitaev)



# Q: How many classes of topological insulators/superconductors exist in nature?

Topological insulators/superconductors should be stable against arbitrary perturbation (deformation of Hamiltonian) that respects symmetry constraints.

classification based on generic symmetries: time reversal charge conjugation (particle hole) SC

random matrix theory

A: There are 5 classes of TPIs or TPSCs in each spatial dimension. 3Z & 2Z<sub>2</sub>

|                            | 10 Symmetry Classes     | TRS | PHS | CS                 | d=1            | d=2              | d=3                    |
|----------------------------|-------------------------|-----|-----|--------------------|----------------|------------------|------------------------|
|                            | A (unitary)             | 0   | 0   | 0                  |                | Z                | IQH <u>E</u>           |
| Standard<br>(Wigner-Dyson) | AI (orthogonal)         | +1  | 0   | 0                  |                | QSI              | 4E                     |
|                            | ,<br>All (symplectic)   | -1  | 0   | 0                  |                | $Z_2$            | $Z_2$ $Z_2$ TPI        |
|                            | AIII (chiral unitary)   | 0   | 0   | 1                  | Z              |                  | Z                      |
| Chiral                     | BDI (chiral orthogonal) | +1  | +1  | 1                  | Z              | pol <u>y</u> ace | ety <u>le</u> ne (SSH) |
|                            | CII (chiral symplectic) | -1  | -1  | 1                  | Z              |                  | Z <sub>2</sub>         |
| Majorana 💼                 | D (p-wave SC)           | 0   | +1  | 0 <mark>p</mark> 3 | $SC Z_2$       | Z                | o+ip SC                |
| BdG                        | C (d-wave SC)           | 0   | -1  | 0                  |                | Z                | 1+1d SC                |
| BdG<br>Majorana            | DIII (p-wave TRS SC)    | -1  | +1  | 1                  | Z <sub>2</sub> | $(Z_2)$          | Z <sup>3</sup> He-B    |
|                            | CI (d-wave TRS SC)      | +1  | -1  | (p+ip<br>1         | )x(p-ip)<br>   |                  | Z                      |

#### Table of topological insulators/superconductors for d=1,2,3

Altland & Zirnbauer, PRB (1997)

Schnyder, Ryu, AF, and Ludwig, PRB (2008)

|               |                |                |                |                |                |                | d              |                |                |                |                |                |        |
|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------|
| Cartan        | 0              | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              | 9              | 10             | 11             |        |
| Complex case: |                |                |                |                |                |                |                |                |                |                |                |                |        |
| А             | $\mathbb{Z}$   | 0              | period |
| АШ            | 0              | $\mathbb{Z}$   | d = 2  |
| Real case:    |                |                |                |                |                |                |                |                |                |                |                |                |        |
| AI            | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              |        |
| BDI           | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |        |
| D             | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |        |
| DIII          | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | period |
| АП            | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | d = 8  |
| СП            | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ |        |
| С             | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              |        |
| CI            | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  |        |

#### Periodic table of topological insulators/superconductors

A. Kitaev, AIP Conf. Proc. 1134, 22 (2009); arXiv:0901.2686 K-theory, Bott periodicity
Ryu, Schnyder, AF, Ludwig, NJP 12, 065010 (2010) massive Dirac Hamiltonian
M. Stone, C.-K. Chiu, A. Roy, J. Phys. A 44, 045001 (2011) representation of Clifford algebras

|                            | 10 Symmetry Classes     | TRS | PHS | CS | d=1            | d=2            | d=3            |
|----------------------------|-------------------------|-----|-----|----|----------------|----------------|----------------|
|                            | A (unitary)             | 0   | 0   | 0  |                | Z              |                |
| Standard<br>(Wigner-Dyson) | AI (orthogonal)         | +1  | 0   | 0  |                |                |                |
|                            | All (symplectic)        | -1  | 0   | 0  |                | Z <sub>2</sub> | Z <sub>2</sub> |
| Chiral                     | AIII (chiral unitary)   | 0   | 0   | 1  | Z              |                | Z              |
|                            | BDI (chiral orthogonal) | +1  | +1  | 1  | Z              |                |                |
|                            | CII (chiral symplectic) | -1  | -1  | 1  | Z              |                | Z <sub>2</sub> |
|                            | D (p-wave SC)           | 0   | +1  | 0  | Z <sub>2</sub> | Z              |                |
| BdG                        | C (d-wave SC)           | 0   | -1  | 0  |                | Z              |                |
| BUG                        | DIII (p-wave TRS SC)    | -1  | +1  | 1  | Z <sub>2</sub> | Z <sub>2</sub> | Z              |
|                            | CI (d-wave TRS SC)      | +1  | -1  | 1  |                |                | Z              |
|                            |                         |     |     |    |                |                |                |

#### Table of topological insulators/superconductors for d=1,2,3

Altland & Zirnbauer, PRB (1997)

Schnyder, Ryu, AF, and Ludwig, PRB (2008)

## **Time-reversal operator**

$$H = \sum_{i,j} c_i^{\dagger} H_{ij} c_j$$

Spin 0 case T = K  $T: H_{ij} \rightarrow TH_{ij}T^{-1} = H_{ij}^{*}$ Complex conjugation  $T^{2} = 1$  integer Spin

Spin ½ case 
$$T = i\sigma_y K$$
  $T: H_{ij} \rightarrow TH_{ij}T^{-1} = \sigma_y H_{ij}^*\sigma_y$   
 $T^2 = -1$ 

Time-reversal invariant system:

$$TH_{ij}T^{-1} = H_{ij} \qquad \qquad H_{-\vec{k}}^* = H_{\vec{k}} \qquad \text{Spin 0}$$

$$\sigma_y H_{-\vec{k}}^* \sigma_y = H_{\vec{k}} \qquad \text{Spin 1/2}$$

Example: 2D Dirac Hamiltonian

$$H(\vec{k}) = k_x \sigma_x + k_y \sigma_y + m\sigma_z + V\sigma_0$$
  
$$\sigma_y H^*(-\vec{k})\sigma_y = k_x \sigma_x + k_y \sigma_y - m\sigma_z + V\sigma_0$$

If m = 0, H is invariant under time-reversal transformation T ( $T^2 = -1$ ) Dirac fermion on the surface of a 3D Z<sub>2</sub> topological insulator

The mass term breaks time-reversal symmetry;

$$\longrightarrow$$
 Quantum anomalous Hall effect  $\sigma_{xy} = -\frac{e^2}{2h} \operatorname{sgn}(m)$ 

# Classification of Hamiltonian in terms of time-reversal symmetry

TRS = 
$$-1$$
 if  $THT^{-1} = H$  and  $T^2 = +1$   
0 if no T exists.

