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What about interactions?

Problems of interacting electrons are 
hard... 

A lot depends on microscopics: 
chemistry, lattices...



Topological phases

Topological phases of matter are nice, because 
their long-wavelength properties are universal 

Bulk: quantized response, emergent gauge 
and/or matter d.o.f. 

Surface: robust gapless d.o.f. 

Bulk is gapped, focus on effect of interactions 
on surface



3D topological insulators

Surface state = 2D 
Dirac fermion 

Goal: universal 
(materials-independent) 
description of surface 
state interactions & 
instabilities

Bi2Se3 
(Xia et al., Nat. Phys. 2009)
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Outline

Weak correlations: Landau theory of 
helical Fermi liquids 

 R. Lundgren and JM, PRL 115, 066401 (2015) 

Strong correlations: Universal conductivity 
at semimetal-superconductor QCP 

 W. Witczak-Krempa and JM, arXiv:1510.06397



Landau Fermi liquid 
theory

Fundamental paradigm of many-body 
physics (Landau 1956; Abrikosov, 
Khalatnikov 1957) 

Adiabatic continuity between energy 
levels of free & interacting systems: QP 
with momentum k, spin σ, distribution 
function nkσ



Landau Fermi liquid 
theory

Landau functional: energy of many-body 
excited state (configuration of QPs) 
relative to GS

δnkσ = nkσ – nkσ0 



Landau parameters
Most general symmetry-allowed short-range 
interaction: TRS, spatial SO(3) rotations, spin 
SU(2) rotations

Interactions between QPs near the FS: 
Landau parameters Fl

s, Fl
a



Landau parameters

(Finite) renormalization of physical 
properties due to interactions

effective mass

specific heat 
(cv = γT)

compressibility

spin susceptibility

Galilean invariance



A theory of helical Fermi 
liquids?

Phenomenological Landau theory for the 
3D TI surface state? 

Qualitative differences from ordinary FL 
theory due to SOC



Symmetries of the helical FL

TRS = protecting symmetry of 3D TI 

Rotation symmetry: focus on materials with (almost) 
perfectly circular FS

Bi2Se3 Bi2Te2Se 
TlBiSe2 

Pan et al., PRL 2011 Neupane et al., PRB 2013 Kuroda et al., PRB 2015 



Landau functional
SOC: QP distribution function is 2x2 
matrix

Landau functional
p 

p’ 



Spin & charge densities



Spin-orbit rotation symmetry
Lz and Sz not good quantum numbers, 
only Jz=Lz+Sz is

Determine most general interaction 
invariant under Jz rotations and TRS



Allowed interactions

Charge-charge: identical to spinless 2D FL 
theory 

Spin-spin: XXZ, Dzialoshinski-Moriya, and 
"compass model" 

Direct spin-charge interaction allowed by SOC



Landau parameters
10 Landau parameters (per angular 
momentum):

Compared to 2 for standard FL theory



Projected Fermi liquid theory

FL theory: only keep d.o.f. near FS

p 

E 

EF 
E+(p) = |p| 

E-(p) = -|p| 



Projected Fermi liquid theory

FL theory: only keep d.o.f. near FS

p 

E 

EF 
E+(p) = |p| 

E-(p) = -|p| 

effectively spinless theory!



Projected Fermi liquid theory
Projected Landau parameters

Projection to helical FS can effectively raise/lower angular 
momentum of the interaction (cf. Fu, Kane, PRL 2008)

p-wave 

s-wave 



Physical properties

but no Galilean invariance!



Pomeranchuk instabilities
Instabilities towards spontaneous distortions 
of the FS (Pomeranchuk, JETP 1958)

Stability of FS requires



Pomeranchuk instabilities

l=0: phase separation

l=1: in-plane magnetic order (Xu, PRB 2010)
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Pomeranchuk instabilities
l=2: nematic instability

Unprojected theory: quadrupolar "spin-orbital" 
order parameter (Park, Chung, JM, PRB 2015; Fu, 
PRL 2015)



Pomeranchuk instabilities
l=2: nematic instability

Unprojected theory: quadrupolar "spin-orbital" 
order parameter (Park, Chung, JM, PRB 2015; Fu, 
PRL 2015)



Strong correlations: Universal conductivity 
at semimetal-superconductor QCP 

 W. Witczak-Krempa and JM, arXiv:1510.06397



SC instability of TI surface 
state

FL theory: instabilities in particle-hole 
channel 

Consider pairing instability of Dirac surface 
state at μ = 0 

Vanishing DOS: finite threshold attraction 
strength -> QCP



SC instability of TI surface 
state



SUSY QCP

QCP has emergent N=2 SUSY! (Grover, Sheng, 
Vishwanath, Science 2014; Ponte, Lee, NJP 2014) 

Strongly coupled (2+1)D CFT: N=2 Wess-Zumino model

Finite              at the QCP: universality class neither 
Gaussian nor 3D XY



SUSY QCP
SUSY fixes exact anomalous dimensions of    

          

Correlation length exponent not fixed by SUSY

1-loop RG (Thomas, 2005)⌫ =
1

2
+

✏

4
+O(✏2) ⇡ 0.75



SUSY QCP

Can SUSY tell us anything else?



