Topological Weyl Semimetal and Unconventional Superconductivity in Doped Topological Insulators

万贤纲 (Xiangang Wan) 南京大学物理系 2013年11月13日 清华高研院

❑Weyl半金属

❑BiS₂超导体

□掺杂拓扑绝缘体

合作者

Sergej Savrasov, UC Davis

Ari Turner & Ashvin Vishvanath *UC Berkeley*

段纯刚

Qiang Wang, Daniel S Dessau

科罗拉多大学/橡树岭

动机(5d元素)

5d过渡金属氧化物

□烧绿石结构铱化合物 磁基态构型, Weyl半金属, Fermi Arc

❑设计Axion绝缘体

Slater insulator

❑BiS₂超导体

□电声子耦合→非常规超导体

5d过渡元素氧化物的特点 自旋轨道耦合和电子关联

www.sciencemag.org SCIENCE VOL 323 6 MARCH 2009

Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr₂IrO₄

B. J. Kim,^{1,2}* H. Ohsumi,³ T. Komesu,³ S. Sakai,^{3,4} T. Morita,^{3,5} H. Takagi,^{1,2}* T. Arima^{3,6}

Measurement of the quantum-mechanical phase in quantum matter provides the most direct manifestation of the underlying abstract physics. We used resonant x-ray scattering to probe the relative phases of constituent atomic orbitals in an electronic wave function, which uncovers the unconventional Mott insulating state induced by relativistic spin-orbit coupling in the layered 5*d* transition metal oxide Sr_2IrO_4 . A selection rule based on intra-atomic interference effects establishes a complex spin-orbital state represented by an effective total angular momentum = 1/2 quantum number the phase of which can lead to a quantum topological state of matter.

PRL 101, 076402 (2008)

PHYSICAL REVIEW LETTERS

Novel $J_{eff} = 1/2$ Mott State Induced by Relativistic Spin-Orbit Coupling

•尽管5d的实空间轨道半径很大,但是由于强的自旋轨道耦合,仍然有不可忽略的电子关联效应。

由于自旋轨道耦合和电子关联的联合效应导致了 Sr₂lrO₄等5d⁵电子体系是绝缘体

ω

U

FIG. 1. Schematic energy diagrams for the $5d^5(t_{2e}^5)$ configuration (a) without SO and U, (b) with an unrealistically large Ubut no SO, (c) with SO but no U, and (d) with SO and U. Possible optical transitions A and B are indicated by arrows. (e) 5d level splittings by the crystal field and SO coupling.

(after Kim et.al, PRL 2009)

PRL 105, 216407 (2010)

PHYSICAL REVIEW LETTERS

week ending 19 NOVEMBER 2010

Orbital Magnetism and Spin-Orbit Effects in the Electronic Structure of BaIrO₃

PRL 99, 137207 (2007)

PHYSICAL REVIEW LETTERS

week e 28 SEPTEM

Spin-Liquid State in the S = 1/2 Hyperkagome Antiferromagnet Na₄Ir₃O₈

1) 有着hyperkagome 结构 2) Curie-Weiss 温度(大约为650K) 3) effective moment 也较大(1.96µ_B)?? 4) 在极低的温度下它都不表现任何磁有序。

三维的量子自旋液体?

PHYSICS

An End to the Drought of Quantum Spin Liquids

www.sciencemag.org SCIENCE VOL 321 5 SEPTEMBER 2008

After decades of searching, several promising examples of a new quantum state of matter have now emerged.

Patrick A. Lee

PRL 101, 197202 (2008)	PHYSICAL	REVIEW	LETTERS	7 NOVEMBER 2003
------------------------	----------	--------	---------	-----------------

Gapless Spin Liquids on the Three-Dimensional Hyperkagome Lattice of Na4 Ir3O8

Michael J. Lawler,1 Arun Paramekanti,1 Yong Baek Kim,1 and Leon Balents2

PRL 99, 037201 (2007)	PHYSICAL REVIEW LETTERS	week ending 20 JULY 2007
-----------------------	-------------------------	-----------------------------

Classical Antiferromagnet on a Hyperkagome Lattice

John M. Hopkinson,¹ Sergei V. Isakov,¹ Hae-Young Kee,¹ and Yong Baek Kim^{1,2}

PRL 101, 197201 (2008)	PHYSICAL	REVIEW	LETTERS	7 NOVEMBER 2008
------------------------	----------	--------	---------	-----------------

Na₄Ir₃O₈ as a 3D Spin Liquid with Fermionic Spinons

Yi Zhou,1,2 Patrick A. Lee,3 Tai-Kai Ng,4 and Fu-Chun Zhang1

PRL 102, 256403 (2009)

PHYSICAL REVIEW LETTERS

week en 26 JUNE

Quantum Spin Hall Effect in a Transition Metal Oxide Na₂IrO₃

Atsuo Shitade,^{1,*} Hosho Katsura,² Jan Kuneš,^{3,4} Xiao-Liang Qi,⁵ Shou-Cheng Zhang,⁵ and Naoto Nagaosa^{1,2}

Mott Insulators in the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev Models

G. Jackeli^{1,*} and G. Khaliullin¹ PRL **102**, 017205 (2009)

实验证实它有长程磁序 (Singh and Gegenwart 2010)