|                            |                         | TRS | PHS | CS | d=1            | d=2            | d=3            |
|----------------------------|-------------------------|-----|-----|----|----------------|----------------|----------------|
|                            | A (unitary)             | 0   | 0   | 0  |                | Z              |                |
| Standard<br>(Wigner-Dyson) | AI (orthogonal)         | +1  | 0   | 0  |                |                |                |
| (                          | All (symplectic)        | -1  | 0   | 0  |                | Z <sub>2</sub> | Z <sub>2</sub> |
|                            | AIII (chiral unitary)   | 0   | 0   | 1  | Z              |                | Z              |
| Chiral                     | BDI (chiral orthogonal) | +1  | +1  | 1  | Z              |                |                |
|                            | CII (chiral symplectic) | -1  | -1  | 1  | Z              |                | Z <sub>2</sub> |
|                            | D (p-wave SC)           | 0   | +1  | 0  | Z <sub>2</sub> | Z              |                |
| BdG                        | C (d-wave SC)           | 0   | -1  | 0  |                | Z              |                |
| bud                        | DIII (p-wave TRS SC)    | - 1 | +1  | 1  | $Z_2$          | Z <sub>2</sub> | Z              |
|                            | CI (d-wave TRS SC)      | +1  | - 1 | 1  |                |                | Z              |
|                            |                         |     |     |    |                |                |                |

#### Table of topological insulators/superconductors

## Particle-hole transformation for Bogoliubov-de Gennes Hamiltonian

Examples:

(1) spinless  $p_x + ip_y$  $H = \frac{1}{2} \sum_{\vec{k}} \left( c_{\vec{k}}^{\dagger} \quad c_{-\vec{k}} \right) H_{\vec{k}} \left( c_{\vec{k}}^{\dagger} \\ c_{-\vec{k}}^{\dagger} \right)$   $H_{\vec{k}} = \begin{pmatrix} \varepsilon_{\vec{k}} & \Delta \left( k_x - ik_y \right) \\ \Delta \left( k_x + ik_y \right) & -\varepsilon_{-\vec{k}} \end{pmatrix} = \Delta \left( k_x \tau_x + k_y \tau_y \right) + \varepsilon_k \tau_z$ 

Particle-hole symmetry 
$$\tau_x H^*_{-\vec{k}} \tau_x = -H_{\vec{k}}$$
  $C = \tau_x K$   $C^2 = C$ 

$$\begin{aligned} E_n \to -E_n \\ \begin{pmatrix} u_n \\ v_n \end{pmatrix} \to \begin{pmatrix} v_n^* \\ u_n^* \end{pmatrix} & \begin{pmatrix} \psi \\ \psi^\dagger \end{pmatrix} = \sum_{E_n > 0} \left[ \begin{pmatrix} u_n \\ v_n \end{pmatrix} a_n + \begin{pmatrix} v_n^* \\ u_n^* \end{pmatrix} a_n^\dagger \right] + \begin{pmatrix} u_0 \\ v_0 \end{pmatrix} \gamma_0 & \gamma_0 = \gamma_0^\dagger \\ \mu_0 = v_0^\star & \text{Majorana fermion} \end{aligned}$$

## Particle-hole transformation for Bogoliubov-de Gennes Hamiltonian

2) 
$$d_{x^2-y^2} + id_{xy}$$
 (spin singlet pairing)  

$$H = \sum_{\vec{k}} \begin{pmatrix} c_{k\uparrow}^{\dagger} & c_{-k\downarrow} \end{pmatrix} H_k \begin{pmatrix} c_{k\uparrow} \\ c_{-k\downarrow}^{\dagger} \end{pmatrix}$$

$$H_{\vec{k}} = \begin{pmatrix} \varepsilon_{\vec{k}} & \Delta \left( k_x^2 - k_y^2 - ik_x k_y \right) \\ \Delta \left( k_x^2 - k_y^2 + ik_x k_y \right) & -\varepsilon_{-\vec{k}} \end{pmatrix}$$

$$= \Delta \left[ \left( k_x^2 - k_y^2 \right) \tau_x + k_x k_y \tau_y \right] + \varepsilon_k \tau_z$$

Particle-hole symmetry  $\tau_{y}H_{-\vec{k}}^{*}\tau_{y} = -H_{\vec{k}}$   $C = i\tau_{y}K$   $C^{2} = -1$   $E_{n} \rightarrow -E_{n}$  $\begin{pmatrix} u_{n} \\ v_{n} \end{pmatrix} \rightarrow \begin{pmatrix} v_{n}^{*} \\ -u_{n}^{*} \end{pmatrix}$   $\begin{pmatrix} \psi_{\uparrow} \\ \psi_{\downarrow}^{\dagger} \end{pmatrix} = \sum_{E_{n}>0} \left[ \begin{pmatrix} u_{n} \\ v_{n} \end{pmatrix} a_{n\uparrow} + \begin{pmatrix} v_{n}^{*} \\ -u_{n}^{*} \end{pmatrix} a_{n\downarrow}^{\dagger} \right]$  No Majorana

## Classification of Hamiltonian in terms of particle-hole symmetry

PHS = 
$$-1$$
 if  $C^{-1}HC = -H$  and  $C^2 = +1$   
0 if no C exists.

|                            |                         | TRS | PHS | CS | d=1            | d=2            | d=3            |
|----------------------------|-------------------------|-----|-----|----|----------------|----------------|----------------|
|                            | A (unitary)             | 0   | 0   | 0  |                | Z              |                |
| Standard<br>(Wigner-Dyson) | AI (orthogonal)         | +1  | 0   | 0  |                |                |                |
| (                          | All (symplectic)        | -1  | 0   | 0  |                | Z <sub>2</sub> | Z <sub>2</sub> |
|                            | Alll (chiral unitary)   | 0   | 0   | 1  | Z              |                | Z              |
| Chiral                     | BDI (chiral orthogonal) | +1  | +1  | 1  | Z              |                |                |
|                            | CII (chiral symplectic) | -1  | -1  | 1  | Z              |                | Z <sub>2</sub> |
|                            | D (p-wave SC)           | 0   | +1  | 0  | Z <sub>2</sub> | Z              |                |
| BdG                        | C (d-wave SC)           | 0   | -1  | 0  |                | Z              |                |
|                            | DIII (p-wave TRS SC)    | -1  | +1  | 1  | Z <sub>2</sub> | Z <sub>2</sub> | Z              |
|                            | CI (d-wave TRS SC)      | +1  | -1  | 1  |                |                | Z              |
|                            |                         |     |     |    |                |                |                |

#### Table of topological insulators/superconductors

## Chiral symmetry (CS)

There is a unitary operator which anticommutes with Hamiltonian.

