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Optical lattice:

hopping

on-site interaction

       Theory: M. Fisher et al, PRB 40 546 (1989)
                     D. Jaksch et al, PRL 81 3108 (1998)
Experiment: M.Greiner et al., Nature 415 39 (2002)

Bose-Hubbard model



Bose-Hubbard Model: mean field theory

a†iaj ! ha†i iaj + a†i haji � ha†i ihaji order parameter

superfluid

Mott insulator

Credit: Bloch@MunichM. Fisher et al, PRB 40 546 (1989)
K.Sheshadri et al, Europhys.Lett. 22 257 (1993) 
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Bose-Hubbard Model: excitations, RPA
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K.Sheshadri et al, Europhys.Lett. 22 257 (1993) 

Superfluid Mott insulator



Bose-Hubbard Model: summary

Mott Superfluid Normal

Order
Parameters zero nonzero

(uniform) zero

Compressibility zero nonzero nonzero

Excitations gapped gapless gapless (?)

Charge Transport 
(DC...vities) zero nonzero

+ superfluid nonzero

Considerations in terms of many-body wave functions and density matrices can 
be carried out for these different phases (Yang, Kohn, Bloch, Leggett).



What are the effects of spin-orbit couplings in 
Bose-Hubbard model?

W.Cole et al. PRL 109 085302 (2012) 

William Cole Arun Paramekanti Nandini Trivedi



The plan

1. Introduction to Bose-Hubbard model (BHM)

4. Conclusions and outlook

2. BHM with spin-orbit coupling

3. Slave boson theory

Weak interaction superfluid
Strong coupling Mott insulator; 1D & 2D magnetic models

Construction

Some consequences

Phase diagram - magnetic structure in strongly interacting superfluid



Bose-Hubbard Model: with spin-orbit interactions

two internal states

hopping on-site 
interaction

�U

e�i↵�
xei↵�y

H
hop

= �ta†i�R
��0

⌫̂ ai+⌫̂�0

⌫̂ = x̂, ŷ�,�0 =", #



hopping on-site 
interaction

Bose-Hubbard Model: non-interacting band structure

Lattice version of the 
Rashba spin-orbit coupling

two internal states

�U



Non-interacting band structure

�⇥ 0 ⇥
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⇥
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k y

Non-trivial winding (Chern number) 
around the Γ point due to existence 
of Dirac points:

Lattice version of the 
Rashba spin-orbit coupling



Weak coupling superfluid
Four degenerate states: (±k0,±k0)p

2 tan k0 = tan↵

Spins lie in the x-y plane.

Uint /
1 + �

2
(n" + n#)

2 +
1� �

2
(n" � n#)

2

� < 1 no polarization
only one state is occupied; uniform spin 

and number density

polarization
two opposite states are occupied; strip 

spin and uniform number density

� > 1

W.Cole et al. PRL 109 085302 (2012) 
Cf. Considerations of Y.Li et al, PRL 108 225301 (2012)
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Strong coupling Mott insulator
Consider the case in which on average, there is one boson per site. Standard 
perturbation theory gives low energy effective magnetic Hamiltonian
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� sin(2↵)ŷ · (Si ⇥ Sl)

y-direction:

� 1

�
Sx

i

Sx

j

� cos(2↵)

�
Sy

i

Sy

j

� 2�� 1

�
cos(2↵)Sz

i

Sz

j

+sin(2↵)x̂ · (Si ⇥ Sj)

Dzyaloshinskii-Moriya coupling

W.Cole et al. PRL 109 085302 (2012)
J.Radic et al. PRL 109 085303 (2012)

Z.Cai et al. PRA 85 061606R (2012)
M.Gong et al, arXiv:1205.6211

Cf. DM term in superfluid, X. Xu and J.Han PRL 108 185301 (2012)



1D magnetic Hamiltonian
For example, 1D Hamiltonian along x-direction. Rotate spins around x by π/2, such 
that DM vector is along z
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System DM/Exchange
Cooper Benzoate 0.05

Yb4As3 ?
BaCu2Si2O7 0.02?

CsCuCl3 0.18

Some 1D AFM system with DM

XY-exchange and DM couplings 
can be tuned by changing α and 
λ, in particular, DM can be made 
as large as exchange coupling;

Various limits of the model can 
be solved exactly.