烧绿石结构A2B2O7; 尖晶石结构AB2O4

A-Site

B- Site

Spin ice

 $A_2B_2O_7$,部分4f元素占据A位时表现出lsing-type的各向异性。

当**铁磁的**exchange interaction和Ising-type的各向异性结合可以 导致出巨大的Geometrical frustration

Magnetic Monopoles in Spin Ice

$$H = \frac{J}{3} \sum_{\langle ij \rangle} S_i S_j + Da^3 \sum_{(ij)} \left[\frac{\hat{e}_i \cdot \hat{e}_j}{|\mathbf{r}_{ij}|^3} - \frac{3\left(\hat{e}_i \cdot \mathbf{r}_{ij}\right)\left(\hat{e}_j \cdot \mathbf{r}_{ij}\right)}{|\mathbf{r}_{ij}|^5} \right] S_i S_j$$

$$\mathcal{V}(r_{ij}) = \begin{cases} \frac{\mu_0}{4\pi} \frac{q_i q_j}{r_{ij}} & r_{ij} \neq 0\\ v_0 q_i q_j & r_{ij} = 0, \end{cases}$$

这些材料表现强的磁响应

实验定磁结构不容易

Magnetic susceptibility for Sm₂Ir₂O₇

nature

physics

ARTICLES

PUBLISHED ONLINE: 21 MARCH 2010 | DOI: 10.1038/NPHYS1606

Mott physics and band topology in materials with strong spin-orbit interaction

Dmytro Pesin^{1,2}*[†] and Leon Balents²

Recent theory and experiment have revealed that strong spin-orbit coupling can have marked qualitative effects on the band structure of weakly interacting solids, leading to a distinct phase of matter, the topological band insulator. We show that spin-orbit interaction also has quantitative and qualitative effects on the correlation-driven Mott insulator transition. Taking Ir-based pyrochlores as a specific example, we predict that for weak electron-electron interaction Ir electrons are in metallic and topological band insulator strength, the effects of spin-orbit interaction, respectively. We show that by increasing the electron-electron interaction strength, the effects of spin-orbit insulator' phase having gapless surface spin-only excitations, the topological band insulator is transformed into a 'topological Mott insulator' phase having gapless surface spin-only excitations. The proposed phase diagram also includes a region of gapless Mott insulator with a spinon Fermi surface, and a magnetically ordered state at still larger electron-electron interaction.

□5d过渡金属氧化物

□烧绿石结构铱化合物

□磁基态构型,Weyl半金属,Fermi Arc

□设计Axion绝缘体

烧绿石结构铱氧化物A₂Ir₂O₇(A=Y,稀土元素) 实验事实

局域密度近似+自旋轨道耦合计算

г XWXK г L

几何阻错结构磁性基态的找寻
$$J_{\tau R\tau' R'}^{\alpha\beta} = \sum_{\mathbf{q}} \sum_{\mathbf{k}jj'} \frac{f_{\mathbf{k}j} - f_{\mathbf{k}+\mathbf{q}j'}}{\epsilon_{\mathbf{k}j} - \epsilon_{\mathbf{k}+\mathbf{q}j'}} \langle \psi_{\mathbf{k}j} | [\sigma \times \mathbf{B}_{\tau}]_{\alpha} | \psi_{\mathbf{k}+\mathbf{q}j'} \rangle \langle \psi_{\mathbf{k}+\mathbf{q}j'} | [\sigma \times \mathbf{B}_{\tau'}]_{\beta} | \psi_{\mathbf{k}j} \rangle e^{i\mathbf{q}(\mathbf{R}-\mathbf{R}')}$$

- X. Wan, Q. Yin, S.Y. Savrasov, PRL 97, 266403
- X. Wan, T. A. Maier, and S. Y. Savrasov, PRB 79, 155114

X. Wan, J. Dong, and S. Y. Savrasov, PRB 83, 205201

X. Wan, M. Kohno, and X. Hu, PRL 94, 087205

X. Wan, M. Kohno, and X. Hu, PRL 95, 146602

All-in/all-out非共线磁结构

- 1) 有转过去的趋势
- •2) 此构型是我们计算的唯一稳定的磁构型
- 3) J(q)在q=0是极大
- 4) 没有Fermi surface nesting

G

Magnetic transition, long-range order, and moment fluctuations in the pyrochlore iridate Eu₂Ir₂O₇

Songrui Zhao,^{1,*} J. M. Mackie,¹ D. E. MacLaughlin,¹ O. O. Bernal,² J. J. Ishikawa,³ Y. Ohta,³ and S. Nakatsuji³

Muon spin rotation and relaxation experiments in the pyrochlore iridate Eu₂Ir₂O₇ yield a well-defined muon spin precession frequency below the metal-insulator/antiferromagnetic transition temperature $T_M = 120$ K, indicative of long-range commensurate magnetic order and thus ruling out quantum spin liquid and spin-glass-like ground states. The dynamic muon spin relaxation rate is temperature-independent between 2 K and $\sim T_M$ and yields an

Magnetic order in the pyrochlore iridates $A_2 Ir_2 O_7 (A = Y, Yb)$

S. M. Disseler,¹ Chetan Dhital,¹ A. Amato,² S. R. Giblin,³ Clarina de la Cruz,⁴ Stephen D. Wilson,¹ and M. J. Graf^{1,*} ¹Department of Physics. Boston College. Chestnut Hill. Massachusetts 02467. USA

We present results from muon spin relaxation/rotation, magnetization, neutron scattering, and transport measurements on polycrystalline samples of the pyrochlore iridates Y₂Ir₂O₇ (Y-227) and Yb₂Ir₂O₇ (Yb-227). Well-defined spontaneous oscillations of the muon asymmetry are observed together with hysteretic behavior in magnetization below 130 K in Yb-227, indicative of commensurate long-range magnetic order. Similar