$$H\Gamma + \Gamma H = 0$$
$$H = \begin{pmatrix} 0 & D \\ D^{\dagger} & 0 \end{pmatrix} \qquad \Gamma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Example 1: lattice model with hopping between AB sublattices only

$$H = \sum_{\substack{a \in A \\ b \in B}} \left( t_{ab} c_a^{\dagger} c_b + t_{ab}^{*} c_b^{?} c_a \right) \qquad \textcircled{A} \qquad \textcircled{B}$$

Example 2: time-reversal × particle-hole (T and C are antiunitary)  $THT^{-1} = H$  $CHC^{-1} = -H$   $TCHC^{-1}T^{-1} = -H$  TCH = -HTC Classification of free-fermion Hamiltonian in terms of generic discrete symmetries

• Time-reversal symmetry (TRS)  $\int 0$  no TR invariance

$$THT^{-1} = H \qquad TRS = \begin{cases} +1 & T^2 = +1 & \text{spin 0} \\ -1 & T^2 = -1 & \text{spin 1/2} \end{cases}$$

• Particle-hole symmetry (PHS)

BdG HamiltonianPHS =0no PH invariance $CHC^{-1} = -H$ PHS = $\begin{pmatrix} 0 & no PH invariance \\ +1 & C^2 = +1 & triplet \\ -1 & C^2 = -1 & singlet \end{pmatrix}$ 

$$TRS = PHS = 0, CS = 1$$
  
 $3 \times 3 + 1 = 10$ 

|                            |                         | TRS | PHS | CS         | d=1            | d=2   | d=3                 |
|----------------------------|-------------------------|-----|-----|------------|----------------|-------|---------------------|
|                            | A (unitary)             | 0   | 0   | 0          |                | Z     | IQH <u>E</u>        |
| Standard<br>(Wigner-Dyson) | AI (orthogonal)         | +1  | 0   | 0          |                | QSF   | 1E                  |
|                            | All (symplectic)        | -1  | 0   | 0          |                | $Z_2$ | $Z_2$ $Z_2$ TPI     |
|                            | AIII (chiral unitary)   | 0   | 0   | 1          | Z              |       | Z                   |
| Chiral                     | BDI (chiral orthogonal) | +1  | +1  | 1          | Z              |       |                     |
|                            | CII (chiral symplectic) | -1  | -1  | 1          | Z              |       | Z <sub>2</sub>      |
| Majorana                   | D (p-wave SC)           | 0   | +1  | 0          | Z <sub>2</sub> | Z     | o+ip SC             |
| BdG                        | C (d-wave SC)           | 0   | -1  | 0          |                | Z     |                     |
| Majorana                   | DIII (p-wave TRS SC)    | -1  | +1  | 1          | $Z_2$          | $Z_2$ | Z <sup>3</sup> He-B |
|                            | CI (d-wave TRS SC)      | +1  | -1  | (p+ir<br>1 | )x(p-ip)<br>   |       | Z                   |

#### Table of topological insulators/superconductors for d=1,2,3

Schnyder, Ryu, AF, and Ludwig, PRB (2008)



## "derivation" of the periodic table

- Anderson delocalization of boundary states
  - Nonlinear sigma model with a topological term
- 🔷 Dirac Hamiltonian
  - dimensional reduction (complex classes)
  - Clifford algebras

## Anderson delocalization of boundary states

- Gapless boundary modes are topologically protected.
- They are stable against any local perturbation. (respecting discrete symmetries)
- They should never be Anderson localized by disorder.

Nonlinear sigma models for Anderson localization of gapless boundary modes

 $S = \int d^{d-1}r \operatorname{tr} (\partial Q)^2 + \operatorname{topological term}$  (with no adjustable parameter)

bulk: *d* dimensions boundary: *d* -1 dimensions

 $O \in M$ 

 $Z_2 \text{ top. term } \pi_{\underline{d-1}}(M) = Z_2$ WZW term  $\pi_d(M) = Z$ 



## NLSM topological terms

 $\pi_d(G/H)$ 

complex case:

|      | $G/H \setminus d$         | d = 0        | d = 1        | d = 2        | d = 3        |
|------|---------------------------|--------------|--------------|--------------|--------------|
| А    | $U(N+M)/U(N) \times U(M)$ | $\mathbb{Z}$ | 0            | $\mathbb{Z}$ | 0            |
| AIII | $\mathrm{U}(N)$           | 0            | $\mathbb{Z}$ | 0            | $\mathbb{Z}$ |

real case:

|      | $G/H \setminus d$                                                         | d = 0          | d = 1          | d = 2          | d=3            |
|------|---------------------------------------------------------------------------|----------------|----------------|----------------|----------------|
| AI   | $\operatorname{Sp}(N+M)/\operatorname{Sp}(N) \times \operatorname{Sp}(M)$ | $\mathbb{Z}$   | 0              | 0              | 0              |
| BDI  | $\mathrm{U}(2N)/\mathrm{Sp}(N)$                                           | 0              | $\mathbb{Z}$   | 0              | 0              |
| D    | O(2N)/U(N)                                                                | $\mathbb{Z}_2$ | 0              | $\mathbb{Z}$   | 0              |
| DIII | O(N)                                                                      | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | 0              | $\mathbb{Z}$   |
| All  | $O(N+M)/O(N) \times O(M)$                                                 | $\mathbb{Z}$   | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | 0              |
| CII  | U(N)/O(N)                                                                 | 0              | Z              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
| C    | $\operatorname{Sp}(N)/\operatorname{U}(N)$                                | 0              | 0              | $\mathbb{Z}$   | $\mathbb{Z}_2$ |
| CI   | $\operatorname{Sp}(N)$                                                    | 0              | 0              | 0              | $\mathbb{Z}$   |

Z<sub>2</sub>: Z<sub>2</sub> topological term can exist in d dimensions  $\implies$  d+1 dim. TI/TSC Z: WZW term can exist in d-1 dimensions  $\implies$  d dim. TI/TSC

|               |                |                |                |                |                |                | d              |                |                |                |                |                |        |
|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------|
| Cartan        | 0              | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              | 9              | 10             | 11             |        |
| Complex case: |                |                |                |                |                |                |                |                |                |                |                |                |        |
| Α             | $\mathbb{Z}$   | 0              | period |
| АШ            | 0              | $\mathbb{Z}$   | d = 2  |
| Real case:    |                |                |                |                |                |                |                |                |                |                |                |                |        |
| AI            | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              |        |
| BDI           | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |        |
| D             | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |        |
| DIII          | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | period |
| АП            | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | d = 8  |
| CII           | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ |        |
| С             | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              |        |
| CI            | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  |        |