1D magnetic Hamiltonian:
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Case I � ! 0
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rotation around x by π 
every other site 

Z-ferromagnetic
0 < ↵ < ⇡/2; | cos(2↵)| < 1

critical points: 
↵ = 0,⇡/2; | cos(2↵)| = 1
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1D magnetic Hamiltonian:

�

↵ ⇡/20

Case II
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Rotate each spin around z by φ=2α.

x̂

ŷẑ

� = 1

Z-FM

Can be mapped to XXZ model with a 
new twisted boundary condition. It 
can be solved with Bethe ansatz and 
turns out to be always critical in bulk.
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1D magnetic Hamiltonian:
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Case III
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Can be solved using Jordan-Wigner.

E±(k) = sin(2↵) sin k ± | cos(2↵)|
Critical points: ↵ = ⇡/8; 3⇡/8

critical line

Z-FM

Y-FM Y-AFMXY-chiral

0 p
2 p

0

k

EHk
L

a=0.1p
a=pê8,3pê8
a=pê6

special cases



1D magnetic Hamiltonian:
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Case IV
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Schematic Phase diagram
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What needs to be done:

Exact Diagonalization (12 sites) 
suggests phase diagram as 
shown left. It confirms the part 
for λ>1; but for λ<1, not very 
clear;

Calculate correlation functions 
and investigate experimental 
signatures.

Calculate phase diagram with 
DMRG technique;



2D classical magnetic phases

Magnetic structure factors:

Sq =

���
X

i

Si exp(iq · ri)
���
2

Calculated with classical Monte
Carlo annealing procedure

+
variational ansatz



What are the implications of magnetic ordering 
for the superfluid states? 
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Mean field theory

Due to complicated magnetic ordering, we 
carry out calculations on a finite cluster 
(8*8) with periodic boundary conditions to 
attain self-consistency.
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Local magnetization:

Bond current:



Phase diagram
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Smooth evolution of magnetic order from
Mott insulator to superfluid!



How are the current patterns related to magnetic 
ordering? 
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Slave boson theory:

Single site Hilbert space: |m ", n #i

|m+ nib ⌦ |m ", n #if

a†� =
1

p
nb

b†f†
� nb = b†b

To describe the interplay between magnetism and superfluidity, introduce

X
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f†
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Local constraint:

The canonical commutation relations of a-operators are preserved in the physical 
Hilbert space.
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Slave boson mean field theory

z† = (z⇤" , z
⇤
#) z†z = 1

Assuming that the magnetic moments are ordered in the ground state, we can then 
make the classical field approximation and define:

z� = ⌘�1

⌧
f�p
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Hopping Hamiltonian within mean field becomes:
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h
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i
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Thus, the original spin-orbit couplings for a-bosons become abelian gauge fields for 
the charge degrees of freedom b, within slave boson mean field and if spinons 
(f) are condensed.

The constraint is implemented with U(1) gauge fields, which will be gapped through 
Higgs mechanism, if spinons are condensed. The suppressed gauge fluctuations 
may ensure the validity of the slave boson mean field theory.
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1 2

3
4

Slave boson theory:
Case I: Ferromagnetic background

zi = (1, 0), 8 i

Hmf

hop

= �(t cos↵)b†i bi+⌫̂

renormalized hopping. 
U fm
c = Uc cos↵

Case II: Anti-ferromagnetic background
zi = (1, 0); Sublattice A

zi = (0, 1); Sublattice B
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3
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Y
t12t23t34t41 = �t4 sin4 ↵ < 0

π-flux lattice, Dirac points at (0,±π/2)

ππ

π

understand current patterns

Two-fold degeneracy of current 
patterns!
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Slave boson theory:
Case III: Spin crystal background
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What needs to be done:

Self-consistent determination of  
the spinon fields z (full slave 

boson mean field theory);

Possibility of an “exotic” Mott 
insulator in BHM with spin-orbit 

coupling;

understand current patterns

Fixed current patterns!
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Conclusions and outlook
We have studied Bose-Hubbard Model with spin-orbit interactions and established 
its weak coupling superfluid states, magnetic structure in the Mott insulating 
states and determined the phase diagram using mean field theory.

We proposed a new slave boson theory and argued that it was helpful for us to 
understand certain features of the strongly interacting superfluids close to the Mott 
transition.

Understand the phase diagram with slave boson theory. In particular, investigate 
the possibility of “exotic” Mott insulating states (e.g. disordered magnetic states 
close to the Mott boundary).

Magnetic models in either 1D or 2D are worth investigating in detail. In particular, 
for 1D, the complete phase diagram with exact diagonalization or density matrix 
renormalization group calculation; possibility of experimental implementation. For 
2D, collective excitations and order from disorder calculations.



Thank you!