Magnetic order and the electronic ground state in the pyrochlore iridate Nd₂Ir₂O₇

S. M. Disseler,¹ Chetan Dhital,¹ T. C. Hogan,¹ A. Amato,² S. R. Giblin,³ Clarina de la Cruz,⁴ A. Daoud-Aladine,³ Stephen D. Wilson,¹ and M. J. Graf¹

We report a muon spin relaxation/rotation, bulk magnetization, neutron scattering, and transport study of the electronic properties of Nd₂Ir₂O₇. We observe the onset of strongly hysteretic behavior in the temperature-dependent magnetization below 120 K, and an abrupt increase in the temperature-dependent resistivity below 8 K. Muon spin relaxation measurements show that the hysteretic magnetization is driven by a transition to a magnetically disordered state, and below 8 K a magnetically ordered ground state sets in, as evidenced by the onset of spontaneous muon precession. Our measurements point toward the absence of a true metal-to-insulator

Continuous transition between antiferromagnetic insulator and paramagnetic metal in the pyrochlore iridate Eu₂Ir₂O₇

Jun J. Ishikawa,* Eoin C. T. O'Farrell, and Satoru Nakatsuji[†]

Our single crystal study of the magnetothermal and transport properties of the pyrochlore iridate $Eu_2Ir_2O_7$ reveals a continuous phase transition from a paramagnetic metal to an antiferromagnetic insulator for a sample with stoichiometry within ~1% resolution. The insulating phase has strong proximity to an antiferromagnetic semimetal, which is stabilized by several % level of the off-stoichiometry. Our observations suggest that in addition to electronic correlation and spin-orbit coupling the magnetic order is essential for opening the charge gap.

Emergence of Magnetic Long-range Order in Frustrated Pyrochlore Nd₂Ir₂O₇ with Metal-insulator Transition

K. Tomiyasu,^{1, *} K. Matsuhira,² K. Iwasa,¹ M. Watahiki,¹ S. Takagi,² M. Wakeshima,³ Y. Hinatsu,³ M. Yokoyama,⁴ K. Ohoyama,⁵ and K. Yamada⁶

In this study, we performed powder neutron diffraction and inelastic scattering measurements of frustrated pyrochlore Nd₂Ir₂O₇, which exhibits a metal-insulator transition at a temperature $T_{\rm MI}$ of 33 K. The diffraction measurements revealed that the pyrochlore has an antiferromagnetic long-range structure with propagation vector q_0 of (0,0,0) and that it grows with decreasing temperature below 15 K. This structure was analyzed to be of the all-in all-out type, consisting of highly anisotropic Nd³⁺ magnetic moments of magnitude $2.3 \pm 0.4\mu_{\rm B}$, where $\mu_{\rm B}$ is the Bohr magneton. The inelastic scattering measurements revealed that the Kramers ground doublet of Nd³⁺ splits below $T_{\rm MI}$. This suggests the appearance of a static internal magnetic field at the Nd sites, which probably originates from a magnetic order consisting of Ir⁴⁺ magnetic moments. Here, we discuss a magnetic structure model for the Ir order and the relation of the order to the metal-insulator transition in terms of frustration.

PHYSICAL REVIEW B 85, 045124 (2012)

Topological and magnetic phases of interacting electrons in the pyrochlore iridates

William Witczak-Krempa¹ and Yong Baek Kim^{1,2}

Mean field approximation

DCA

理论方面

Magnetic orders and topological phases from f-d exchange in pyrochlore iridates

Gang Chen and Michael Hermele

We study theoretically the effects of f-d magnetic exchange interaction in the R₂Ir₂O₇ pyrochlore iridates. The R³⁺ f-electrons form localized magnetic doublets due to the crystal field environment, while the Ir⁴⁺ delectrons are more itinerant and feel a strong spin-orbit coupling. We construct and analyze a minimal model capturing this physics, treating the Ir subsystem using a Hubbard-type model. First neglecting the Hubbard interaction, we find Weyl semi-metal and Axion insulator phases induced by the f-d exchange. Next, we find that f-d exchange can cooperate with the Hubbard interaction to stabilize the Weyl semi-metal over a larger region of parameter space than when it is induced by d-electron correlations alone. Applications to experiments are discussed.

All-in/all-out非共线磁结构

Cd₂Os₂O₇

PHYSICAL REVIEW B, VOLUME 63, 195104

2001

Continuous metal-insulator transition in the pyrochlore Cd₂Os₂O₇

D. Mandrus,^{1,2,*} J. R. Thompson,^{2,1} R. Gaal,³ L. Forro,³ J. C. Bryan,⁴ B. C. Chakoumakos,¹ L. M. Woods,^{2,1} B. C. Sales,¹ R. S. Fishman,¹ and V. Keppens^{1,†}

PHYSICAL REVIEW B, VOLUME 65, 155109

2002

Electronic structure of the pyrochlore metals Cd₂Os₂O₇ and Cd₂Re₂O₇

D. J. Singh

Code 6391, Naval Research Laboratory, Washington, DC 20375

P. Blaha and K. Schwarz Institut für Physik und Theoretische Chemie, TU Wien, A-1060 Wien, Austria

J. O. Sofo

All-in/all-out非共线磁结构

PRL 108, 247204 (2012)