#### Periodic table of topological insulators/superconductors

A. Kitaev, AIP Conf. Proc. 1134, 22 (2009); arXiv:0901.2686 K-theory, Bott periodicity Ryu, Schnyder, AF, Ludwig, NJP 12, 065010 (2010) massive Dirac Hamiltonian

## **Dirac Hamiltonian**

Minimal representative models for TIs and TSCs

Effective theory near a topological phase transition (band gap closing)



### Dimensional hierarchy: complex case (A ⇒AIII)

d=2n: class A (no symmetry constraint; e.g., IQHE)

$$H = \sum_{\mu=1}^{2n} k_{\mu} \gamma_{\mu} + m \gamma_{2n+1} \qquad \gamma_{1}, \ \dots, \ \gamma_{2n+1}$$

Bloch wave functions of occupied bands  $|u_a(\vec{k})\rangle$  a = 1, ..., N

Berry connection 
$$A^{ab}_{\mu}\left(\vec{k}\right)dk_{\mu} = \left\langle u_{a}\left(\vec{k}\right)\middle| du_{b}\left(\vec{k}\right)\right\rangle$$

Berry curvature  $F = dA + A \wedge A$ 

Chern number 
$$\operatorname{Ch}_{n}[F] = \int \frac{1}{(n+1)!} \operatorname{tr} \left(\frac{iF}{2\pi}\right)^{n} \in \mathbb{Z}$$

d=2n-1: class AIII

$$H = \sum_{\mu=1}^{2n-1} k_{\mu} \gamma_{\mu} + m \gamma_{2n+1}$$
  
$$\{H, \gamma_{2n}\} = 0 \quad \text{chiral symmetry} \implies H(\vec{k}) = \begin{pmatrix} 0 & D(\vec{k}) \\ D^{\dagger}(\vec{k}) & 0 \end{pmatrix}$$

Deform the Hamiltonian continuously to a Hamiltonian with eigenvalues  $\pm 1$ 

$$Q\left(\vec{k}\right) = 1 - 2\sum_{a=1}^{N} \left| u_a\left(\vec{k}\right) \right\rangle \left\langle u_a\left(\vec{k}\right) \right| = \begin{pmatrix} 0 & q\left(\vec{k}\right) \\ q^{\dagger}\left(\vec{k}\right) & 0 \end{pmatrix} \qquad q\left(\vec{k}\right) \in \mathrm{U}(\mathrm{N})$$

$$\nu_{2n-1}[q] = \int d^{2n-1}k \frac{i^n (-1)^{n-1} (n-1)!}{(2\pi)^n (2n-1)!} \varepsilon^{\alpha_1 \alpha_2 \cdots \alpha_{2n-1}} \operatorname{tr} \left[ \left( q^{-1} \partial_{\alpha_1} q \right) \left( q^{-1} \partial_{\alpha_2} q \right) \cdots \left( q^{-1} \partial_{\alpha_{2n-1}} q \right) \right] \in \mathbb{Z}$$

$$\pi_{2n-1}(\mathbf{U}(\mathbf{N})) = \mathbf{Z}$$

Example: 
$$d = 3 \rightarrow 2 \rightarrow 1$$
  
 $\Gamma_3^{a=1,2,3} = \{\sigma_x, \sigma_y, \sigma_z\}$   
 $d = 3$   $H = k_x \sigma_x + k_y \sigma_y + k_z \sigma_z$  Weyl semimetal  
 $d = 2$   $H = k_x \sigma_x + k_y \sigma_y + m \sigma_z$  Class A (IQHE)  
 $\operatorname{Ch}_1 = \frac{i}{2\pi} \int d^2 k F_{xy} = \frac{i}{2\pi} \int d^2 k \frac{-im}{2(k^2 + m^2)^{3/2}} = \frac{m}{2|m|} = \sigma_{xy}$ 

$$d = 1 \qquad H = k_x \sigma_x + m \sigma_y$$

$$q(k) = -\frac{k_x + im}{\sqrt{k_x^2 + m^2}}$$

$$v_1 = \frac{i}{2\pi} \int q^{-1} dq = \frac{i}{2\pi} \int dk_x \frac{-im}{k_x^2 + m^2} = \frac{m}{2|m|}$$

Classification of Dirac mass  
$$H = \sum_{\mu=1}^{d} k_{\mu} \gamma_{\mu} + m \gamma_{0} \qquad \{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu,\nu}$$

If  $m\gamma_0$  is a unique Dirac mass, then gapped phases with opposite sign of m are topologically distinct phases.  $m_2$ 





0

m

(3) d = 1 class AIII  $\{H, \sigma_z\} = 0$  $H = k_x \sigma_x + m \sigma_y$   $m \sigma_y$  is a unique mass term.

#### Set of possible mass terms: classifying space

Example: d = 2 class A (IQHE)  $H = k_x \sigma_x \otimes 1_N + k_y \sigma_y \otimes 1_N + \gamma_0$  $\{\gamma_a, \gamma_b\} = 2\delta_{ab}$  $\gamma_1 \qquad \gamma_2$  $\gamma_0 = \sigma_z \otimes A \qquad A = U \begin{pmatrix} 1_n & 0 \\ 0 & -1_m \end{pmatrix} U^{\dagger} \qquad (N = n + m)$  $\gamma_0 \iff U \in \frac{U(n+m)}{U(n) \times U(m)}$  Classifying space  $C_0$ = Complex Grassmanian

$$\pi_0 \Big[ \bigoplus_{m,n} U(m+n) / U(m) \times U(n) \Big] = \mathbf{Z} \quad \dots \qquad \bigcirc \quad \bigcirc \quad \bigcirc \quad \dotsb \quad \dotsb$$

There are topologically distinct gapped phases labelled by an integer index.

The parameter *n* corresponds to Chern number.

$$H = k_x \sigma_x + k_y \sigma_y + (\varepsilon - k^2) \sigma_z \qquad \text{Chern } \# = \begin{cases} 1 & (\varepsilon > 0) \\ 0 & (\varepsilon < 0) \end{cases}$$

Example: d = 1 class A (no symmetry constraint)

$$\begin{split} H &= k_x \sigma_z \otimes \mathbf{1}_N + \gamma_0 \\ \gamma_0 &= \begin{pmatrix} 0 & U \\ U^{\dagger} & 0 \end{pmatrix} \qquad \qquad U \in U(N) \qquad \text{Classifying space } \mathcal{C}_1 \end{split}$$

$$\pi_0(U(N)) = 0$$

There is only a single gapped phase.