Optical conductivity

Damle & Sachdev, PRB 1997



Optical conductivity: (2+1)D

T=0 optical conductivity = universal constant

     related to T=0 JJ correlation function (Kubo)



Graphene = free 
Dirac CFT



Boson superfluid-insulator QCP

Universal conductivity       : no exact result, long history 
(Fisher, Grinstein, Girvin, PRL 1990; Cha et al., PRB 1991; 
Fazio & Zappalà, PRB 1996; Šmakov & Sørensen, PRL 
2005; ...)



QMC + holography + conformal bootstrap (Katz et al., PRB 
2014; Gazit et al., PRB 2013, PRL 2014; Chen et al., PRL 2014; 
Witczak-Krempa et al., Nat. Phys. 2014; Kos et al., arXiv 2015)

Boson superfluid-insulator QCP



Kubo for CFTs

Ground-state JJ correlation function, constrained by 
conformal symmetry (Osborn & Petkou, Ann. Phys. 
1994)

Can      be computed at our SUSY QCP?



N=2 SCFTs in (2+1)D

U(1) current and stress tensor are related by 
SUSY

<JJ> and <TT> are related by SUSY



Shear viscosity

quantum 
fluid

boundary plate 
(moving)

boundary plate (stationary)

shear stress
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Shear viscosity

quantum 
critical 
fluid

boundary plate 
(moving)

boundary plate (stationary)

shear stress

(dynamical) shear viscosity



Conductivity vs viscosity

Exact universal ratio at the QCP: consequence 
of SUSY



Exact universal conductivity

CT can be calculated exactly for the N=2 WZ model by 
localization on the squashed 3-sphere (Closset et al., JHEP 
2013; Nishioka & Yonekura, JHEP 2013)



Exact universal conductivity

CT can be calculated exactly for the N=2 WZ model by 
localization on the squashed 3-sphere (Closset et al., JHEP 
2013; Nishioka & Yonekura, JHEP 2013)

Exact result for T=0 conductivity (and shear viscosity) of 
"realistic" strongly coupled quantum fluid in (2+1)D



Exact universal conductivity

Reduced conductivity = increase scattering due to 
interactions



Finite temperature?

Katz et al., PRB 2014

identity stress tensor



Finite temperature?

Can't say much about         : probably nonzero



Finite temperature?

      : related to <JJT> correlation function



Finite temperature?

Combine conformal invariance + Ward identities (Osborn & 
Petkou, Ann. Phys. 1994), and SUSY (Buchbinder, Kuzenko, 
Samsonov, JHEP 2015):

for all (2+1)D QCPs with N=2 SUSY!

      : related to <JJT> correlation function



Finite temperature?

Combine conformal invariance + Ward identities (Osborn & 
Petkou, Ann. Phys. 1994), and SUSY (Buchbinder, Kuzenko, 
Samsonov, JHEP 2015):

for all (2+1)D QCPs with N=2 SUSY!

Exact result for finite-T, dynamical response of strongly 
coupled quantum fluid in (2+1)D

      : related to <JJT> correlation function



What about the real world?



What about the real world?
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Surface SC in Sb2Te3?

Resistive transition at Tc = 8.6 K

Anisotropic (2D) diamagnetic 
screening below T ~ 50 K (~2% 
of Meissner value)

Inhomogeneous STM maps, largest 
local "gap" (~ 20 meV) consistent 
with local BCS Tc ~ 60 K

10 nm

Inhomogeneous BCS pairing in local 
Dirac "puddles" at T ~ 50-60 K, onset 
of global phase coherence at T = 8.6 
K? (Nandkishore, JM, Huse, Sondhi, 
PRB 2013) 



Surface SC in Sb2Te3?

Far from ideal system... but cleaner 
materials may lead to desired 
physics



Summary

Weakly correlated surface state can be 
described in a materials-independent way by 
a effectively spinless, phenomenological 
"projected" Landau Fermi liquid theory 

SUSY allows us to calculate exactly 
dynamical response properties (e.g. optical 
conductivity) at zero and finite temperature 
for the strongly coupled SM-SC surface QCP 
in (2+1)D