PHYSICAL REVIEW LETTERS

week ending 15 JUNE 2012

Noncollinear Magnetism and Spin-Orbit Coupling in 5d Pyrochlore Oxide Cd₂Os₂O₇

We investigate the electronic and magnetic properties of the pyrochlore oxide $Cd_2Os_2O_7$ using the density-functional theory plus on-site repulsion (*U*) method, and depict the ground-state phase diagram with respect to *U*. We conclude that the all-in–all-out noncollinear magnetic order is stable in a wide range of *U*. We also show that the easy-axis anisotropy arising from the spin-orbit coupling plays a significant role in stabilizing the all-in–all-out magnetic order. A *pseudogap* was observed near the transition between

PRL 108, 247205 (2012)PHYSICAL REVIEW LETTERSweek ending
15 JUNE 2012

Tetrahedral Magnetic Order and the Metal-Insulator Transition in the Pyrochlore Lattice of Cd₂Os₂O₇

accompanied with any spatial symmetry breaking. We propose a noncollinear all-in-all-out spin arrangement on the tetrahedral network made of Os atoms. Based on this we suggest that the transition is not caused by the Slater mechanism as believed earlier but by an alternative mechanism related to the

□5d过渡金属氧化物

□烧绿石结构铱化合物

磁基态构型, Weyl半金属, Fermi Arc

□设计Axion绝缘体

电子关联+自旋轨道耦合>新的物理?

这里是磁性打破了时间反演,所以这个体系不是 常规的拓扑绝缘体。

是否有新的物理?

绝缘体 只要能隙没有闭合,其拓扑量子序不变。所以对于绝缘体可以定义拓扑性质。

对于金属呢?

100k points

Parities change!

Mott Insulator

We study changes in band parities that may indicate a presence of topological insulator and also semi-metallic phase since topological insulators in 3D must be separated from trivial insulator by 3D Dirac (Weyl) points (Murakami, Kuga, 2008).

在合理的U的范围内(1.0eV<U<1.8 eV)是Weyl semi-metal

LEFT: within $k_z=0$ plane of BZ RIGHT: for $k_z=0.3$ plane of BZ

Arita et al., PRL (2012)→ U在1.4→2.3 eV

Weyl-semimetal

- Graphene 里面的Dirac point 是4分量的)。
- Weyl点一旦产生,就非常稳定,小的扰动不能把它消灭。只有2个具有相反符号的Weyl点相遇,Weyl点才能消失,材料变为绝缘体。
- 要打破时间反演或空间反演不变。

$$\left(\begin{array}{cc} A & C \\ C & B \end{array}\right) \quad \textcircled{B} \quad \left(\begin{array}{cc} A & \blacksquare & B \\ Re & C & \blacksquare & 0 \\ Im & C & \blacksquare & 0 \end{array}\right), \quad k_x, k_y, k_z$$

金属 拓扑?

绝缘体 只要能隙没有闭合,其拓扑量子序
不变。所以对于绝缘体可以定义拓扑性质。

• 对于金属呢?

Weyl-semimetal

In the vicinity of Weyl Point: $q = k \cdot k_W$ $H(q) = \sum_{i=xyz} v_i \bullet q\sigma_i$ $E_{\pm}(q) = \pm \sqrt{\sum_{i=xyz} (v_i \bullet q)^2}$

The Berry curvature is evaluated to be

$$\Omega(k) = i \sum_{n=1}^{N_{occ}} \langle \nabla_k u_{kn} | \times | \nabla_k u_{kn} \rangle \rightarrow \sum_{ijk} \frac{1}{2} \varepsilon_{ijk} (v_i \times v_j) (v_k \bullet q) \frac{1}{\left(\sum_i (v_i \bullet q)^2\right)^{3/2}}$$

Integrating over small sphere surrounding Weyl point produces flux that is given by chiral charge *c*

$$c = \frac{1}{2\pi} \prod_{S} dS\Omega(k) = \operatorname{sign}(v_1 \bullet v_2 \times v_3)$$

Weyl point acts as a magnetic monopole at the origin:

$$\Omega(q) = c \frac{1}{2} \frac{q}{q^3}$$

"点电荷"

Charge determined in terms of electron velocities at this k_D point:

 $c = sign(v_1 \bullet v_2 \times v_3)$

Three positive Weyl points around L

Positive and negative Weyl points in BZ

减小U→Weyl Point朝X点移动,当U=1.0eV时,2个相反符 号的Weyl Point在X点相遇.如果材料是绝缘体的话这将 是Axion Insulator 但是LDA+SO+U发现别处有能带通过Fermi level

□5d过渡金属氧化物

□烧绿石结构铱化合物

磁基态构型, Weyl半金属, Fermi Arc

□设计Axion绝缘体

Fermi Arc (费米面是不连续的线段)

Fermi Arc (topo→费米面是不连续的线段)

Fermi Arcs connecting Weyl points of opposite chirality can be directly observed

烧绿石结构Ir氧化物(A₂Ir₂O₇)相图

新型的拓扑量子态—Weyl半金属

- a) Weyl 点是稳定的
- b) 有受拓扑保护的表面态,即非闭合的费 米面(Fermi arc)
- c) 它对外场的响应也由其拓扑性质决定(只 与Weyl点的位置有关,和能带的细节无关)。

Variation of Charge Dynamics in the Course of Metal-Insulator Transition for Pyrochlore-Type Nd₂Ir₂O₇

Linear magnetoresistance and time reversal symmetry breaking of pyrochlore iridates $Bi_2Ir_2O_7$

Jiun-IIaw Chu,^{1,2,*} Scott. C. Riggs,^{3,4} Maxwell Shapiro,^{3,4} Jian Liu,^{1,2} Claudy Ryan Serero,⁵ Di Yi,⁵ M. Melissa,¹ S. J. Suresha,² C. Frontera,⁶ Ashvin Vishwanath,^{1,2} Xavi Marti,⁵ I. R. Fisher,^{3,4} and R. Ramesh^{1,5,2}