#### Classification using Clifford algebras (real classes)

(real) Clifford algebra  $Cl_{p,q}$ 

$$p + q \text{ generators:} \quad \left\{ e_i, e_j \right\} = 0 \quad (i \neq j)$$
$$e_i^2 = \begin{cases} -1 & (i = 1, ..., p) \\ +1 & (i = p + 1, ..., p + q) \end{cases}$$

 $2^{p+q}$ -dimensional real vector space

$$a_1e_1 + a_2e_2 + \ldots + a_{12}e_1e_2 + \ldots + a_{12\ldots n}e_1e_2 \cdots e_n \qquad a_i \in \mathbb{R}$$

#### Symmetry operators = generators of Clifford algebras

Time-reversal transformation:  $T = T^{-1}HT = H$ ,  $T^2 = \pm 1$ 

Particle-hole transformation:  $C = C^{-1}HC = -H$ ,  $C^2 = \pm 1$ 

[T,C]=0

Operator for "*i*" :  $J = J^2 = -1$ ,  $\{T, J\} = \{C, J\} = [H, J] = 0$ 

Dirac Hamiltonian  $H = \sum_{\mu=1}^{d} k_{\mu} \gamma_{\mu} + m \gamma_{0}$   $T \gamma_{0} = \gamma_{0} T, \quad T \gamma_{\mu} = -\gamma_{\mu} T \quad (\mu = 1, ..., d)$   $C \gamma_{0} = -\gamma_{0} C, \quad C \gamma_{\mu} = \gamma_{\mu} C \quad (\mu = 1, ..., d)$  $\{\gamma_{a}, \gamma_{b}\} = 2\delta_{a,b}$ 



(ii) *C* only (C & D):

$$e_0 = \gamma_0, e_1 = C, e_2 = CJ, e_3 = J\gamma_1, \dots, e_{2+d} = J\gamma_d$$
  
C:  $Cl_{2+d,1}$  D:  $Cl_{d,3}$ 

(iii) T and C (BDI, DIII, CII & CI):

$$e_0 = \gamma_0, \ e_1 = C, \ e_2 = CJ, \ e_3 = TCJ, \ e_4 = J\gamma_1, \ ..., \ e_{3+d} = J\gamma_d$$
  
BDI:  $Cl_{1+d,3}$  DIII:  $Cl_{d,4}$  CII:  $Cl_{3+d,1}$  CI:  $Cl_{2+d,2}$ 

#### Topological classification of Hamiltonian (Kitaev 2009)

- (1) We consider a matrix representation (of large enough dimension) of a Clifford algebra without e<sub>0</sub>.
   (We fix the representation for the symmetry constraints.)
- (2) We then consider extending Clifford algebras by adding  $e_0$ .

(i), (ii)  $\{e_1, e_2, ..., e_{2+d}\} \rightarrow \{e_0, e_1, e_2, ..., e_{2+d}\}$ (iii)  $\{e_1, e_2, ..., e_{2+d}\} \rightarrow \{e_0, e_1, e_2, ..., e_{2+d}\}$ 

We look for all possible representations of  $e_0$ .

The set of possible  $e_0$ : classifying space  $R_q$  (q = 0, 1, ..., 7)

The classifying space for  $\{e_1, e_2, ..., e_{2+d}\} \rightarrow \{e_0, e_1, e_2, ..., e_{2+d}\}$  $\{e_1, e_2, ..., e_{2+d}\} \rightarrow \{e_0, e_1, e_2, ..., e_{2+d}\}$ 

(3) Topological classification is given by  $\pi_0(R_q)$ .

Bott periodicity  $R_{q+8}=R_q$ 

#### Classification of TIs and TSCs in d = 0

2

CII AII DIII 5 4 3

6

| class               | $(T^2, C^2)$ | extension                       | classifying space   | 2   | class                | TRS   | PHS | $R_q$   | $\pi_0(R_q)$   |
|---------------------|--------------|---------------------------------|---------------------|-----|----------------------|-------|-----|---------|----------------|
| AI                  | (+, 0)       | $Cl_{0,2} \rightarrow Cl_{1,2}$ | $R_0$               |     | AI                   | +1    | 0   | $R_0$   | $\mathbb{Z}$   |
| AII                 | (-, 0)       | $Cl_{2,0} \rightarrow Cl_{3,0}$ | $R_4$               | _   | BDI                  | +1    | +1  | $R_1$   | $\mathbb{Z}_2$ |
| D                   | (0, +)       | $Cl_{0,2} \rightarrow Cl_{0,3}$ | $R_2$               |     | D                    | 0     | +1  | $R_2$   | $\mathbb{Z}_2$ |
| $\mathbf{C}$        | (0, -)       | $Cl_{2,0} \rightarrow Cl_{2,1}$ | $R_{-2} \simeq R_6$ |     | DIII                 | -1    | +1  | $R_3$   | 0              |
| BDI                 | (+, +)       | $Cl_{1,2} \rightarrow Cl_{1,3}$ | $R_1$               | _   | AII                  | -1    | 0   | $R_4$   | $\mathbb{Z}$   |
| DIII                | (-,+)        | $Cl_{0,3} \rightarrow Cl_{0,4}$ | $R_3$               |     | $\operatorname{CII}$ | -1    | -1  | $R_5$   | 0              |
| CII                 | (-,-)        | $Cl_{3,0} \rightarrow Cl_{3,1}$ | $R_{-3} \simeq R_5$ |     | $\mathbf{C}$         | 0     | -1  | $R_6$   | 0              |
| $\operatorname{CI}$ | (+, -)       | $Cl_{2,1} \rightarrow Cl_{2,2}$ | $R_{-1} \simeq R_7$ |     | $\operatorname{CI}$  | +1    | -1  | $R_7$   | 0              |
|                     | CI $T^2$     | BDI                             |                     |     |                      |       |     |         |                |
| 7                   | 0            | 1                               |                     | 0 0 | dime                 | ensic | n   | $R_{a}$ |                |
|                     | C            | $\rightarrow C^2$               |                     | d   | dime                 | ensio | ons | $R_q$   | -d             |

Dirac Hamiltonians in d dimensions

$$H = \sum_{\mu=1}^{d} k_{\mu} \gamma_{\mu} + m \gamma_{0}$$

The relevant classifying space is  $R_{q-d}$ .

Topological classification is found from  $\pi_0(R_{q-d})$ .

