

清华大学高等研究院

Institute for Advanced Study, Tsinghua University

学术报告

Title:	Higher Dimensional Topological Order, Higher Category and A Classification in 3+1D
Speaker:	Tian Lan 兰夭 (Institute for Quantum Computing, University of Waterloo)
Time:	3:30pm, Friday, May 11, 2018
Venue:	Conference Hall 322, Science Building, Tsinghua University

Abstract

Topological orders are gapped quantum liquid states without any symmetry. Most of their properties can be captured by investigating topological defects and excitation of various dimensions. Topological defects in n dimensions naturally form a (weak) n-category. In particular, anomalous topological order (boundary theory) is described by fusion n-category and anomaly-free topological order (bulk) is described by non-degenerate braided fusion n-category. Holographic principle works for topological orders: boundary always has a unique bulk. Another important property in 3+1D or higher is that point-like excitations must have trivial statistics; they must carry representations of certain group. Such a "gauge group" is hidden in every higher dimensional topological order. In 3+1D, condensing point-like excitations leads to a canonical boundary which in turn determines the bulk topological order. By studying such boundary, a rather simple classification is obtained: 3+1D topological orders are classified by the above "gauge group" together with some cocycle twists. These ideas would also play an important role in dimensions higher than 3+1D and in the study of higher categories.