□5d过渡金属氧化物

□烧绿石结构铱化合物

磁基态构型,Weyl半金属,Fermi Arc

□设计Axion绝缘体

Axion Insulators

ARTICLES PUBLISHED ONLINE: 7 MARCH 2010 | DOI: 10.1038/NPHYS1534

nature physics

Dynamical axion field in topological magnetic insulators

Rundong Li¹, Jing Wang^{1,2}, Xiao-Liang Qi¹ and Shou-Cheng Zhang^{1*}

$$S_{0} = \frac{8}{\pi} \int d^{3}x dt \left(\varepsilon E^{2} - B^{2} / \mu\right)$$
$$S_{\theta} = \frac{\theta}{2\pi} \frac{e^{2}}{2\pi \hbar c} \int d^{3}x dt \vec{E} \vec{B}$$

时间反演对称→θ=0,π

空间反演对称→θ=0,π

没有时间空间反演对称→O不再量子化,但是都很小BFO,10-4

磁+拓扑

 The simplest way is to coat a topological insulator with magnetic material to get rid of surface states. that will also have theta = pi, but there are technical problems there. (Y.L. Chen et al., Science (2010))

• Combine band topology with intrinsic magnetic order.

设计大的磁电响应材料

- 磁需要电子关联
- 拓扑量子序需要自旋轨道耦合
- Bi₂Se₃等已知的不好
- 3d,4d不好
- 4f,5f不好
- 5d !

Turner, Zhang, Vishwanath, arXiv:1010.4335 Hughes, Prodan and Bernevig, PRB (2011)

$$P \quad \blacksquare \quad \oint \frac{e^2}{2 \mathcal{W}} B$$
$$\theta = \pi \cdot M \pmod{2}$$

where $M = (\sum_k N_i)/2$, and N_i is the number of occupied states at the TRIM points *i* with odd parity. TABLE III: Calculated parities of states at Time Reversal Invariant Momenta (TRIMs) of CaOs₂O₄. Only the 4 empty t_{2g} bands are shown in order of increasing energy. Lx $2\pi/a(-0.5,0.5,0.5)$, Ly $2\pi/a(0.5,-0.5,0.5)$, Lz $2\pi/a(-0.5,0.5,0.5)$ and L $2\pi/a(0.5,0.5,0.5)$).

 $CaOs_2O_4$ $SrOs_2O_4$

PRL 108, 146601 (2012)

Xiangang Wan,¹ Ashvin Vishwanath,^{2,3} and Sergey Y. Savrasov⁴

设计Axion insulator

FIG. 3. Sketch of the predicted phase diagram for spinel osmates.

PRL 108, 146601 (2012) Xiangang Wan,¹ Ashvin Vishwanath,^{2,3} and Sergey Y. Savrasov⁴

汇报内容

□5d过渡金属氧化物

□烧绿石结构铱化合物

磁基态构型, Weyl半金属, Fermi Arc

□设计Axion绝缘体

Slater insulator

Slater Insulator

- 金属→绝缘体转变
- Mott (1940s电子关联)
- Anderson (1970s localization via disorder)
- Slater (1951) antiferromagnetic AF order alone can open a gap regardless of the magnitude of the Coulomb interaction.
- Generally, a 3D conductor causes only a small fraction of changes in its electronic structure through the AF ordering所以 Slater insulator很少受到关注。

Slater Insulator Cd₂Os₂O₇

PHYSICAL REVIEW B, VOLUME 63, 195104

(2001)

Continuous metal-insulator transition in the pyrochlore Cd₂Os₂O₇

D. Mandrus,^{1,2,*} J. R. Thompson,^{2,1} R. Gaal,³ L. Forro,³ J. C. Bryan,⁴ B. C. Chakoumakos,¹ L. M. Woods,^{2,1} B. C. Sales, R. S. Fishman,¹ and V. Keppens^{1,†}

All-in/all-out非共线磁结构

PRL 108, 247204 (2012)

PHYSICAL REVIEW LETTERS

week ending 15 JUNE 2012

Noncollinear Magnetism and Spin-Orbit Coupling in 5d Pyrochlore Oxide Cd₂Os₂O₇

We investigate the electronic and magnetic properties of the pyrochlore oxide $Cd_2Os_2O_7$ using the density-functional theory plus on-site repulsion (*U*) method, and depict the ground-state phase diagram with respect to *U*. We conclude that the all-in–all-out noncollinear magnetic order is stable in a wide range of *U*. We also show that the easy-axis anisotropy arising from the spin-orbit coupling plays a significant role in stabilizing the all-in–all-out magnetic order. A *pseudogap* was observed near the transition between

PRL 108, 247205 (2012)PHYSICAL REVIEW LETTERSweek ending
15 JUNE 2012

Tetrahedral Magnetic Order and the Metal-Insulator Transition in the Pyrochlore Lattice of Cd₂Os₂O₇

accompanied with any spatial symmetry breaking. We propose a noncollinear all-in-all-out spin arrangement on the tetrahedral network made of Os atoms. Based on this we suggest that the transition is not caused by the Slater mechanism as believed earlier but by an alternative mechanism related to the

PHYSICAL REVIEW B 80, 161104(R) (2009)