Bott periodicity  $R_{q+8} \square R_q$ 

|               |                |                |                |                |                |                | d              |                |                |                |                |                |  |
|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|
| Cartan        | 0              | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              | 9              | 10             | 11             |  |
| Complex case: |                |                |                |                |                |                |                |                |                |                |                |                |  |
| А             | $\mathbb{Z}$   | 0              |  |
| AIII          | 0              | $\mathbb{Z}$   |  |
| Real case:    |                |                |                |                |                |                |                |                |                |                |                |                |  |
| AI            | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              |  |
| BDI           | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |  |
| D             | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |  |
| DШ            | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |  |
| АΠ            | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |  |
| СП            | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ |  |
| С             | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              |  |
| CI            | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $2\mathbb{Z}$  |  |

#### **Reflection symmetry**

Dirac Hamiltonian 
$$H = \sum_{\mu=1}^{d} k_{\mu} \gamma_{\mu} + m \gamma_{0}$$

Reflection in the  $x_1$  direction:

$$R^{-1}H\left(-k_{1},k_{i}\right)R = H\left(k_{1},k_{i}\right) \implies \left\{R,\gamma_{1}\right\} = 0, \quad \left[R,\gamma_{i}\right] = 0 \quad (i \neq 1)$$

Define  $M = J\gamma_1 R$ , which satisfies  $M^2 = 1$  and  $\{M, \gamma_\mu\} = 0$ .

Suppose that  $MT = \eta_T TM$  and/or  $MC = \eta_C CM$ .  $(\eta_{T/C} = +1 \text{ or } -1)$ 

 $RT = \eta_T TR$  and/or  $RC = -\eta_C CR$ 

$$R^{\eta_T}, R^{-\eta_C}, R^{\eta_T, -\eta_C}$$

The operator *M* changes the relevant Clifford algebra.

$$MT = \eta_T TM \qquad MC = \eta_C CM$$
$$\begin{pmatrix} \eta_T, \eta_C \end{pmatrix}$$
$$\downarrow$$
(i) New generator  $\tilde{e}$ 
$$\rightarrow$$
 Shift  $R_q \rightarrow R_{q\pm 1}$ 

|                 | × /               |             |              | $\frown$       |      |
|-----------------|-------------------|-------------|--------------|----------------|------|
| class           | $(\eta_T,\eta_C)$ | $\tilde{e}$ | $	ilde{e}^2$ | shift of $R_q$ |      |
| ΔΤ ΔΤΙ          | (+, 0)            | JM          | -1           | +1             |      |
|                 | (-, 0)            | M           | +1           | -1             | SnTe |
| DC              | (0, +)            | JM          | -1           | -1             |      |
| Ь, С            | (0, -)            | M           | +1           | +1             |      |
| BDI DIII CII CI | (+, -)            | M           | +1           | +1             |      |
|                 | (-,+)             | JM          | -1           | -1             |      |
|                 |                   |             |              |                |      |

(ii) Commuting operator  $\widetilde{M}$  $\rightarrow$  Block diagonalization

 $\widetilde{M}$  $\widetilde{M}^2$ classifying space class $(\eta_T, \eta_C)$ (+, +)TCM+1BDI, CII no change complex TCJM-, -)-1TCM(+, +)-1no change DIII, CI complex TCJM+1(-, -)

When  $\widetilde{M}^2 = -1$ ,  $\widetilde{M}$  introduces complex structure.

#### Topological periodic table with a reflection symmetry

|                |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                       |                                                       | d                                                     |                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 0              | 1                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                     | 4                                                     | 5                                                     | 6                                                     | 7                                                     | 8                                                     | 9                                                     | 10                                                    | 11                                                    |                                                       |
|                |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |
| $\mathbb{Z}$   | 0                                                                                                                                   | $\mathbb{Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                     | $\mathbb{Z}$                                          | 0                                                     | $\mathbb{Z}$                                          | 0                                                     | $\mathbb{Z}$                                          | 0                                                     | $\mathbb{Z}$                                          | 0                                                     | period                                                |
| 0              | $\mathbb{Z}$                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z                                                     | 0                                                     | $\mathbb{Z}$                                          | 0                                                     | $\mathbb{Z}$                                          | 0                                                     | $\mathbb{Z}$                                          | 0                                                     | $\mathbb{Z}$                                          | d = 2                                                 |
|                |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |
| $\mathbb{Z}$   | 0                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                     | $2\mathbb{Z}$                                         | 0                                                     | $\mathbb{Z}_2$                                        | $\mathbb{Z}_2$                                        | $\mathbb{Z}$                                          | 0                                                     | 0                                                     | 0                                                     |                                                       |
| $\mathbb{Z}_2$ | $\mathbb{Z}$                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                     | 0                                                     | $2\mathbb{Z}$                                         | 0                                                     | $\mathbb{Z}_2$                                        | $\mathbb{Z}_2$                                        | $\mathbb{Z}$                                          | 0                                                     | 0                                                     |                                                       |
| $\mathbb{Z}_2$ | $\mathbb{Z}_2$                                                                                                                      | $\mathbb{Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                     | 0                                                     | 0                                                     | $2\mathbb{Z}$                                         | 0                                                     | $\mathbb{Z}_2$                                        | $\mathbb{Z}_2$                                        | $\mathbb{Z}$                                          | 0                                                     |                                                       |
| 0              | $\mathbb{Z}_2$                                                                                                                      | $\mathbb{Z}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z                                                     | 0                                                     | 0                                                     | 0                                                     | $2\mathbb{Z}$                                         | 0                                                     | $\mathbb{Z}_2$                                        | $\mathbb{Z}_2$                                        | $\mathbb{Z}$                                          | period                                                |
| $2\mathbb{Z}$  | 0                                                                                                                                   | $\mathbb{Z}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbb{Z}_2$                                        | $\mathbb{Z}$                                          | 0                                                     | 0                                                     | 0                                                     | $2\mathbb{Z}$                                         | 0                                                     | $\mathbb{Z}_2$                                        | $\mathbb{Z}_2$                                        | d = 8                                                 |
| 0              | $2\mathbb{Z}$                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathbb{Z}_2$                                        | $\mathbb{Z}_2$                                        | $\mathbb{Z}$                                          | 0                                                     | 0                                                     | 0                                                     | $2\mathbb{Z}$                                         | 0                                                     | $\mathbb{Z}_2$                                        |                                                       |
| 0              | 0                                                                                                                                   | $2\mathbb{Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                     | $\mathbb{Z}_2$                                        | $\mathbb{Z}_2$                                        | $\mathbb{Z}$                                          | 0                                                     | 0                                                     | 0                                                     | $2\mathbb{Z}$                                         | 0                                                     |                                                       |
| 0              | 0                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2\mathbb{Z}$                                         | 0                                                     | $\mathbb{Z}_2$                                        | $\mathbb{Z}_2$                                        | $\mathbb{Z}$                                          | 0                                                     | 0                                                     | 0                                                     | $2\mathbb{Z}$                                         |                                                       |
|                | $egin{array}{c} 0 \\ \mathbb{Z} \\ 0 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ 0 \\ 2\mathbb{Z} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$ | $egin{array}{cccc} 0 & 1 & & & \ \mathbb{Z} & 0 & & \ \mathbb{Z} & & \ \mathbb{Z} & 0 & & \ \mathbb{Z} & 0 & & \ \mathbb{Z} & \mathbb{Z} & & \ $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Original topological periodic table for ten AZ symmetry classes

| Reflection      | Class    | $C_q$ or $R_q$ | d = 0             | d = 1             | d = 2             | d = 3                      | d = 4                       | d = 5             | d = 6             | d = 7             |
|-----------------|----------|----------------|-------------------|-------------------|-------------------|----------------------------|-----------------------------|-------------------|-------------------|-------------------|
| R               | А        | $C_1$          | 0                 | $\mathbb{Z}$      | 0                 | $\mathbb{Z}$               | 0                           | $\mathbb{Z}$      | 0                 | $\mathbb{Z}$      |
| $R^+$           | AIII     | $C_0$          | Z                 | 0                 | $\mathbb{Z}$      | 0                          | $\mathbb{Z}$                | 0                 | Z                 | 0                 |
| $R^{-}$         | AIII     | $C_1$          | 0                 | $\mathbb{Z}$      | 0                 | Z                          | 0                           | $\mathbb{Z}$      | 0                 | $\mathbb{Z}$      |
| $R^{+}, R^{++}$ | AI       | $R_1$          | $\mathbb{Z}_2$    | $\mathbb{Z}$      | 0                 | 0                          | 0                           | $\mathbb{Z}$      | 0                 | $\mathbb{Z}_2$    |
|                 | BDI      | $R_2$          | $\mathbb{Z}_2$    | $\mathbb{Z}_2$    | $\mathbb{Z}$      | 0                          | 0                           | 0                 | Z                 | 0                 |
|                 | D        | $R_3$          | 0                 | $\mathbb{Z}_2$    | $\mathbb{Z}_2$    | $\mathbb{Z}$               | 0                           | 0                 | 0                 | $\mathbb{Z}$      |
|                 | DIII     | $R_4$          | $\mathbb{Z}$      | 0                 | $\mathbb{Z}_2$    | $\mathbb{Z}_2$             | $\mathbb{Z}$                | 0                 | 0                 | 0                 |
|                 | AII      | $R_5$          | 0                 | Z                 | 0                 | $\mathbb{Z}_2$             | $\mathbb{Z}_2$              | Z                 | 0                 | 0                 |
|                 | CII      | $R_6$          | 0                 | 0                 | $\mathbb{Z}$      | 0                          | $\mathbb{Z}_2$              | $\mathbb{Z}_2$    | Z                 | 0                 |
|                 | С        | $R_7$          | 0                 | 0                 | 0                 | $\mathbb{Z}$               | 0                           | $\mathbb{Z}_2$    | $\mathbb{Z}_2$    | $\mathbb{Z}$      |
|                 | CI       | $R_0$          | Z                 | 0                 | 0                 | 86                         | :ft Z                       | 0                 | $\mathbb{Z}_2$    | $\mathbb{Z}_2$    |
| $R^{-}, R^{}$   | AI       | $R_7$          | 0                 | 0                 | 0                 | 211                        | $JUS_0$                     | "Z <sub>2</sub> " | $\mathbb{Z}_2$    | Z                 |
|                 | BDI      | $R_0$          | $\mathbb{Z}$      | 0                 | 0                 | 0                          | $\mathbb{Z}$                | 0                 | "Z <sub>2</sub> " | $\mathbb{Z}_2$    |
|                 | D        | $R_1$          | $\mathbb{Z}_2$    | $\mathbb{Z}$      | 0                 | 0                          | 0                           | $\mathbb{Z}$      | 0                 | "Z <sub>2</sub> " |
|                 | DIII     | $R_2$          | "Z <sub>2</sub> " | $\mathbb{Z}_2$    | $\mathbb{Z}$      | 0                          | 0                           | 0                 | Z                 | 0                 |
|                 | AII      | $R_3$          | 0                 | "Z <sub>2</sub> " | $\mathbb{Z}_2$    |                            | SnTe                        | 0                 | 0                 | $\mathbb{Z}$      |
|                 | CII      | $R_4$          | $\mathbb{Z}$      | 0                 | "Z <sub>2</sub> " | $\mathbb{Z}_2$             | $\mathbb{Z}$                | 0                 | 0                 | 0                 |
|                 | С        | $R_5$          | 0                 | $\mathbb{Z}$      | 0                 | $\mathbb{Z}_2$             | $\mathbb{Z}_2$              | $\mathbb{Z}$      | 0                 | 0                 |
|                 | CI       | $R_6$          | 0                 | 0                 | $\mathbb{Z}$      | 0                          | "Z <sub>2</sub> "           | $\mathbb{Z}_2$    | $\mathbb{Z}$      | 0                 |
| $R^{+-}$        | BDI      | $R_1$          | $\mathbb{Z}_2$    | Ī                 | Ū                 | Ū                          | 0                           | Ī                 | 0                 | $\mathbb{Z}_2$    |
| $R^{-+}$        | DIII     | $R_3$          | 0                 | $\mathbb{Z}_2$    | $\mathbb{Z}_2$    | Pla                        | ck <sup>0</sup>             | 0                 | 0                 | $\mathbb{Z}$      |
| $R^{+-}$        | CII      | $R_5$          | 0                 | Z                 | 0                 |                            | $\mathbb{C}$ $\mathbb{Z}_2$ | Z                 | 0                 | 0                 |
| $R^{-+}$        | CI       | $R_7$          | 0                 | 0                 | dia               | aoba                       | lizatio                     | $\mathbb{Z}_2$    | $\mathbb{Z}_2$    | $\mathbb{Z}$      |
| $R^{-+}$        | BDI, CII | $C_1$          | 0                 | Z                 | giu               | <del>yu<sub>l</sub>u</del> | HZULIO                      | Z                 | 0                 | $\mathbb{Z}$      |
| $R^{+-}$        | DIII, CI | $C_1$          | 0                 | Z                 | 0                 | $\mathbb{Z}$               | 0                           | $\mathbb{Z}$      | 0                 | $\mathbb{Z}$      |

#### Topological periodic table with a reflection symmetry

Chiu, Yao, & Ryu, PRB 88, 075142 (2013); Morimoto & AF, PRB 88, 125129 (2013).