Continuous metal-insulator transition of the antiferromagnetic perovskite NaOsO₃

Y. G. Shi,^{1,2} Y. F. Guo,^{1,2} S. Yu,³ M. Arai,⁴ A. A. Belik,^{1,2} A. Sato,⁵ K. Yamaura,^{2,3,*} E. Takayama-Muromachi,^{1,2,3} H. F. Tian,⁶ H. X. Yang,⁶ J. Q. Li,⁶ T. Varga,⁷ J. F. Mitchell,⁷ and S. Okamoto⁸

PHYSICAL REVIEW B 85, 174424 (2012)

Electronic structure and magnetic properties of NaOsO3

Yongping Du,¹ Xiangang Wan,^{1,2,*} Li Sheng,¹ Jinming Dong,¹ and Sergey Y. Savrasov²

- 1) Despite its big value the SOC has only weak effect on the band structure and magnetic moment.
- 2) The electronic correlations alone cannot open the band gap, and the low-temperature phase of NaOsO₃ is not a Mott-type insulator.
- 3) The magnetic configuration has an important effect on the conductivity, and the ground state is a G-type AFM insulator.

4) magnetic ordering \rightarrow insulating behavior of NaOsO₃.

5) 磁化率曲线要小心

Magnetically Driven Metal-Insulator Transition in NaOsO₃

S. Calder,^{1,*} V.O. Garlea,¹ D.F. McMorrow,² M.D. Lumsden,¹ M.B. Stone,¹ J.C. Lang,³ J.-W. Kim,³ J.A. Schlueter,⁴ Y.G. Shi,^{5,6} K. Yamaura,⁶ Y.S. Sun,⁷ Y. Tsujimoto,⁷ and A.D. Christianson¹

我们的理论结果被这篇实验很好的证实 磁矩大小,磁结构,SOC影响不大

主要的内容

- •1) 烧绿石结构过渡金属Ir氧化物的磁结构
- •2) 对于金属也是可以对其拓扑分类的
- 3) Axion insulator
- •4)确定了NaOsO₃是Slater insulator

BiS2层状超导体 (2012-07)

- Bi₄O₄S₃
- $LaO_{1-x}F_xBiS_2$
- NdOBiS₂

LaO_{0.5}F_{0.5}BiS₂的Fermi surface

strong Fermi surface nesting at wavevectors near k =(π , π , 0).

LaO_{0.5}F_{0.5}BiS₂的声子谱

linear response phonon calculation

Frozen phonon calculation Nesting→CDW?

anharmonic problem

在谐波近视下 $E_n \, \swarrow E_0 \, \blacksquare \, n \circ \mathcal{Y}_n$,为是声子能量

在非谐下En就不是evenly spaced

Hui, Allen (1974)

electron-phonon interaction

• Four anharmonic modes

Ptotal **0.85**

McMillan formula for T_c :

$$T_c = \frac{\Theta_D}{1.45} \text{exp} \left[\frac{-1.04(1+\lambda)}{\lambda(1-0.62\mu^*) - \mu^*} \right]$$

Coulomb parameter $\not = 0.1$ $y_{\mathcal{D}} = 260K$

calculated T_c **D** 11.3K

拓扑超导

Fu and Berg (PRL 2010)判据: odd-parity pairing symmetry and its Fermi surface encloses an odd number of time reversal invariant moments

已知的拓扑+超导的材料都是s/p电子体系

对于实际的材料体系 电声子耦合可能导致非常规超导吗?

BCS with General Pairing Symmetry

BCS gap equation

$$\Delta(\mathbf{k}) = -\sum_{\mathbf{k}'} W(\mathbf{k}\mathbf{k}')\Delta(\mathbf{k}') \tanh\left(\frac{\epsilon_{\mathbf{k}'}}{2T_c}\right)/2\epsilon_{\mathbf{k}'}$$

对于电声子耦合:

 $W(\mathbf{k}j\mathbf{k}+\mathbf{q}j') = |\langle \psi_{\mathbf{k}j}|\delta^{\mathbf{q}\nu}V_{eff}|\psi_{\mathbf{k}+\mathbf{q}j'}\rangle|^2$

线性响应密度泛函

Orthonormalize polynomials at a given energy surface (such, e.g., as spherical harmonics in case of a sphere)

$$\frac{1}{N(\varepsilon)}\sum_{\mathbf{k}}\eta_{a}(\mathbf{k})\eta_{b}(\mathbf{k})\delta(\boldsymbol{\epsilon}_{\mathbf{k}}-\boldsymbol{\varepsilon})=\delta_{ab}$$

Expanding superconducting energy gap and pairing interaction

$$\Delta(\mathbf{k}) = \sum_{\alpha} \Delta_{a}(\epsilon_{\mathbf{k}})\eta_{a}(\mathbf{k}) \qquad \Delta_{a}(\varepsilon) = \frac{1}{N(\varepsilon)} \sum_{\mathbf{k}} \delta(\epsilon_{\mathbf{k}} - \varepsilon) \Delta(\mathbf{k}) \eta_{b}^{*}(\mathbf{k})$$
$$W(\mathbf{k}\mathbf{k}') = \sum_{\alpha\beta} W_{ab}(\epsilon_{\mathbf{k}}\epsilon_{\mathbf{k}'})\eta_{a}(\mathbf{k})\eta_{b}(\mathbf{k}')$$
$$W_{ab}(\varepsilon\varepsilon') = \frac{1}{N(\varepsilon)N(\varepsilon')} \sum_{\mathbf{k}\mathbf{k}'} \delta(\epsilon_{\mathbf{k}} - \varepsilon)\eta_{a}^{*}(\mathbf{k})W(\mathbf{k}\mathbf{k}')\eta_{b}(\mathbf{k}')\delta(\epsilon_{\mathbf{k}'} - \varepsilon')$$