#### TCI SnTe as TRS + $R^-$

Hsieh et al. Nat. Commun. 2012

Band gaps at 4 L points

Effective theory around an L point

$$H = v \left( k_x s_y - k_y s_x \right) \sigma_x + v_z k_z \sigma_y + m \sigma_z$$

unique mass term :  $\sigma_z$ 

Topological index Z<sub>2</sub>

$$\sigma_z = \pm 1$$
: p-orbitals,  $s_z = \pm 1$ :  $j = \pm \frac{1}{2}$   
class All:  $T = is_y K$ 



#### TCI SnTe as TRS + $R^-$

Hsieh et al. Nat. Commun. 2012

Band gaps at 4 L points

Effective theory around an L point

$$H = v \left( k_x s_y - k_y s_x \right) \sigma_x + v_z k_z \sigma_y + m \sigma_z$$

unique mass term :  $\sigma_z$ 

Topological index Z<sub>2</sub>

$$\sigma_z = \pm 1$$
: p-orbitals,  $s_z = \pm 1$ :  $j = \pm \frac{1}{2}$   
class All:  $T = is_y K$ 

Doubled system  $H \otimes \tau_0$  $\rightarrow$  an extra mass term  $m' s_z \sigma_x \tau_y$ 



#### TCI SnTe as TRS + $R^-$

Hsieh et al. Nat. Commun. 2012

Band gaps at 4 L points

Effective theory around an L point

$$H = v \left( k_x s_y - k_y s_x \right) \sigma_x + v_z k_z \sigma_y + m \sigma_z$$

$$\sigma_z = \pm 1$$
: p-orbitals,  $s_z = \pm 1$ :  $j = \pm \frac{1}{2}$   
class All:  $T = is_y K$ 

unique mass term :  $\sigma_z$ 

Topological index Z<sub>2</sub>

Doubled system  $H \otimes \tau_0$  $\rightarrow$  an extra mass term  $m' s_z \sigma_x \tau_y$ 

Reflection  $R_x^- = s_x$  forbids the extra mass  $m' \rightarrow$  Topological index Z  $(k_x \rightarrow -k_x)$  (mirror Chern number)



| class               | TRS | PHS | $R_q$ | $\pi_0(R_q)$   |       |
|---------------------|-----|-----|-------|----------------|-------|
| AI                  | +1  | 0   | $R_0$ |                |       |
| BDI                 | +1  | +1  | $R_1$ | $\mathbb{Z}_2$ | R⁻    |
| D                   | 0   | +1  | $R_2$ | $\mathbb{Z}_2$ |       |
| DIII                | -1  | +1  | $R_3$ | 0              | d = 3 |
| AII                 | -1  | 0   | $R_4$ | $\mathbb{Z}$   |       |
| CII                 | -1  | -1  | $R_5$ | 0              |       |
| $\mathbf{C}$        | 0   | -1  | $R_6$ | 0              |       |
| $\operatorname{CI}$ | +1  | -1  | $R_7$ | 0              |       |

## Summary

- Periodic table of topological insulators/superconductors
   3 Z & 2 Z<sub>2</sub> in every dimension exhaustive list for any free fermion Hamiltonian
- Powerful machinery using Clifford algebras and their representations
- Generalizations (lattice symmetries other than reflections)
  - D.S. Freed & G.W. Moore, arXiv:1208.5055
- Weak points
  - Abstract toy models
  - Do not give topological invariants explicitly
  - Electronic correlations???

#### (a) complex classes

| q | $Cl_q$                       | $C_{q}$                                     | $\pi_0(C_q)$ |
|---|------------------------------|---------------------------------------------|--------------|
| 0 | $\mathbb{C}$                 | $(U(n+m)/U(n)\times U(m))\times \mathbb{Z}$ | $\mathbb{Z}$ |
| 1 | $\mathbb{C}\oplus\mathbb{C}$ | U(n)                                        | 0            |

(b) real classes

| q        | $Cl_{0,q}$                         | $R_q$                                          | $\pi_0(R_q)$   |
|----------|------------------------------------|------------------------------------------------|----------------|
| 0        | $\mathbb{R}$                       | $(O(n+m)/O(n) \times O(m)) \times \mathbb{Z}$  | $\mathbb{Z}$   |
| 1        | $\mathbb{R}\oplus\mathbb{R}$       | O(n)                                           | $\mathbb{Z}_2$ |
| <b>2</b> | $\mathbb{R}(2)$                    | O(2n)/U(n)                                     | $\mathbb{Z}_2$ |
| 3        | $\mathbb{C}(2)$                    | U(2n)/Sp(n)                                    | 0              |
| 4        | $\mathbb{H}(2)$                    | $(Sp(n+m)/Sp(n)\times Sp(m))\times \mathbb{Z}$ | $\mathbb{Z}$   |
| 5        | $\mathbb{H}(2)\oplus\mathbb{H}(2)$ | Sp(n)                                          | 0              |
| 6        | $\mathbb{H}(4)$                    | Sp(n)/U(n)                                     | 0              |
| 7        | $\mathbb{C}(8)$                    | U(n)/O(n)                                      | 0              |

#### Some formulas

 $Cl_{p,q} \otimes Cl_{0,2} \square Cl_{q,p+2}$   $\{e_i\} \otimes \{\sigma_x,\sigma_z\} \square \{e_i \otimes (i\sigma_y),\sigma_x,\sigma_z\}$ 

$$Cl_{0,2}: \{\sigma_x, \sigma_z\} \rightarrow \{1, \sigma_x, i\sigma_y, \sigma_z\} \rightarrow R(2): \text{ set of real } 2 \times 2 \text{ matrices}$$
$$= Cl_{1,1}: \{\sigma_x, i\sigma_y\}$$

$$Cl_{p,q} \otimes Cl_{2,0} \square Cl_{q+2,p} \quad \{e_i\} \otimes \{i\sigma_y, i\tau_y\sigma_z\} \rightarrow \{e_i \otimes i\tau_y\sigma_x, i\sigma_y, i\tau_y\sigma_z\}$$
$$Cl_{p,q} \otimes Cl_{1,1} \square Cl_{p+1,q+1} \quad \{e_i\} \otimes \{\sigma_x, i\sigma_y\} \rightarrow \{e_i \otimes \sigma_z, \sigma_x, i\sigma_y\}$$

 $Cl_{p,q} \otimes Cl_{0,4} \ \Box \ Cl_{p,q} \otimes Cl_{2,0} \otimes Cl_{0,2} \ \Box \ Cl_{q+2,p} \otimes Cl_{0,2} \ \Box \ Cl_{p,q+4}$ 

$$\begin{split} Cl_{p,q+8} &\square \ Cl_{p,q+4} \otimes Cl_{0,4} \ \square \ Cl_{p,q+4} \otimes Cl_{2,0} \otimes Cl_{0,2} \ \square \ Cl_{q+4,p+2} \otimes Cl_{2,0} \ \square \ Cl_{p+4,q+4} \\ &\square \ Cl_{p,q} \otimes Cl_{1,1} \otimes Cl_{1,1} \otimes Cl_{1,1} \otimes Cl_{1,1} \\ &\square \ Cl_{p,q} \otimes R(16) \end{split}$$