The gap equation becomes

$$\Delta_a(\varepsilon) = -\int d\varepsilon' \sum_b W_{ab}(\varepsilon\varepsilon') \Delta_b(\varepsilon') N(\varepsilon') \tanh\left(\frac{\varepsilon'}{2T_c}\right)/2\varepsilon'$$
pairing occurs for the electrons within a thin layer near E_f

$$\Delta_{a}(\varepsilon) = \begin{cases} \Delta_{a} & \text{for} - \omega_{D} < \varepsilon < +\omega_{D} \\ 0 & \text{otherwise} \end{cases}$$
$$W_{a}(\varepsilon\varepsilon') = \begin{cases} W_{a} & \text{for} - \omega_{D} < \varepsilon < +\omega_{D} \\ 0 & \text{otherwise} \end{cases}$$

This reduces the gap equation to (integral is extended over Debye frequency range)

$$\Delta_a = -N(0) \sum_{b} W_{ab} \Delta_b \int_{-\omega_D}^{+\omega_D} d\varepsilon' \frac{1}{2\varepsilon'} \tanh\left(\frac{\varepsilon'}{2T_c}\right)$$

Assuming crystal symmetry makes $W_{ab} - W_a \delta_{ab}$ and evaluating the integral gives

$$T_c = 1.134\omega_D e^{-1/\lambda_a} \qquad \lambda_a = -N(0)W_a$$

where the average electron-phonon coupling in a given a channel is given by the Fermi surface average of the electron-phonon coupling

$$W_{a} = \frac{1}{N(0)N(0)} \sum_{\mathbf{k}\mathbf{k}'} \delta(\epsilon_{\mathbf{k}}) \eta_{a}(\mathbf{k}) W(\mathbf{k}\mathbf{k}') \eta_{a}(\mathbf{k}') \delta(\epsilon_{\mathbf{k}'})$$

Finally, the superconducting state with largest λ_a will be realized.

为何实际材料电声子耦合总是s-wave like?

电声子耦合往往是实空间局域的 W(k,k') 基本与k无关

$$\lambda_a = -\frac{1}{N(0)} \sum_{\mathbf{k}\mathbf{k}'} \delta(\boldsymbol{\epsilon}_{\mathbf{k}}) \eta_a(\mathbf{k}) W(\mathbf{k}\mathbf{k}') \eta_a(\mathbf{k}') \delta(\boldsymbol{\epsilon}_{\mathbf{k}'})$$

In the extreme case $W(\mathbf{k}, \mathbf{k}') = W_0$ we obtain:

 $\lambda_a = -W_0 N(0) \delta_{a=s-wave}$

所以只有s-wave!

另外一个极限: 电声子耦合在k空间局域 $W(\mathbf{k}, \mathbf{k}') = W_1 \delta(\mathbf{k} - \mathbf{k}' - \mathbf{q}_0) = W_1 \sum_a \eta_a(\mathbf{k}) \eta_a(\mathbf{k}' + \mathbf{q}_0)$ $\lambda_a = -W_1 \sum_{\mathbf{k}} \delta(\epsilon_{\mathbf{k}}) \eta_a(\mathbf{k}) \eta_a(\mathbf{k} + \mathbf{q}_0) = -W_1 N(0) O_a(\mathbf{q}_0)$

where the overlap matrix between two polynomials shows up $O_a(\mathbf{q}_0) = \frac{1}{N(0)} \sum_{\mathbf{k}} \delta(\epsilon_{\mathbf{k}}) \eta_a(\mathbf{k}) \eta_a(\mathbf{k} + \mathbf{q}_0)$

It would be less than unity for non-zero angular momentum index a unless $\mathbf{q}_0 \Rightarrow \mathbf{0}$ $\lim_{q_0 \to 0} O_a(\mathbf{q}_0) = 1$

实际材料电声子耦合只能s-wave吗?

要找电声子耦合在倒空间局域

LDA+SO \rightarrow Bi₂Se₃!

Superconductivity in Cu_xBi₂Se₃

Hor et al, PRL 104, 057001 (2010)

Symmetry of Pairing State

Scanning-tunneling spectroscopy: fully gapped state in Cu_xBi₂Se₃

Pressure-Induced Unconventional Superconducting Phase in the Topological Insulator Bi₂Se₃

Kevin Kirshenbaum,¹ P. S. Syers,¹ A. P. Hope,¹ N. P. Butch,² J. R. Jeffries,² S. T. Weir,² J. J. Hamlin,³ M. B. Maple,³ Y. K. Vohra,⁴ and J. Paglione^{1,*}

¹Department of Physics, Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA

 ²Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
³Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
⁴Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (Received 26 February 2013; published 20 August 2013)

Simultaneous low-temperature electrical resistivity and Hall effect measurements were performed on single-crystalline Bi₂Se₃ under applied pressures up to 50 GPa. As a function of pressure, superconductivity is observed to onset above 11 GPa with a transition temperature T_c and upper critical field H_{c2} that both increase with pressure up to 30 GPa, where they reach maximum values of 7 K and 4 T, respectively. Upon further pressure increase, T_c remains anomalously constant up to the highest achieved pressure. Conversely, the carrier concentration increases continuously with pressure, including a tenfold increase over the pressure range where T_c remains constant. Together with a quasilinear temperature dependence of H_{c2} that exceeds the orbital and Pauli limits, the anomalously stagnant pressure dependence of T_c points to an unconventional pressure-induced pairing state in Bi₂Se₃ that is unique among the superconducting topological insulators.

Phonon Spectrum for Bi₂Se₃

Density functional linear response approach

LDA+SO

Prior VASP calculations in Appl. Phys. Lett. **100**, 082109 (2012) reported some instabilities which we did not confirm

Calculated phonon linewidths in doped Bi₂Se₃

Electron-phonon coupling is enormous at $q_0 \sim (0,0,0.04) 2\pi/c$

Shows a strong ridge-like structure along ΓZ line at small q's due to quasi 2D features of the Fermi surface.

Calculated electron-phonon matrix elements

Calculated deformation potentials at long wavelengths

自旋轨道耦合 中心反演对称

打破中心反演对称

强的自旋轨道耦合在此很重要

Basis function for hexagonal lattices

PHYSICAL REVIEW B

VOLUME 37, NUMBER 4

1 FEBRUARY 1988

Stability of anisotropic superconducting phases in UPt₃

W. Putikka and Robert Joynt

Physics Department, 1150 University Avenue, University of Wisconsin-Madison, Madison, Wisconsin 53706 (Received 26 October 1987)

TABLE I. Basis functions for the various representations of D_6	. The interaction can be decomposed
into sums of products of these functions.	na – nationalis acanteria tanàn amin'ny fisia amin'ny fisia dia mampiasa dia mampiasa dia kaodim-paositra dia k

Representation	Function
A18	$\phi_k = \frac{1}{\sqrt{3}} \cos\left(\frac{ck_z}{2}\right) \left[\cos\left(\frac{\sqrt{3}ak_y}{3}\right) + \cos\left(\frac{ak_x}{2} + \frac{\sqrt{3}ak_y}{6}\right) + \cos\left(\frac{ak_x}{2} - \frac{\sqrt{3}ak_y}{6}\right) \right]$
B _{1g}	$\psi_k = \frac{1}{\sqrt{3}} \sin\left(\frac{ck_z}{2}\right) \left[\sin\left(\frac{\sqrt{3}ak_y}{3}\right) + \sin\left(\frac{ak_x}{2} - \frac{\sqrt{3}ak_y}{6}\right) - \sin\left(\frac{ak_x}{2} + \frac{\sqrt{3}ak_y}{6}\right) \right]$
E_{1g}	$\theta_k = \frac{1}{\sqrt{2}} \sin\left(\frac{ck_z}{2}\right) \left[\sin\left(\frac{ak_x}{2} + \frac{\sqrt{3}ak_y}{6}\right) + \sin\left(\frac{ak_x}{2} - \frac{\sqrt{3}ak_y}{6}\right) \right]$
	$\xi_k = \frac{1}{\sqrt{6}} \sin\left(\frac{ck_z}{2}\right) \left[2\sin\left(\frac{\sqrt{3}ak_y}{3}\right) + \sin\left(\frac{ak_x}{2} + \frac{\sqrt{3}ak_y}{6}\right) - \sin\left(\frac{ak_x}{2} - \frac{\sqrt{3}ak_y}{6}\right) \right]$

Large Electron-Phonon Interaction in Cu_xBi₂Se₃

S-wave shows largest coupling. P-wave is also very large!

Coulomb pseudopotential μ^* 压制 s-wave

$$T_{c}^{(l)} = 1.14\omega_{D} \exp\left(-\frac{1}{\lambda_{l}^{eff}}\right)$$
$$\lambda_{l}^{eff} = \frac{\lambda_{l} - \mu_{l}^{*}}{1 + \lambda_{s-h}} \quad \mu_{l}^{*} = \frac{\mu_{l}}{1 + \mu_{l} \ln \epsilon_{F} / \omega_{D}}$$

where μ_l is the Fermi surface average of the screened Coulomb interaction

$$\mu_{l} = \frac{1}{N(0)} \sum_{\mathbf{k}\mathbf{k}'} \langle \mathbf{k} - \mathbf{k} | U | \mathbf{k}' - \mathbf{k}' \rangle \delta(\boldsymbol{\epsilon}_{\mathbf{k}}) \delta(\boldsymbol{\epsilon}_{\mathbf{k}'}) \eta_{l}(\mathbf{k}) \eta_{l}(\mathbf{k}')$$

Assuming Hubbard like on-site Coulomb repulsion

 $\langle \mathbf{k} - \mathbf{k} | U | \mathbf{k}' - \mathbf{k}' \rangle = U$

 μ^* will affect s-wave pairing only

$$\mu_{l=s} = UN(0) \qquad \mu_{l>s} = 0$$

Estimates with μ^*

For doped Bi₂Se₃ we obtain the estimate

 $\omega_D \sim 100K$ $\varepsilon_F \sim 2000 - 5000K$

and

 $\mu_{s}^{*}=0.1$

For doping by 0.16 electrons we get the estimates

Effective coupling $\lambda - \mu^*$ for p-wave pairing channel wins!

Other Compounds

 Bi_2Te_3

TIBiTe₂

Doped-SnTe

Conclusion

- \Box Large electron-phonon coupling is found for $Cu_xBi_2Se_3$
- □ Not only s-wave but also p-wave pairing is found to be large due to strong anisotropy and quasi-2D Fermi surfaces. $\lambda_s \sim \lambda_p$
- □ Coulomb interaction and spin fluctuations will reduce λ_s and make $\lambda_p > \lambda_p$ therefore unconventional superconductivity may indeed be realized here.
- Discussed effects have nothing to do with topological aspect of the problem, may be found in other doped band insulators.

